首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vacuolar proton pumping pyrophosphatase (H(+)-PPase; EC 3.6.1.1) plays a pivotal role in electrogenic translocation of protons from cytosol to the vacuolar lumen at the expense of PP(i) hydrolysis. Alignment analysis on amino acid sequence demonstrates that vacuolar H(+)-PPase of mung bean contains six highly conserved histidine residues. Previous evidence indicated possible involvement of histidine residue(s) in enzymatic activity and H(+)-translocation of vacuolar H(+)-PPase as determined by using histidine specific modifier, diethylpyrocarbonate [J. Protein Chem. 21 (2002) 51]. In this study, we further attempted to identify the roles of histidine residues in mung bean vacuolar H(+)-PPase by site-directed mutagenesis. A line of mutants with histidine residues singly replaced by alanine was constructed, over-expressed in Saccharomyces cerevisiae, and then used to determine their enzymatic activities and proton translocations. Among the mutants scrutinized, only the mutation of H716 significantly decreased the enzymatic activity, the proton transport, and the coupling ratio of vacuolar H(+)-PPase. The enzymatic activity of H716A is relatively resistant to inhibition by diethylpyrocarbonate as compared to wild-type and other mutants, indicating that H716 is probably the target residue for the attack by this modifier. The mutation at H716 of V-PPase shifted the optimum pH value but not the T(1/2) (pretreatment temperature at which half enzymatic activity is observed) for PP(i) hydrolytic activity. Mutation of histidine residues obviously induced conformational changes of vacuolar H(+)-PPase as determined by immunoblotting analysis after limited trypsin digestion. Furthermore, mutation of these histidine residues modified the inhibitory effects of F(-) and Na(+), but not that of Ca(2+). Single substitution of H704, H716 and H758 by alanine partially released the effect of K(+) stimulation, indicating possible location of K(+) binding in the vicinity of domains surrounding these residues.  相似文献   

2.
The H(+)-translocating inorganic pyrophosphatase is a proton pump that hydrolyzes inorganic pyrophosphate. It consists of a single polypeptide with 14-17 transmembrane domains (TMs). We focused on the third quarter region of Streptomyces coelicolor A3(2) H(+)-pyrophosphatase, which contains a long conserved cytoplasmic loop. We assayed 1520 mutants for pyrophosphate hydrolysis and proton translocation, and selected 34 single-residue substitution mutants with low substrate hydrolysis and proton-pump activities. We also generated 39 site-directed mutant enzymes and assayed their activity. The mutation of 5 residues in TM10 resulted in low energy-coupling efficiencies, and mutation of conserved residues Thr(409), Val(411), and Gly(414) showed neither hydrolysis nor pumping activity. The mutation of six, five, and four residues in TM11, 12, and 13, respectively, gave a negative effect. Phe(388), Thr(389), and Val(396) in cytoplasmic loop i were essential for efficient H(+) translocation. Ala(436) and Pro(560) in the periplasmic loops were critical for coupling efficiency. These low-efficiency mutants showed dysfunction of the energy-conversion and/or proton-translocation activity. The energy efficiency was increased markedly by the mutation of two and six residues in TM9 and 12, respectively. These results suggest that TM10 is involved in enzyme function, and that TM12 regulate the energy-conversion efficiency. H(+)-pyrophosphatase might involve dynamic linkage between the hydrophilic loops and TMs through the central half region of the enzyme.  相似文献   

3.
Vacuolar H(+)-translocating inorganic pyrophosphatase (V-PPase) uses PP(i) as an energy donor and requires free Mg(2+) for enzyme activity and stability. To determine the catalytic domain, we analyzed charged residues (Asp(253), Lys(261), Glu(263), Asp(279), Asp(283), Asp(287), Asp(723), Asp(727), and Asp(731)) in the putative PP(i)-binding site and two conserved acidic regions of mung bean V-PPase by site-directed mutagenesis and heterologous expression in yeast. Amino acid substitution of the residues with alanine and conservative residues resulted in a marked decrease in PP(i) hydrolysis activity and a complete loss of H(+) transport activity. The conformational change of V-PPase induced by the binding of the substrate was reflected in the susceptibility to trypsin. Wild-type V-PPase was completely digested by trypsin but not in the presence of Mg-PP(i), while two V-PPase mutants, K261A and E263A, became sensitive to trypsin even in the presence of the substrate. These results suggest that the second acidic region is also implicated in the substrate hydrolysis and that at least two residues, Lys(261) and Glu(263), are essential for the substrate-binding function. From the observation that the conservative mutants K261R and E263D showed partial activity of PP(i) hydrolysis but no proton pump activity, we estimated that two residues, Lys(261) and Glu(263), might be related to the energy conversion from PP(i) hydrolysis to H(+) transport. The importance of two residues, Asp(253) and Glu(263), in the Mg(2+)-binding function was also suggested from the trypsin susceptibility in the presence of Mg(2+). Furthermore, it was found that the two acidic regions include essential common motifs shared among the P-type ATPases.  相似文献   

4.
Vacuolar proton pumping pyrophosphatase (H(+)-PPase; EC 3.6.1.1) plays a central role in the electrogenic translocation of protons from cytosol to the vacuole lumen at the expense of PP(i) hydrolysis. A fluorescent probe, fluorescein 5'-isothiocyanate (FITC), was used to modify a lysine residue of vacuolar H(+)-PPase. The enzymatic activity and its associated H(+) translocation of vacuolar H(+)-PPase were markedly decreased by FITC in a concentration-dependent manner. The inhibition of enzymatic activity followed pseudo-first-order rate kinetics. A double-logarithmic plot of the apparent reaction rate constant against FITC concentration yielded a straight line with a slope of 0.89, suggesting that the alteration of a single lysine residue on the enzyme is sufficient to inhibit vacuolar H(+)-PPase. Changes in K(m) but not V(max) values of vacuolar H(+)-PPase as inhibited by FITC were obtained, indicating that the labeling caused a modification in affinity of the enzyme to its substrate. FITC inhibition of vacuolar H(+)-PPase could be protected by its physiological substrate, Mg(2+)-PP(i). These results indicate that FITC might specifically compete with the substrate at the active site and the FITC-labeled lysine residue locates probably in or near the catalytic domain of the enzyme. The enhancement of fluorescence intensity and the blue shift of the emission maximum of FITC after modification of vacuolar H(+)-PPase suggest that the FITC-labeled lysine residue is located in a relatively hydrophobic region.  相似文献   

5.
H(+)-pyrophosphatase (H(+)-PPase) catalyzes pyrophosphate-driven proton transport against the electrochemical potential gradient in various biological membranes. All 50 of the known H(+)-PPase amino acid sequences contain four invariant glutamate residues. In this study, we use site-directed mutagenesis in conjunction with functional studies to determine the roles of the glutamate residues Glu(197), Glu(202), Glu(550), and Glu(649) in the H(+)-PPase of Rhodospirillum rubrum (R-PPase). All residues were replaced with Asp and Ala. The resulting eight variant R-PPases were expressed in Escherichia coli and isolated as inner membrane vesicles. All substitutions, except E202A, generated enzymes capable of PP(i) hydrolysis and PP(i)-energized proton translocation, indicating that the negative charge of Glu(202) is essential for R-PPase function. The hydrolytic activities of all other PPase variants were impaired at low Mg(2+) concentrations but were only slightly affected at high Mg(2+) concentrations, signifying that catalysis proceeds through a three-metal pathway in contrast to wild-type R-PPase, which employs both two- and three-metal pathways. Substitution of Glu(197), Glu(202), and Glu(649) resulted in decreased binding affinity for the substrate analogues aminomethylenediphosphonate and methylenediphosphonate, indicating that these residues are involved in substrate binding as ligands for bridging metal ions. Following the substitutions of Glu(550) and Glu(649), R-PPase was more susceptible to inactivation by the sulfhydryl reagent mersalyl, highlighting a role of these residues in maintaining enzyme tertiary structure. None of the substitutions affected the coupling of PP(i) hydrolysis to proton transport.  相似文献   

6.
Vacuolar H+-translocating inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) is a homodimeric proton translocase consisting of a single type of polypeptide with a molecular mass of approximately 81 kDa. Topological analysis tentatively predicts that mung bean V-PPase contains 14 transmembrane domains. Alignment analysis of V-PPase demonstrated that the transmembrane domain 5 (TM5) of the enzyme is highly conserved in plants and located at the N-terminal side of the putative substrate-binding loop. The hydropathic analysis of V-PPase showed a relatively lower degree of hydrophobicity in the TM5 region as compared to other domains. Accordingly, it appears that TM5 is probably involved in the proton translocation of V-PPase. In this study, we used site-directed mutagenesis to examine the functional role of amino acid residues in TM5 of V-PPase. A series of mutants singly replaced by alanine residues along TM5 were constructed and over-expressed in Saccharomyces cerevisiae; they were then used to determine their enzymatic activities and proton translocations. Our results indicate that several mutants displayed minor variations in enzymatic properties, while others including those mutated at E225, a GYG motif (residues from 229 to 231), A238, and R242, showed a serious decline in enzymatic activity, proton translocation, and coupling efficiency of V-PPase. Moreover, the mutation at Y230 relieved several cation effects on the V-PPase. The GYG motif presumably plays a significant role in maintaining structure and function of V-PPase.  相似文献   

7.
Ru C. Van 《BBA》2005,1709(1):84-94
Vacuolar H+-translocating inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) is a homodimeric proton translocase consisting of a single type of polypeptide with a molecular mass of approximately 81 kDa. Topological analysis tentatively predicts that mung bean V-PPase contains 14 transmembrane domains. Alignment analysis of V-PPase demonstrated that the transmembrane domain 5 (TM5) of the enzyme is highly conserved in plants and located at the N-terminal side of the putative substrate-binding loop. The hydropathic analysis of V-PPase showed a relatively lower degree of hydrophobicity in the TM5 region as compared to other domains. Accordingly, it appears that TM5 is probably involved in the proton translocation of V-PPase. In this study, we used site-directed mutagenesis to examine the functional role of amino acid residues in TM5 of V-PPase. A series of mutants singly replaced by alanine residues along TM5 were constructed and over-expressed in Saccharomyces cerevisiae; they were then used to determine their enzymatic activities and proton translocations. Our results indicate that several mutants displayed minor variations in enzymatic properties, while others including those mutated at E225, a GYG motif (residues from 229 to 231), A238, and R242, showed a serious decline in enzymatic activity, proton translocation, and coupling efficiency of V-PPase. Moreover, the mutation at Y230 relieved several cation effects on the V-PPase. The GYG motif presumably plays a significant role in maintaining structure and function of V-PPase.  相似文献   

8.
Vacuolar H(+)-translocating inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) is a homodimeric proton-translocase; it contains a single type of polypeptide of approximately 81kDa. A line of evidence demonstrated that the carboxyl terminus of V-PPase is relatively conserved in various plant V-PPases and presumably locates in the vicinity of the catalytic site. In this study, we attempt to identify the roles of the C-terminus of V-PPase by generating a series of C-terminal deletion mutants over-expressed in Saccharomyces cerevisiae, and determining their enzymatic and proton translocating reactions. Our results showed that the deletion mutation at last 5 amino acids in the C-terminus (DeltaC5) induced a dramatic decline in enzymatic activity, proton translocation, and coupling efficiency of V-PPase; but the mutant lacking last 10 amino acids (DeltaC10) retained about 60-70% of the enzymatic activity of wild-type. Truncation of the C-terminus by more than 10 amino acids completely abolished the enzymatic activity and proton translocation of V-PPase. Furthermore, the DeltaC10 mutant displayed a shift in T(1/2) (pretreatment temperature at which half enzymatic activity is observed) but not the optimal pH for PP(i) hydrolytic activity. The deletion of the C-terminus substantially modified apparent K(+) binding constant, but exert no significant changes in the Na(+)-, F(-)-, and Ca(2+)-inhibition of the enzymatic activity of V-PPase. Taken together, we speculate that the C-terminus of V-PPase may play a crucial role in sustaining enzymatic activity and is likely involved in the K(+)-regulation of the enzyme in an indirect manner.  相似文献   

9.
10.
Endoplasmic reticulum (ER)-enriched vesicles from etiolated hypocotyls of mung bean seedlings (Vigna radiata) were successfully isolated using Ficoll gradient and two-phase (polyethylene glycol-dextran) partition. The ER-enriched vesicles contained inorganic pyrophosphate (PPi) hydrolysis and its associated proton translocating activities. Antiserum prepared against vacuolar H+-pyrophosphatase (V-PPase, EC 3.6.1.1) did not inhibit this novel pyrophosphatase-dependent proton translocation, excluding the possible contamination of tonoplast vesicles in the ER-enriched membrane preparation. The optimal ratios of Mg2+/PPi (inorganic pyrophosphate) for enzymatic activity and PPi-dependent proton translocation of ER-enriched vesicles were higher than those of vacuolar membranes. The PPi-dependent proton translocation of ER-enriched vesicles absolutely required the presence of monovalent cations with preference for K+, but could be inhibited by a common PPase inhibitor, F-. Furthermore, ER H+-pyrophosphatase exhibited some similarities and differences to vacuolar H+-PPases in cofactor/substrate ratios, pH profile, and concentration dependence of F-, imidodiphosphate (a PPi analogue), and various chemical modifiers. These results suggest that ER-enriched vesicles contain a novel type of proton-translocating PPase distinct from that of tonoplast from higher plants.  相似文献   

11.
Jiang SS  Yang SJ  Kuo SY  Pan RL 《FEBS letters》2000,468(2-3):211-214
Radiation inactivation analysis was employed to determine the functional masses of enzymatic activity and proton translocation of H(+)-pyrophosphatase from submitochondrial particles of etiolated mung bean seedlings. The activities of H(+)-pyrophosphatase decayed as a simple exponential function with respect to radiation dosage. D(37) values of 6.9+/-0.3 and 7.5+/-0.5 Mrad were obtained for pyrophosphate hydrolysis and its associated proton translocation, yielding molecular masses of 170+/-7 and 156+/-11 kDa, respectively. In the presence of valinomycin and 50 mM KCl, the functional size of H(+)-pyrophosphatase of tonoplast was decreased, while that of submitochondrial particles remained the same, indicating that they are two distinct types of proton pump using PP(i) as their energy source.  相似文献   

12.
Here we report the isolation and characterization of a type I vacuolar-type H(+)-pyrophosphatase (V-PPase), TgVP1, from an apicomplexan, Toxoplasma gondii, a parasitic protist that is particularly amenable to molecular and genetic manipulation. The 816-amino acid TgVP1 polypeptide is 50% sequence-identical (65% similar) to the prototypical type I V-PPase from Arabidopsis thaliana, AVP1, and contains all the sequence motifs characteristic of this pump category. Unlike AVP1 and other known type I enzymes, however, TgVP1 contains a 74-residue N-terminal extension encompassing a 42-residue N-terminal signal peptide sequence, sufficient for targeting proteins to the secretory pathway of T. gondii. Providing that the coding sequence for the entire N-terminal extension is omitted from the plasmid, transformation of Saccharomyces cerevisiae with plasmid-borne TgVP1 yields a stable and functional translation product that is competent in aminomethylenediphosphonate (AMDP)-inhibitable K(+)-activated pyrophosphate (PP(i)) hydrolysis and PP(i)-energized H(+) translocation. Immunofluorescence microscopy of both free and intracellular T. gondii tachyzoites using purified universal V-PPase polyclonal antibodies reveals a punctate apical distribution for the enzyme. Equivalent studies of the tachyzoites during host cell invasion, by contrast, disclose a transverse radial distribution in which the V-PPase is associated with a collar-like structure that migrates along the length of the parasite in synchrony with and in close apposition to the penetration furrow. Although treatment of T. gondii with AMDP concentrations as high as 100 microm had no discernible effect on the efficiency of host cell invasion and integration, concentrations commensurate with the I(50) for the inhibition of TgVP1 activity in vitro (0.9 microm) do inhibit cell division and elicit nuclear enlargement concomitant with the inflation and eventual disintegration of acidocalcisome-like vesicular structures. A dynamic association of TgVP1 with the host cell invasion apparatus is invoked, one in which the effects of inhibitory V-PPase substrate analogs are exerted after rather than during host cell invasion.  相似文献   

13.
Vacuolar H(+)-translocating pyrophosphatase (H(+)-PPase; EC 3.6.1.1) catalyzes both the hydrolysis of PP(i) and the electrogenic translocation of proton from the cytosol to the lumen of the vacuole. Vacuolar H(+)-PPase, purified from etiolated hypocotyls of mung bean (Vigna radiata L.), is a homodimer with a molecular mass of 145 kDa. To investigate the relationship between structure and function of this H(+)-translocating enzyme, thermoinactivation analysis was employed. Thermoinactivation studies suggested that vacuolar H(+)-PPase consists of two distinct states upon heat treatment and exhibited different transition temperatures in the presence and absence of ligands (substrate and inhibitors). Substrate protection of H(+)-PPase stabilizes enzyme structure by increasing activation energy from 54.9 to 70.2 kJ/mol. We believe that the conformation of this enzyme was altered in the presence of substrate to protect against the thermoinactivation. In contrast, the modification of H(+)-PPase by inhibitor (fluorescein 5'-isothiocyanate; FITC) augmented the inactivation by heat treatment. The native, substrate-bound, and FITC-labeled vacuolar H(+)-PPases possess probably distinct conformation and show different modes of susceptibility to thermoinactivation. Our results also indicate that the structure of one subunit of this homodimer exerts long distance effect on the other, suggesting a specific subunit-subunit interaction in vacuolar H(+)-PPase. A working model was proposed to interpret the relationship of the structure and function of vacuolar H(+)-PPase.  相似文献   

14.
Gene expression of grapevine vacuolar H(+)-pyrophosphatase (V-PPase EC 3.6.1.1.) during fruit ripening has previously been reported. Here we report on putative multiple V-PPase isoforms in grapevine. In this study a full-length cDNA sequence with an open reading frame of 2,295 nucleotides encoding a V-PPase gene (vpp2: acc. nr. AJ557256) was cloned. Sequence analyses of the deduced amino acid residues and RT-PCR experiments indicated that Vitis vinifera L. has at least two distinct isoforms of the V-PPase gene. Bioinformatic analyses of 13 V-PPase protein sequences revealed two highly conserved motifs associated with pyrophosphate (PPi) binding and response to stress, respectively. Both V-PPase isoforms were expressed at higher levels in the late post-véraison stage of grape berry ripening. Results also showed that the expression of grapevine V-PPase was induced by cold stress.  相似文献   

15.
The vacuolar H+-pyrophosphatase (V-PPase) is an electrogenic H+ pump localized in the plant vacuolar membrane. V-PPase from many species has been characterized previously and the corresponding genes/cDNAs have been cloned. Cloning of the V-PPase genes from many plant species has revealed conserved motifs that may correspond to catalytic sites. The completion of the entire DNA sequence of Oryza sativa (430 Mb) presented an opportunity to study the structure and function of V-PPase proteins, and also to identify new members of this family in Oryza sativa. Our analysis identified three novel V-PPase proteins in the Oryza sativa genome that contain functional domains typical of V-PPase. We have designated them as OVP3 to OVP5. The new predicted OVPs have chromosomal locations different from previously characterized V-PPases (OVP1 and OVP2) located on chromosome 6. They all contain three characteristic motifs of V-PPase and also a conserved motif [DE]YYTS, specific to type I V-PPases and involved in coupling PPi hydrolysis to H+ translocation.  相似文献   

16.
Arabidopsis thaliana vacuolar H(+)-translocating pyrophosphatase (V-PPase) was expressed functionally in yeast vacuoles with endogenous vacuolar H(+)-ATPase (V-ATPase), and the regulation and reversibility of V-ATPase were studied using these vacuoles. Analysis of electrochemical proton gradient (DeltamuH) formation with ATP and pyrophosphate indicated that the proton transport by V-ATPase or V-PPase is not regulated strictly by the proton chemical gradient (DeltapH). On the other hand, vacuolar membranes may have a regulatory mechanism for maintaining a constant membrane potential (DeltaPsi). Chimeric vacuolar membranes showed ATP synthesis coupled with DeltamuH established by V-PPase. The ATP synthesis was sensitive to bafilomycin A(1) and exhibited two apparent K(m) values for ADP. These results indicate that V-ATPase is a reversible enzyme. The ATP synthesis was not observed in the presence of nigericin, which dissipates DeltapH but not DeltaPsi, suggesting that DeltapH is essential for ATP synthesis.  相似文献   

17.
Megumi Hirono 《BBA》2007,1767(12):1401-1411
The H+-translocating inorganic pyrophosphatase is a proton pump that hydrolyzes inorganic pyrophosphate. It consists of a single polypeptide with 14-17 transmembrane domains (TMs). We focused on the third quarter region of Streptomyces coelicolor A3(2) H+-pyrophosphatase, which contains a long conserved cytoplasmic loop. We assayed 1520 mutants for pyrophosphate hydrolysis and proton translocation, and selected 34 single-residue substitution mutants with low substrate hydrolysis and proton-pump activities. We also generated 39 site-directed mutant enzymes and assayed their activity. The mutation of 5 residues in TM10 resulted in low energy-coupling efficiencies, and mutation of conserved residues Thr409, Val411, and Gly414 showed neither hydrolysis nor pumping activity. The mutation of six, five, and four residues in TM11, 12, and 13, respectively, gave a negative effect. Phe388, Thr389, and Val396 in cytoplasmic loop i were essential for efficient H+ translocation. Ala436 and Pro560 in the periplasmic loops were critical for coupling efficiency. These low-efficiency mutants showed dysfunction of the energy-conversion and/or proton-translocation activity. The energy efficiency was increased markedly by the mutation of two and six residues in TM9 and 12, respectively. These results suggest that TM10 is involved in enzyme function, and that TM12 regulate the energy-conversion efficiency. H+-pyrophosphatase might involve dynamic linkage between the hydrophilic loops and TMs through the central half region of the enzyme.  相似文献   

18.
Rapid growth of the submerged shoots of deepwater rice is essential for survival during the rainy season. We investigated changes in the expression of vacuolar H(+)-ATPase (V-ATPase), H(+)-pyrophosphatase (V-PPase), and aquaporins under submerged conditions. The amounts of vacuolar proton pumps, which support the active transport of ions into the vacuoles, were maintained on a membrane protein basis in the developing vacuoles. Among the six isogenes of V-PPase, OsVHP1;3 was markedly enhanced by submersion. The gene expression of efficient water channels, OsTIP1;1, OsTIP2;2, OsPIP1;1, OsPIP2;1, and OsPIP2;2, was markedly enhanced by submersion. The increase in aquaporin expression might support quick elongation of internodes. The mRNA levels of OsNIP2;2 and OsNIP3;1, which transport silicic and boric acids respectively, clearly decreased. The present study indicates that internodes of deepwater rice upregulate vacuolar proton pumps and water channel aquaporins and downregulate aquaporins that allow permeation of the substrates that suppress internode growth.  相似文献   

19.
Acidocalcisomes are acidic calcium storage compartments described initially in trypanosomatid and apicomplexan parasites. In this work, we describe organelles with properties similar to acidocalcisomes in the green alga Chlamydomonas reinhardtii. Nigericin and NH(4)Cl released (45)Ca(2+) from preloaded permeabilized cells, suggesting the incorporation of a significant amount of this cation into an acidic compartment. X-ray microanalysis of the electron-dense vacuoles or polyphosphate bodies of C. reinhardtii showed large amounts of phosphorus, magnesium, calcium, and zinc. Immunofluorescence microscopy, using antisera raised against a peptide sequence of the vacuolar type proton pyrophosphatase (H(+)-PPase) of Arabidopsis thaliana which is conserved in the C. reinhardtii enzyme, indicated localization in the plasma membrane, in intracellular vacuoles, and the contractile vacuole where it colocalized with the vacuolar proton ATPase (V-H(+)-ATPase). Purification of the electron-dense vacuoles using iodixanol density gradients indicated a preferential localization of the H(+)-PPase and the V-H(+)-ATPase activities in addition to high concentrations of PP(i) and short and long chain polyphosphate, but lack of markers for mitochondria and chloroplasts. In isolated electron-dense vacuoles, PP(i)-driven proton translocation was stimulated by potassium ions and inhibited by the PP(i) analog aminomethylenediphosphonate. Potassium fluoride, imidodiphosphate, N,N'-dicyclohexylcarbodiimide, and N-ethylmaleimide also inhibited PP(i) hydrolysis in the isolated organelles in a dose-dependent manner. These results indicate that the electron-dense vacuoles of C. reinhardtii are very similar to acidocalcisomes with regard to their chemical composition and the presence of proton pumps. Polyphosphate was also localized to the contractile vacuole by 4',6-diamidino-2-phenylindole staining, suggesting, with the immunochemical data, a link between these organelles and the acidocalcisomes.  相似文献   

20.
pH-homeostasis in the endomembrane system requires the activity of proton-pumps. In animals, the progressive acidification of compartments along the endocytic and secretory pathways is critical for protein sorting and vesicle trafficking, and is achieved by the activity of the vacuolar H(+)-ATPase (V-ATPase). Plants have an additional endomembrane pump, the vacuolar H(+)-pyrophosphatase (V-PPase), and previous research was largely focused on the respective functions of the two pumps in secondary active transport across the tonoplast. Recent approaches, including reverse genetics, have not only provided evidence that both enzymes play unique and essential roles but have also highlighted the important functions of the two proton pumps in endocytic and secretory trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号