首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In well-characterised species of the Rhodobacter (Rba.) genus of purple photosynthetic bacteria it is known that the photochemical reaction centre (RC) is intimately-associated with an encircling LH1 antenna pigment protein, and this LH1 antenna is prevented from completely surrounding the RC by a single copy of the PufX protein. In Rba. veldkampii only monomeric RC-LH1 complexes are assembled in the photosynthetic membrane, whereas in Rba. sphaeroides and Rba. blasticus a dimeric form is also assembled in which two RCs are surrounded by an S-shaped LH1 antenna. The present work established that dimeric RC-LH1 complexes can also be isolated from Rba. azotoformans and Rba. changlensis, but not from Rba. capsulatus or Rba. vinaykumarii. The compositions of the monomers and dimers isolated from these four species of Rhodobacter were similar to those of the well-characterised RC-LH1 complexes present in Rba. sphaeroides. Pigment proteins were also isolated from strains of Rba. sphaeroides expressing chimeric RC-LH1 complexes. Replacement of either the Rba. sphaeroides LH1 antenna or PufX with its counterpart from Rba. capsulatus led to a loss of the dimeric form of the RC-LH1 complex, but the monomeric form had a largely unaltered composition, even in strains in which the expression level of LH1 relative to the RC was reduced. The chimeric RC-LH1 complexes were also functional, supporting bacterial growth under photosynthetic conditions. The findings help to tease apart the different functions of PufX in different species of Rhodobacter, and a specific protein structural arrangement that allows PufX to fulfil these three functions is proposed.  相似文献   

2.
A three-dimensional model of the dimeric reaction center-light harvesting I-PufX (RC-LH1-PufX) complex from Rhodobacter sphaeroides, calculated from electron microscope single particle analysis of negatively stained complexes, shows that the two halves of the dimer molecule incline toward each other on the periplasmic side, creating a remarkable V-shaped structure. The distribution of negative stain is consistent with loose packing of the LH1 ring near the 14th LH1 alpha/beta pair, which could facilitate the migration of quinone and quinol molecules across the LH1 boundary. The three-dimensional model encloses a space near the reaction center Q(B) site and the 14th LH1 alpha/beta pair, which is approximately 20 angstroms in diameter, sufficient to sequester a quinone pool. Helical arrays of dimers were used to construct a three-dimensional membrane model, which matches the packing lattice deduced from electron microscope analysis of the tubular dimer-only membranes found in mutants of Rba. sphaeroides lacking the LH2 complex. The intrinsic curvature of the dimer explains the shape and approximately 70-nm diameter of these membrane tubules, and at least partially accounts for the spherical membrane invaginations found in wild-type Rba. sphaeroides. A model of dimer aggregation and membrane curvature in these spherical membrane invaginations is presented.  相似文献   

3.
4.
Monomeric and dimeric PufX-containing core complexes have been purified from membranes of wild-type Rhodobacter sphaeroides. Reconstitution of both samples by detergent removal in the presence of lipids leads to the formation of two-dimensional crystals constituted of dimeric core complexes. Two-dimensional crystals were further analyzed by cryoelectron microscopy and atomic force microscopy. A projection map at 26-A resolution reveals that core complexes assemble in an "S"-shaped dimeric complex. Each core complex is composed of one reaction center, 12 light-harvesting 1 alpha/beta-heterodimers, and one PufX protein. The light-harvesting 1 assemblies are open with a gap of density of approximately 30-A width and surround oriented reaction centers. A maximum density is found at the dimer junction. Based on the projection map, a model is proposed, in which the two PufX proteins are located at the dimer junction, consistent with the finding of dimerization of monomeric core complexes upon reconstitution. This localization of PufX in the core complex implies that PufX is the structural key for the dimer complex formation rather than a channel-forming protein for the exchange of ubiquinone/ubiquinol between the reaction center and the cytochrome bc1 complex.  相似文献   

5.
Carotenoids play important roles in photosynthesis where they are involved in light-harvesting, in photo-protection and in the assembly and structural stability of light-harvesting and reaction centre complexes. In order to examine the effects of carotenoids on the oligomeric state of the reaction centre-light-harvesting 1 -PufX (RC-LH1-PufX) core complex of Rhodobacter sphaeroides two carotenoid-less mutants, TC70 and R-26, were studied. Detergent fractionation showed that in the absence of carotenoids LH2 complexes do not assemble, as expected, but also that core complexes are predominantly found as monomers, although levels of the PufX polypeptide appeared to be unaffected. Analysis of R-26 membranes by electron microscopy and atomic force microscopy reveals arrays of hexagonally packed monomeric RC-LH1-PufX complexes. Transfer of the crtB gene encoding phytoene synthase to TC70 and R-26 restores the normal synthesis of carotenoids demonstrating that the R-26 mutant of Rba. sphaeroides harbours a mutation in crtB, among its other defects. The transconjugant TC70 and R-26 strains containing crtB had regained their ability to assemble wild-type levels of dimeric RC-LH1-PufX core complexes and normal energy transfer pathways were restored, demonstrating that carotenoids are essential for the normal assembly and function of both the LH2 and RC-LH1-PufX complexes in this bacterial photosystem.  相似文献   

6.
Two-dimensional crystals of dimeric photosynthetic reaction centre-LH1-PufX complexes have been analysed by cryoelectron microscopy. The 8.5A resolution projection map extends previous analyses of complexes within native membranes to reveal the alpha-helical structure of two reaction centres and 28 LH1 alphabeta subunits within the dimer. For the first time, we have achieved sufficient resolution to suggest a possible location for the PufX transmembrane helix, the orientation of the RC and the arrangement of helices within the surrounding LH1 complex. Whereas low-resolution projections have shown an apparent break in the LH1, our current map reveals a diffuse density within this region, possibly reflecting high mobility. Within this region the separation between beta14 of one monomer and beta2 of the other monomer is approximately 6A larger than the average beta-beta spacing within LH1; we propose that this is sufficient for exchange of quinol at the RC Q(B) site. We have determined the position and orientation of the RC within the dimer, which places its Q(B) site adjacent to the putative PufX, with access to the point in LH1 that appears most easily breached. PufX appears to occupy a strategic position between the mobile alphabeta14 subunit and the Q(B) site, suggesting how the structure, possibly coupled with a flexible ring, plays a role in optimizing quinone exchange during photosynthesis.  相似文献   

7.
The photosynthetic apparatus of purple bacteria in the genus Rhodobacter includes a core complex consisting of the reaction centre (RC), light-harvesting complex 1 (LH1), and the PufX protein. PufX modulates LH1 structure and facilitates photosynthetic quinone/quinol exchange. We deleted RC/LH1 genes in pufX + and pufX ++ (merodiploid) strains of Rhodobacter capsulatus, which reduced PufX levels regardless of pufX gene copy number and location. Photosynthetic growth of RC-only strains and independent assembly kinetics of the RC and LH1 were unaffected by pufX merodiploidy, but the absorption spectra of strains expressing the RC plus either LH1 α or β indicated that PufX may influence bacteriochlorophyll binding environments. Significant self-association of the PufX transmembrane segment was detected in a hybrid protein expression system, consistent with a role of PufX in core complex dimerization, as proposed for other Rhodobacter species. Our results indicate that in R. capsulatus PufX has the potential to be a central, homodimeric core complex component, and its cellular level is increased by interactions with the RC and LH1.  相似文献   

8.
Wang ZY  Suzuki H  Kobayashi M  Nozawa T 《Biochemistry》2007,46(12):3635-3642
PufX membrane protein is found in Rhodobacter species of purple photosynthetic bacteria and has been known to play an essential role in ubiquinone/ubiquinol exchange between the reaction center and cytochrome bc1 complex and also contribute to the dimerization of the reaction center-light-harvesting core complex. We have determined the solution structure of the Rhodobacter sphaeroides PufX using multidimensional NMR spectroscopy. The PufX, functionally expressed in Escherichia coli, forms a stable alpha helix consisting of 21 residues over the central transmembrane domain. The overall structure of the PufX is very similar to those of the LH1 alpha- and beta-polypeptides from Rhodospirillum rubrum and LH2 polypeptides. A short segment (Lys28-Gly35) rich in Gly and Ala residues revealed a relatively fast exchange between the backbone amide protons and deuteriums in the hydroxyl groups of the solvent, indicating that the backbone of this segment is more easily accessible to the surrounding solvent molecules compared to those of its neighboring portions. The Gly- and Ala-rich segment is located in the middle of the central helix and forms an extensive groove-like conformation on the surface with the neighboring residues, where the residues with large side chains are aligned on one side of the helix, and small residues are aligned on the other face. Such a structural motif may serve as a functional site responsible for ubiquinol transport from the core complex to the membrane phase and for sequence-specific helix-helix interactions with the neighboring polypeptides.  相似文献   

9.
The PufX membrane protein is essential for photosynthetic growth of Rhodobacter sphaeroides wild-type cells. PufX is associated with the reaction center-light harvesting 1 (RC-LH1) core complex and plays a key role in lateral ubiquinone/ubiquinol transfer. We have determined the PufX/RC stoichiometry by quantitative Western blot analysis and RC photobleaching. Independent of copy number effects and growth conditions, one PufX molecule per RC was observed in native membranes as well as in detergent-solubilized RC-LH1 complexes which had been purified over sucrose gradients. Surprisingly, two gradient bands with significantly different sedimentation coefficients were found to have a similar subunit composition, as judged by absorption spectroscopy and protein gel electrophoresis. Gel filtration chromatography and electron microscopy revealed that these membrane complexes represent a monomeric and a dimeric form of the RC-LH1 complex. Since PufX is strictly required for the isolation of dimeric core complexes, we suggest that PufX has a central structural role in forming dimeric RC-LH1 complexes, thus allowing efficient ubiquinone/ubiquinol exchange through the LH1 ring surrounding the RC.  相似文献   

10.
EPR characteristics of cytochrome c1, cytochromes b-565 and b-562, the iron-sulfur cluster, and an antimycin-sensitive ubisemiquinone radical of purified cytochrome b-c1 complex of Rhodobacter sphaeroides have been studied. The EPR specra of cytochrome c1 shows a signal at g = 3.36 flanked with shoulders. The oxidized form of cytochrome b-562 shows a broad EPR signal at g = 3.49, while oxidized cytochrome b-565 shows a signal at g = 3.76, similar to those of two b cytochromes in the mitochondrial complex. The distribution of cytochromes b-565 and b-562 in the isolated complex is 44 and 56%, respectively. Antimycin and 2,5-dibromo-3-methyl-6-isopropyl-1,4-benzoquinone (DBMIB) have little effect on the g = 3.76 signal, but they cause a slight downfield and upfield shifts of the g = 3.49 signal, respectively. 5-Undecyl-6-hydroxyl-4,7-dioxobenzothiazole (UHDBT) shifts the g = 3.49 signal downfield to g = 3.56 and sharpens the g = 3.76 signal slightly. Myxothiazol causes an upfield shift of both g = 3.49 and g = 3.76 signals. EPR characteristics of the reduced iron-sulfur cluster in bacterial cytochrome b-c1 complex are: gx = 1.8 with a small shoulder at g = 1.76, gy = 1.89 and gz = 2.02, similar to those observed with the mitochondrial enzyme. The gx = 1.8 signal decreased and the shoulder increased concurrently as the redox potential decreased, indicating that the environment of the iron-sulfur cluster is sensitive to the redox state of the complex. UHDBT sharpens the gz and and shifts it downfield from g = 2.02 to 2.03, and shifts gx upfield from g = 1.80 to 1.78. UHDBT also causes an upfield shift of gy but to a much lesser extent compared to the other two signals. Addition of DBMIB causes a downfield shift of the gy from 1.89 to 1.94 and broadens the gx signal with an upfield to g = 1.75. Myxothiazol and antimycin show little effect on the gy and gz signals, but they broaden and shift the gx signal upfield to g = 1.74. However, the myxothiazol effect is partially reversed by UHDBT. An antimycin-sensitive ubisemiquinone radical was detected in the cytochrome b-c1 complex. At pH 8.4, the antimycin-sensitive ubisemiquinone radical has a maximal concentration of 0.66 mol per mol complex at 100 mV.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Lucy I. Crouch 《BBA》2010,1797(11):1812-1819
In purple photosynthetic bacteria the initial steps of light energy transduction take place in an RC-LH1 complex formed by the photochemical reaction centre (RC) and the LH1 light harvesting pigment-protein. In Rhodobacter sphaeroides, the RC-LH1 complex assembles in a dimeric form in which two RCs are surrounded by an S-shaped LH1 antenna. There is currently debate over the detailed architecture of this dimeric RC-LH1 complex, with particular emphasis on the location and precise function of a minor polypeptide component termed PufX. It has been hypothesised that the membrane-spanning helical region of PufX contains a GxxxG dimerisation motif that facilitates the formation of a dimer of PufX at the interface of the RC-LH1 dimer, and more specifically that the formation of this PufX dimer seeds assembly of the remaining RC-LH1 dimer (J. Busselez et al., 2007). In the present work this hypothesis was tested by site directed mutagenesis of the glycine residues proposed to form the GxxxG motif. Mutation of these glycines to leucine did not decrease the propensity of the RC-LH1 complex to assemble in a dimeric form, as would be expected from experimental studies of the effect of mutation on GxxxG motifs in other membrane proteins. Indeed increased yields of dimer were seen in two of the glycine-to-leucine mutants constructed. It is concluded that the PufX from Rhodobacter sphaeroides does not contain a genuine GxxxG helix dimerisation motif.  相似文献   

12.
A pufX gene deletion in the purple bacterium Rhodobacter capsulatus causes a severe photosynthetic defect and increases core light-harvesting complex (LH1) protein and bacteriochlorophyll a (BChl) levels. It was suggested that PufX interrupts the LH1 alpha/beta ring around the reaction centre, allowing quinone/quinol exchange. However, naturally PufX(-) purple bacteria grow photosynthetically with an uninterrupted LH1. We discovered that substitutions of the Rhodobacter-specific LH1 alpha seryl-2 decrease carotenoid levels in PufX(-)R. capsulatus. An LH1 alphaS2F mutation improved the photosynthetic growth of a PufX(-) strain lacking the peripheral LH2 antenna, although LH1 BChl absorption remained above wild-type, suggesting that Rhodobacter-specific carotenoid binding is involved in the PufX(-) photosynthetic defect and LH1 expansion is not. Furthermore, PufX overexpression increased LH1-like BChl absorption without inhibiting photosynthetic growth. PufX(+) LH1 alphaS2-substituted mutant strains had wild-type carotenoid levels, indicating that PufX modulates LH1 carotenoid binding, inducing a conformational change that favours quinone/quinol exchange.  相似文献   

13.
The core complex of Rhodobacter sphaeroides is formed by the association of the light-harvesting antenna 1 (LH1) and the reaction center (RC). The PufX protein is essential for photosynthetic growth; it is located within the core in a 1 : 1 stoichiometry with the RC. PufX is required for a fast ubiquinol exchange between the Q(B) site of the RC and the Qo site of the cytochrome bc1 complex. In vivo the LH1-PufX-RC complex is assembled in a dimeric form, where PufX is involved as a structural organizer. We have modified the PufX protein at the N and the C-terminus with progressive deletions. The nine mutants obtained have been characterized for their ability for photosynthetic growth, the insertion of PufX in the core LH1-RC complex, the stability of the dimers and the kinetics of flash-induced reduction of cytochrome b561 of the cytochrome bc1 complex. Deletion of 18 residues at the N-terminus destabilizes the dimer in vitro without preventing photosynthetic growth. The dimer (or a stable dimer) does not seem to be a necessary requisite for the photosynthetic phenotype. Partial C-terminal deletions impede the insertion of PufX, while the complete absence of the C-terminus leads to the insertion of a PufX protein composed of only its first 53 residues and does not affect the photosynthetic growth of the bacterium. Overall, the results point to a complex role of the N and C domains in the structural organization of the core complex; the N-terminus is suggested to be responsible mainly for dimerization, while the C-terminus is thought to be involved mainly in PufX assembly.  相似文献   

14.
The smallest molecular weight subunit (subunit IV), which contains no redox prosthetic group, is the only supernumerary subunit in the four-subunit Rhodobacter sphaeroides bc1 complex. This subunit is involved in Q binding and the structural integrity of the complex. When the cytochrome bc1 complex is photoaffinity labeled with [3H]azido-Q derivative, radioactivity is found in subunits IV and I (cytochrome b), indicating that these two subunits are responsible for Q binding in the complex. When the subunit IV gene (fbcQ) is deleted from the R. sphaeroides chromosome, the resulting strain (RSdeltaIV) requires a period of adaptation before the start of photosynthetic growth. The cytochrome bc1 complex in adapted RSdeltaIV chromatophores is labile to detergent treatment (60-75% inactivation), and shows a four-fold increase in the Km for Q2H2. The first two changes indicate a structural role of subunit IV; the third change supports its Q-binding function. Tryptophan-79 is important for structural and Q-binding functions of subunit IV. Subunit IV is overexpressed in Escherichia coli as a GST fusion protein using the constructed expression vector, pGEX/IV. Purified recombinant subunit IV is functionally active as it can restore the bc1 complex activity from the three-subunit core complex to the same level as that of wild-type or complement complex. Three regions in the subunit IV sequence, residues 86-109, 77-85, and 41-55, are essential for interaction with the core complex because deleting one of these regions yields a subunit completely or partially unable to restore cytochrome bc1 from the core complex.  相似文献   

15.
The LH1 light harvesting complex has been purified from a mutant of the photosynthetic bacterium Rhodobacter sphaeroides which synthesizes LH1 as the sole pigment protein. Crystallization trials using polyethylene glycol as the precipitant in the presence of the detergent n-octyl glucoside have resulted in the formation of needle like crystals which diffract beyond 3.5 A and which are relatively resistant to radiation damage. X-ray photographs have established that the crystals belong to the tetragonal system and are probably in space group P4(2)2(1)2. Estimates of the crystal density indicate that the asymmetric unit of the crystals contains two oligomers each with an alpha 6 beta 6 stoichiometry.  相似文献   

16.
17.
The structural gene coding for cytochrome b-562 isolated from the cytochrome b-c1 complex of Rhodobacter (Rhodopseudomonas) sphaeroides has been cloned. Its nucleotide sequence has been determined and the amino acid sequence was deduced therefrom. It consists of 157 amino acids (Mr 17,237) and contains four hydrophobic segments. The first 30 residues in the predicted amino acid sequence are the same as those determined for the NH2-terminal portion of purified cytochrome b-562. The amino acid composition is in accord with that determined for the pure protein. From the hydropathy profile and molar ratio of protoheme to cytochrome b-562, it is suggested that the structural and functional unit of the cytochrome is a two-heme cross-linked homodimer.  相似文献   

18.
A highly active, large-scale preparation of ubiquinol:cytochrome c2 oxidoreductase (EC 1.10.2.2; cytochrome bc1 complex) has been obtained from Rhodobacter sphaeroides. The enzyme was solubilized from chromatophores by using dodecyl maltoside in the presence of glycerol and was purified by anion-exchange and gel filtration chromatography. The procedure yields 35 mg of pure bc1 complex from 4.5 g of membrane protein, and its consistently results in an enzyme preparation that catalyzes the reduction of horse heart cytochrome c with a turnover of 250-350 (mumol of cyt c reduced).(mumol of cyt c1)-1.s-1. The turnover number is at least double that of the best preparation reported in the literature [Ljungdahl, P. O., Pennoyer, J. D., Robertson, D. C., & Trumpower, B. L. (1987) Biochim. Biophys. Acta 891, 227-241]. The scale is increased 25-fold, and the yield is markedly improved by using this protocol. Four polypeptide subunits were observed by SDS-PAGE, with Mr values of 40K, 34K, 24K, and 14K. N-Terminal amino acid sequences were obtained for cytochrome c1, the iron-sulfur protein subunit, and for cytochrome b and were identical with the expected protein sequences deduced from the DNA sequence of the fbc operon, with the exceptions that a 22-residue fragment is processed off of the N-terminus of cytochrome c1 and the N-terminal methionine residue is cleaved off both the b cytochrome and iron-sulfur protein subunits. Western blotting experiments indicate that subunit IV is not a contaminating light-harvesting complex polypeptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The fbcB and fbcC genes encoding cytochromes b and c1 of the bc1 complex were extended with a segment to encode a polyhistidine tag linked to their C-terminal sequence allowing a one-step affinity purification of the complex. Constructions were made in vitro in a pUC-derived background using PCR amplification. The modified fbc operons were transferred to a pRK derivative plasmid, and this was used to transform the fbc- strain of Rhodobacter sphaeroides, BC17. The transformants showed normal rates of growth. Chromatophores prepared from these cells showed kinetics of turnover of the bc1 complex on flash activation which were essentially the same as those from wild-type strains, and analysis of the cytochrome complement and spectral and thermodynamic properties by redox potentiometry showed no marked difference from the wild type. Chromatophores were solubilized and mixed with Ni-NTA-Sepharose resin. A modification of the standard elution protocol in which histidine replaced imidazole increased the activity 20-fold. Imidazole modified the redox properties of heme c1, suggesting ligand displacement and inactivation when this reagent is used at high concentration. The purified enzyme contained all four subunits in an active dimeric complex. This construction provides a facile method for preparation of wild-type or mutant bc1 complex, for spectroscopy and structural studies.  相似文献   

20.
Ting Su  Lothar Esser  Di Xia  Chang-An Yu  Linda Yu 《BBA》2012,1817(2):298-305
Cytochrome bc1 complex catalyzes the reaction of electron transfer from ubiquinol to cytochrome c (or cytochrome c2) and couples this reaction to proton translocation across the membrane. Crystallization of the Rhodobacter sphaeroides bc1 complex resulted in crystals containing only three core subunits. To mitigate the problem of subunit IV being dissociated from the three-subunit core complex during crystallization, we recently engineered an R. sphaeroides mutant in which the N-terminus of subunit IV was fused to the C-terminus of cytochrome c1 with a 14-glycine linker between the two fusing subunits, and a 6-histidine tag at the C-terminus of subunit IV (c1-14Gly-IV-6His). The purified fusion mutant complex shows higher electron transfer activity, more structural stability, and less superoxide generation as compared to the wild-type enzyme. Preliminary crystallization attempts with this mutant complex yielded crystals containing four subunits and diffracting X-rays to 5.5 Å resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号