首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystallographic studies of the intermediate states between unliganded and fully liganded hemoglobin (Hb) have revealed a large range of subtle but functionally important structural differences. Only one T state has been reported, whereas three other quaternary states (the R state, B state, and R2 or Y state) for liganded Hb have been characterized; other studies have defined liganded Hbs that are intermediate between the T and R states. The high-salt crystal structure of bovine carbonmonoxy (CO bovine) Hb has been determined at a resolution of 2.1 A and is described here. A detailed comparison with other crystallographically solved Hb forms (T, R, R2 or Y) shows that the quaternary structure of CO bovine Hb closely resembles R state Hb. However, our analysis of these structures has identified several important differences between CO bovine Hb and R state Hb. Compared with the R state structures, the beta-subunit N-terminal region has shifted closer to the central water cavity in CO bovine Hb. In addition, both the alpha- and beta-subunits in CO bovine Hb have more constrained heme environments that appear to be intermediate between the T and R states. Moreover, the distal pocket of the beta-subunit heme in CO bovine Hb shows significantly closer interaction between the bound CO ligand and the Hb distal residues Val 63(E11) and His 63(E7). The constrained heme groups and the increased steric contact involving the CO ligand and the distal heme residues relative to human Hb may explain in part the low intrinsic oxygen affinity of bovine Hb.  相似文献   

2.
C H Tsai  T J Shen  N T Ho  C Ho 《Biochemistry》1999,38(27):8751-8761
Using our Escherichia coli expression system, we have produced five mutant recombinant (r) hemoglobins (Hbs): r Hb (alpha V96 W), r Hb Presbyterian (beta N108K), r Hb Yoshizuka (beta N108D), r Hb (alpha V96W, beta N108K), and r Hb (alpha V96W, beta N108D). These r Hbs allow us to investigate the effect on the structure-function relationship of Hb of replacing beta 108Asn by either a positively charged Lys or a negatively charged Asp as well as the effect of replacing alpha 96Val by a bulky, nonpolar Trp. We have conducted oxygen-binding studies to investigate the effect of several allosteric effectors on the oxygenation properties and the Bohr effects of these r Hbs. The oxygen affinity of these mutants is lower than that of human normal adult hemoglobin (Hb A) under various experimental conditions. The oxygen affinity of r Hb Yoshizuka is insensitive to changes in chloride concentration, whereas the oxygen affinity of r Hb Presbyterian exhibits a pronounced chloride effect. r Hb Presbyterian has the largest Bohr effect, followed by Hb A, r Hb (alpha V96W), and r Hb Yoshizuka. Thus, the amino acid substitution in the central cavity that increases the net positive charge enhances the Bohr effect. Proton nuclear magnetic resonance studies demonstrate that these r Hbs can switch from the R quaternary structure to the T quaternary structure without changing their ligation states upon the addition of an allosteric effector, inositol hexaphosphate, and/or by reducing the temperature. r Hb (alpha V96W, beta N108K), which has the lowest oxygen affinity among the hemoglobins studied, has the greatest tendency to switch to the T quaternary structure. The following conclusions can be derived from our results: First, if we can stabilize the deoxy (T) quaternary structure of a hemoglobin molecule without perturbing its oxy (R) quaternary structure, we will have a hemoglobin with low oxygen affinity and high cooperativity. Second, an alteration of the charge distribution by amino acid substitutions in the alpha 1 beta 1 subunit interface and in the central cavity of the hemoglobin molecule can influence the Bohr effect. Third, an amino acid substitution in the alpha 1 beta 1 subunit interface can affect both the oxygen affinity and cooperativity of the oxygenation process. There is communication between the alpha 1 beta 1 and alpha 1 beta 2 subunit interfaces during the oxygenation process. Fourth, there is considerable cooperativity in the oxygenation process in the T-state of the hemoglobin molecule.  相似文献   

3.
4.
1. The functional properties of hemoglobin from the reindeer (Rangifer tarandus tarandus L.) are characterized as a function of pH, temperature and organic phosphate concentration. 2. Alongside overall similarities shared with most vertebrate hemoglobins, hemoglobin from the reindeer shows significant differences with respect to the effect of both organic phosphates and chloride anions. 3. The limited effect of temperature on oxygen binding (delta H = -4 kcal/mol O2) could be regarded as an interesting case of molecular adaptation to extreme environmental conditions.  相似文献   

5.
Temperature dependent absolute and difference spectra for deoxy and oxy human hemoglobin, alpha and beta subunits, NiHbA, carboxypeptidase A treated deoxy HbA and NiHbA have been investigated. It is shown for the first time that the alpha subunits are mainly responsible for the temperature dependent spectral changes in the absorption spectra of Hb in the range from 0 degrees C to 40 degrees C. It has also been found that in the R state the spectral alterations caused by temperature variation are about 85% of those found for the T state of Hb. The value of following the temperature dependence of the porphyrin bands of hemoproteins, as a sensitive probe for subtle changes in the region of the heme, is demonstrated.  相似文献   

6.
1. The oxygen binding properties of the hemoglobin from the Lesser Rorqual, Balaenoptera acutorostrata, has been investigated with respect to the possible effects of organic phosphates on gas transport in arctic environments. 2. The intrinsic oxygen affinity of the hemoglobin is high and strongly modulated by the effects of organic phosphates. 3. In the absence of organic phosphates, the temperature sensitivity of oxygen binding expressed by the heat of oxygenation, delta H, is -16.2 kcal/mol when corrected for the heat of oxygen in solution. 4. In the presence of organic phosphates there is a marked decrease in the temperature sensitivity delta H approximately -5 kcal/mol). 5. This feature is of great importance for oxygen unloading in the flippers and the tail, where the temperature is lower than the trunk of the whale. 6. Furthermore the organic phosphates strongly increase the Bohr coefficient, delta log P50/delta pH, from less than -0.3 in stripped hemoglobin to about -1.5 when the hemoglobin is saturated with P6-inositol. 7. This feature may be of great physiological importance by reducing the CO2 tension and acidosis after a prolonged dive.  相似文献   

7.
The effect of temperature on the oxygen-binding properties of hemoglobin (Hb) from ruminants, such as ox, reindeer, musk ox, mouflon and egyptian water buffalo is compared to that of human adult Hb (HbA). A striking difference emerges where in the presence of chloride ions and in the absence of 2,3-diphosphoglycerate [Gri(2,3)P2] a strongly reduced exothermic oxygenation process is observed for all ruminant Hb investigated with respect to HbA. Next, in the presence of physiological concentrations of Gri(2,3)P2, HbA displays a less exothermic oxygenation process, with values tending toward those observed in ruminant Hb [where Gri(2,3)P2 is not a physiological effector and for which the addition of Gri(2,3)P2 has essentially no effect on the oxygenation enthalpy]. Different from HbA, the intrinsically less exothermic oxygen binding seems to be independent of the experimental conditions for ruminant Hb, underlying specific structural characteristics which might be responsible for this feature.  相似文献   

8.
Normal values of Bohr effect of oxygenation of partially oxidized hemoglobin A with ferrihemes liganded either with H2O and OH or with CN have been found in the range of pH values from 6.8 to 7.6 in 45 micrometer (Fe)-hemoglobin containing 36--38% of ferrihemes. As the changes of oxygen affinity of Hb A induced by changes of pH are due to the modifications of R state, this quaternary conformation is thought to be unchanged in the studied of R state, this quaternary conformation is thought to be unchanged in the studied forms of partially oxidized hemoglobin. It is suggested that interactions between ferric and ferrous hemes leading to the increased affinity of ferrous hemes to oxygen occur in deoxygenated form of partially oxidized hemoglobin. In partially oxidized hemoglobin with ferric hemes liganded with H2O asymmetry of oxygen binding curves has been noted, which is not observed in forms with ferric hemes liganded with OH ot CN. This shows the effect of ligands of ferric hemes on interactions between chains containing ferric and ferrous hemes.  相似文献   

9.
The abnormal human hemoglobin Malm? (beta97FG4 His leads to Gln) has been studied and its properties are compared with those of normal adult hemoglobin A. The data presented here show that the ring-current shifted proton resonances of both HbCO and HbO2 Malm? are very different from the corresponding forms of Hb A. The hyperfine shifted proton resonances of deoxy-Hb Malm? do not differ drastically from those of deoxy-Hb A. This result, together with the finding that the exchangeable proton resonances of the deoxy form of the two hemoglobins are similar, suggests that unliganded Hb Malm? can assume a deoxy-like quaternary structure both in the absence and presence of organic phosphates We have also compared the properties of Hb Malm? with those of Hb Chesapeake (alpha92FG4 Arg leads to Leu). This allows us to study the properties of two abnormal human hemoglobins with mutations at homologous positions of the alpha and beta chains in the three-dimenstional structure of the hemoglobin molecule. Our present results suggest that the mutaion at betaFG4 has its greatest effect on the teritiary structure of the heme pocket of the liganded forms of the hemoglobin while the mutation at alphaFG4 alters the deoxy structure of the hemoglogin molecule but does not alter the teriary structure of the heme pockets of the liganded form of the hemoglobin molecule. Both hemoglobins undergo a transition from the deoxy (T) to the oxy (R) quaternary structure upon ligation. The abnormally high oxygen affinities and low cooperativities of these two hemoglobins must therefore be due to either the structural differences which we have observed and/or to an altered transition between the T and R structures.  相似文献   

10.
We have studied the structure-function relationships in newly discovered hemoglobin (Hb) mutants with substitutions occurring at the tight and highly hydrophobic cluster between the B and G helices in the beta chains, namely, Hb Knossos or beta A27S and Hb Grange-Blanche or beta A27V. The beta A27S mutant has a 50% decrease in oxygen affinity relative to native human Hb A, while the beta A27V mutant has an increased oxygen affinity. We have also engineered the artificial beta A27T mutation through site-directed mutagenesis. This new mutant exhibits functional properties similar to those of Hb A. None of these mutants is unstable. X-ray analyses show that the substitution of Val for Ala may reduce the relative stability of the T structure of the molecule through packing effects in the beta chains; for the beta A27S mutant a new hydrogen bond between serine and the carbonyl O at beta 23 (B5) Val is observed and is likely to increase the relative stability of the T structure in the mutant hemoglobin. However, no significant changes in the crystals were observed for these mutants between the quaternary R and T structures relative to native Hb A. We conclude that small tertiary structural changes in the tight hydrophobic B-G helix interface are sufficient to induce functional abnormalities resulting in either low or high intrinsic oxygen affinities.  相似文献   

11.
Safo MK  Abraham DJ 《Biochemistry》2005,44(23):8347-8359
The liganded hemoglobin (Hb) high-salt crystallization condition described by Max Perutz has generated three different crystals of human adult carbonmonoxy hemoglobin (COHbA). The first crystal is isomorphous with the "classical" liganded or R Hb structure. The second crystal reveals a new liganded Hb quaternary structure, RR2, that assumes an intermediate conformation between the R form and another liganded Hb quaternary structure, R2, which was discovered more than a decade ago. Like the R2 structure, the diagnostic R state hydrogen bond between beta2His97 and alpha1Thr38 is missing in the RR2 structure. The third crystal adopts a novel liganded Hb conformation, which we have termed R3, and it shows substantial quaternary structural differences from the R, RR2, and R2 structures. The quaternary structure differences between T and R3 are as large as those between T and R2; however, the T --> R3 and T --> R2 transitions are in different directions as defined by rigid-body screw rotation. Moreover, R3 represents an end state. Compared to all known liganded Hb structures, R3 shows remarkably reduced strain at the alpha-heme, reduced steric contact between the beta-heme ligand and the distal residues, smaller alpha- and beta-clefts, and reduced alpha1-alpha2 and beta1-beta2 iron-iron distances. Together, these unique structural features in R3 should make it the most relaxed and/or greatly enhance its affinity for oxygen compared to the other liganded Hbs. The current Hb structure-function relationships that are now based on T --> R, T -->R --> R2, or T --> R2 --> R transitions may have to be reexamined to take into account the RR2 and R3 liganded structures.  相似文献   

12.
The redox potentials of hemoglobin and myoglobin and the shapes of their anaerobic oxidation curves are sensitive indicators of globin alterations surrounding the active site. This report documents concentration-dependent effects of anions on the ease of anaerobic oxidation of representative hemoglobins and myoglobins. Hemoglobin (Hb) oxidation curves reflect the cooperative transition from the T state of deoxyHb to the more readily oxidized R-like conformation of metHb. Shifts in the oxidation curves for Hb A(0) as Cl(-) concentrations are increased to 0.2 m at pH 7.1 indicate preferential anion binding to the T state and destabilization of the R-like state of metHb, leading to reduced cooperativity in the oxidation process. A dramatic reversal of trend occurs above 0.2 m Cl(-) as anions bind to lower affinity sites and shift the conformational equilibrium toward the R state. This pattern has been observed for various hemoglobins with a variety of small anions. Steric rather than electronic effects are invoked to explain the fact that no comparable reversal of oxygen affinity is observed under identical conditions. Evidence is presented to show that increases in hydrophilicity in the distal heme pocket can decrease oxygen affinity via steric hindrance effects while increasing the ease of anaerobic oxidation.  相似文献   

13.
Summary The oxygen binding of whole blood from humans and two arctic mammals, reindeer and muskox, has been studied as a function of carbon dioxide and temperature. All bloods display a marked Bohr effect with Bohr coefficients in the range –0.44––0.73. The Bohr effect is more pronounced at 20°C. The temperature sensitivity of reindeer and muskox blood expressed by the apparent heat of oxygenation, H, is almost three times lower than that of human HbA under the same experimental conditions. This thermodynamic difference gives special benefits to arctic mammals with large heterothermy by safeguarding oxygen unloading at very low ambient temperatures.  相似文献   

14.
Although detailed crystal structures of haemoglobin (Hb) provide a clear understanding of the basic allosteric mechanism of the protein, and how this in turn controls oxygen affinity, recent experiments with artificial effector molecules have shown a far greater control of oxygen binding than with natural heterotropic effectors. Contrary to the established text-book view, these non-physiological compounds are able to reduce oxygen affinity very strongly without switching the protein to the T (tense) state. In an earlier paper we showed that bezafibrate (BZF) binds to a surface pocket on the alpha subunits of R state Hb, strongly reducing the oxygen affinity of this protein conformation. Here we report the crystallisation of Hb with L35, a related compound, and show that this binds to the central cavity of both R and T state Hb. The mechanism by which L35 reduces oxygen affinity is discussed, in relation to spectroscopic studies of effector binding.  相似文献   

15.
Dynamics of the quaternary conformational change in trout hemoglobin   总被引:2,自引:0,他引:2  
The kinetics of conformational changes in trout hemoglobin I have been characterized over the temperature range 2-65 degrees C from time-resolved absorption spectra measured following photodissociation of the carbon monoxide complex. Changes in the spectra of the deoxyheme photoproduct were used to monitor changes in the protein conformation. Although the deoxyheme spectral changes are only about 8% of the total spectral change due to ligand rebinding, a combination of high-precision measurements and singular value decomposition of the data permits a detailed analysis of both their amplitudes and relaxation rates. Systematic variation of the degree of photolysis was used to alter the distribution of liganded tetramers, permitting the assignment of the spectral relaxation at 20 microseconds to the R----T quaternary conformational change of the zero-liganded and singly liganded molecules and spectral relaxations at about 50 ns and 2 microseconds to tertiary conformational changes within the R structure. Analysis of the effect of photoselection by the linearly polarized excitation pulse indicates that a major contribution to the apparent geminate rebinding in the 50-ns relaxation arises from rotational diffusion of molecules containing unphotolyzed heme-CO complexes. The activation enthalpy and activation entropy for the R0----T0 transition are +7.4 kcal/mol and -12 cal mol-1 K-1. Using the equilibrium data, delta H = +29.4 kcal/mol and delta S = +84.4 cal mol-1 K-1 [Barisas, B. G., & Gill, S. J. (1979) Biophys. Chem. 9, 235-244], the activation parameters for the T0----R0 transition are calculated to be delta H = +37 kcal/mol and delta S = +73 cal mol-1 K-1. The similarity of the equilibrium and activation parameters for the T0----R0 transition indicates that the transition state is much more R-like than T-like. This result suggests that in the path from T0 to R0 the subunits have already almost completely rearranged into the R configuration when the transition state is reached, while in the path from R0 to T0 the subunits remain in a configuration close to R in the transition state. The finding of an R-like transition state explains why the binding of ligands causes much smaller changes in the R----T rates than in the T----R rates.  相似文献   

16.
S Neya  S Hada  N Funasaki 《Biochemistry》1983,22(15):3686-3691
The temperature-dependent ultraviolet and visible absorption changes of human azide methemoglobin with and without inositol hexaphosphate (IHP) were examined in a 4'-35 degrees C range. The 537-nm absorption change of IHP-free hemoglobin was about 1.2-fold larger than that of IHP-bound hemoglobin. The data were analyzed by considering the thermal spin equilibrium within the R and T conformers and the quaternary equilibrium between the two conformers. The spin equilibrium analysis suggested that the T conformer has a larger high-spin content than the R conformer. The quaternary equilibrium analysis, on the other hand, showed that the T conformer is more populated at lower temperature. The thermodynamic values for the quaternary equilibrium were determined to be delta H = -13.3 kcal/mol and delta S = -47.6 eu. The large negative delta H and delta S values were compensated for each other to give a small energy difference between the two quaternary states, e.g., delta G4 = 670 cal/mol of tetramer at 20 degrees C. The coincidence of the temperature-dependent IHP-induced changes in the visible and ultraviolet absorptions of heme and aromatic chromophores at the subunit boundaries suggested that the quaternary transition energy is not localized at heme moiety. The reverse temperature dependence of the T conformer fraction as compared with the high-spin fraction of heme iron was interpreted as indicating that the appearance of the T state is not directly coupled with an increase in the strain of Fe-N(F8 His) linkage in azide methemoglobin A.  相似文献   

17.
The allosteric transition in triply ferric hemoglobin has been studied with different ferric ligands. This valency hybrid permits observation of oxygen or CO binding properties to the single ferrous subunit, whereas the liganded state of the other three ferric subunits can be varied. The ferric hemoglobin (Hb) tetramer in the absence of effectors is generally in the high oxygen affinity (R) state; addition of inositol hexaphosphate induces a transition towards the deoxy (T) conformation. The fraction of T-state formed depends on the ferric ligand and is correlated with the spin state of the ferric iron complexes. High-spin ferric ligands such as water or fluoride show the most T-state, whereas low-spin ligands such as cyanide show the least. The oxygen equilibrium data and kinetics of CO recombination indicate that the allosteric equilibrium can be treated in a fashion analogous to the two-state model. The binding of a low-spin ferric ligand induces a change in the allosteric equilibrium towards the R-state by about a factor of 150 (at pH 6.5), similar to that of the ferrous ligands oxygen or CO; however, each high-spin ferric ligand induces a T to R shift by a factor of 40.  相似文献   

18.
NMR relaxation measurements of 15N spin-lattice relaxation rate (R(1)), spin-spin relaxation rate (R(2)), and heteronuclear nuclear Overhauser effect (NOE) have been carried out at 11.7T and 14.1T as a function of temperature for the side-chains of the tryptophan residues of 15N-labeled and/or (2H,15N)-labeled recombinant human normal adult hemoglobin (Hb A) and three recombinant mutant hemoglobins, rHb Kempsey (betaD99N), rHb (alphaY42D/betaD99N), and rHb (alphaV96W), in the carbonmonoxy and the deoxy forms as well as in the presence and in the absence of an allosteric effector, inositol hexaphosphate (IHP). There are three Trp residues (alpha14, beta15, and beta37) in Hb A for each alphabeta dimer. These Trp residues are located in important regions of the Hb molecule, i.e. alpha14Trp and beta15Trp are located in the alpha(1)beta(1) subunit interface and beta37Trp is located in the alpha(1)beta(2) subunit interface. The relaxation experiments show that amino acid substitutions in the alpha(1)beta(2) subunit interface can alter the dynamics of beta37Trp. The transverse relaxation rate (R(2)) for beta37Trp can serve as a marker for the dynamics of the alpha(1)beta(2) subunit interface. The relaxation parameters of deoxy-rHb Kemspey (betaD99N), which is a naturally occurring abnormal human hemoglobin with high oxygen affinity and very low cooperativity, are quite different from those of deoxy-Hb A, even in the presence of IHP. The relaxation parameters for rHb (alphaY42D/betaD99N), which is a compensatory mutant of rHb Kempsey, are more similar to those of Hb A. In addition, TROSY-CPMG experiments have been used to investigate conformational exchange in the Trp residues of Hb A and the three mutant rHbs. Experimental results indicate that the side-chain of beta37Trp is involved in a relatively slow conformational exchange on the micro- to millisecond time-scale under certain experimental conditions. The present results provide new dynamic insights into the structure-function relationship in hemoglobin.  相似文献   

19.
Current methods for measuring cerebral blood volume (CBV) in newborn infants are unsatisfactory. A new method is described in which the effect of a small change (5-10%) in arterial oxygen saturation (SaO2) on cerebral oxyhemoglobin [HbO2] and deoxyhemoglobin [Hb] concentration is observed by near-infrared (NIR) spectroscopy. Previous experiments in which the NIR absorption characteristics of HbO2 and Hb and the pathlength of NIR light through the brain were defined allowed changes in [HbO2] and [Hb] to be quantified from the Beer-Lambert law. It is shown here that CBV can then be derived from the expression CBV = (delta[HbO2] - delta[Hb])/(2. delta SaO2.H.R.), where H is the large vessel total hemoglobin concentration and R to the cerebral-to-large vessel hematocrit ratio. Observations on 12 newborn infants with normal brains, born at 25-40 wk of gestation and aged 10-240 h, gave a mean value for CBV of 2.22 +/- 0.40 (SD) ml/100 g, whereas mean CBV was significantly higher 3.00 +/- 1.04 ml/100 g in 10 infants with brain injury born at 24 to 42 wk of gestation and aged 4-168 h (P less than 0.05).  相似文献   

20.
Tsai CH  Fang TY  Ho NT  Ho C 《Biochemistry》2000,39(45):13719-13729
Using our Escherichia coli expression system, we have constructed rHb (beta N108Q), a new recombinant hemoglobin (rHb), with the amino acid substitution located in the alpha(1)beta(1) subunit interface and in the central cavity of the Hb molecule. rHb (beta N108Q) exhibits low oxygen affinity, high cooperativity, enhanced Bohr effect, and slower rate of autoxidation of the heme iron atoms from the Fe(2+) to the Fe(3+) state than other low-oxygen-affinity rHbs developed in our laboratory, e.g., rHb (alpha V96W) and rHb (alpha V96W, beta N108K). It has been reported by Olson and co-workers [Carver et al. (1992) J. Biol. Chem. 267, 14443-14450; Brantley et al. (1993) J. Biol. Chem. 268, 6995-7010] that the substitution of phenylalanine for leucine at position 29 of myoglobin can inhibit autoxidation in myoglobin and at position 29 of the alpha-chain of hemoglobin can lower NO reaction in both the deoxy and the oxy forms of human normal adult hemoglobin. Hence, we have further introduced this mutation, alpha L29F, into beta N108Q. rHb (alpha L29F, beta N108Q) is stabilized against auto- and NO-induced oxidation as compared to rHb (beta N108Q), but exhibits lower oxygen affinity at pH below 7.4 and good cooperativity as compared to Hb A. Proton nuclear magnetic resonance (NMR) studies show that rHb (beta N108Q) has similar tertiary structure around the heme pockets and quaternary structure in the alpha(1)beta(1) and alpha(1)beta(2) subunit interfaces as compared to those of Hb A. The tertiary structure of rHb (alpha L29F, beta N108Q) as measured by (1)H NMR, especially the alpha-chain heme pocket region (both proximal and distal histidyl residues), is different from that of CO- and deoxy-Hb A, due to the amino acid substitution at alpha L29F. (1)H NMR studies also demonstrate that rHb (beta N108Q) can switch from the R quaternary structure to the T quaternary structure without changing ligation state upon adding an allosteric effector, inositol hexaphosphate, and reducing the temperature. On the basis of its low oxygen affinity, high cooperativity, and stability against autoxidation, rHb (beta N108Q) is considered a potential candidate for the Hb-based oxygen carrier in a blood substitute system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号