首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We translocated 120 Agassiz's desert tortoises to 5 sites in Nevada and Utah to evaluate the effects of translocation on tortoise survivorship, reproduction, and habitat use. Translocation sites included several elevations, and extended to sites with vegetation assemblages not typically associated with desert tortoises in order to explore the possibility of moving animals to upper elevation areas. We measured survivorship, reproduction, and movements of translocated and resident animals at each site. Survivorship was not significantly different between translocated and resident animals within and among sites, and survivorship was greater overall during non-drought years. The number of eggs produced by tortoises was similar for translocated and resident females, but differed among sites. Animals translocated to atypical habitat generally moved until they reached vegetation communities more typical of desert tortoise habitat. Even within typical tortoise habitat, tortoises tended to move greater distances in the first year after translocation than did residents, but their movements in the second or third year after translocation were indistinguishable from those of resident tortoises. Our data show that tortoises translocated into typical Mojave desert scrub habitats perform well; however, the large first-year movements of translocated tortoises have important management implications. Projects that employ translocations must consider how much area will be needed to contain translocated tortoises and whether roads need fencing to prevent the loss of animals. © 2012 The Wildlife Society.  相似文献   

2.
为了初步解释乌龟尿液抑菌的机理,我们建立了若干乌龟模型,分别取不同的乌龟尿液测定其中12种主要成分的含量并对其抑菌效果进行了实验研究.发现不同乌龟个体尿液中主要成分存在一定的变化,同时其对应的抑菌效果也随之变化,通过分析发现只有尿液中尿酸含量的变化和抑菌圈面积的变化存在显著正相关关系,揭示出尿酸可能是乌龟尿样中的主要抑菌成分.  相似文献   

3.
Mycoplasma agassizi has been identified as a cause of upper respiratory tract disease (URTD) in the threatened Mojave population of the desert tortoise (Gopherus agassizii), and anti-M. agassizii antibodies have been found by ELISA in as many as 15% of these animals across their geographic range. Here we report that a cohort of 16 egg-reared desert tortoises never exposed to M. agassizii had ELISA antibody titers to this organism that overlapped with titers obtained from some M. agassizii-infected tortoises. These natural antibodies were predominantly of the IgM class. Western blots of plasma from these non-infected tortoises produced a characteristic banding pattern against M. agassizii antigens. A group of 38 wild-caught desert tortoises was tested by ELISA, and although some of these tortoises had antibody titers significantly higher than the non-infected tortoises, there was considerable overlap at the lower titer levels. However, Western blot analysis revealed distinct banding patterns that could readily distinguish between the non-infected tortoises and tortoises with acquired antibodies, regardless of ELISA antibody titers. We conclude that desert tortoises have natural antibodies to M. agassizii that can compromise the determination of infection status by ELISA. However, the Western blot technique can distinguish between natural and acquired antibody patterns and can be used to confirm the diagnosis of M. agassizii infections in the desert tortoise.  相似文献   

4.
Previous studies of desert tortoise foraging ecology in the western Mojave Desert suggest that these animals are selective herbivores, which alter their diet according to the temporal availability of preferred food plants. These studies, however, did not estimate availability of potential food plants by taking into account the spatial and temporal variability in ephemeral plant abundance that occurs within the spring season. In this study, we observed 18 free-ranging adult tortoises take 35,388 bites during the spring foraging season. We also estimated the relative abundance of potential food plants by stratifying our sampling across different phenological periods of the 3-month long spring season and by different habitats and microhabitats. This methodology allowed us to conduct statistical tests comparing tortoise diet against plant abundance. Our results show that tortoises choose food plants non-randomly throughout the foraging season, a finding that corroborates the hypothesis that desert tortoises rely on key plants during different phenological periods of spring. Moreover, tortoises only consumed plants in a succulent state until the last few weeks of spring, at which time most annuals and herbaceous perennials had dried and most tortoises had ceased foraging. Many species of food plants—including several frequently eaten species—were not detected in our plant surveys, yet tortoises located these rare plants in their home ranges. Over 50% of bites consumed were in the group of undetected species. Interestingly, tortoises focused heavily on several leguminous species, which could be nutritious foods owing to their presumably high nitrogen contents. We suggest that herbaceous perennials, which were rare on our study area but represented ~30% of tortoise diet, may be important in sustaining tortoise populations during droughts when native annuals are absent. These findings highlight the vulnerability of desert tortoises to climate change if such changes alter the availability of their preferred food plants.  相似文献   

5.
We evaluated the role that endangered species reintroduction efforts can play in the larger context of ecosystem restoration. To do so, we examined interactions between endangered giant tortoises (Geochelone nigra hoodensis), currently being reintroduced to Isla Española, Galápagos, and an arboreal cactus (Opuntia megasperma var. megasperma), which is itself endangered and a keystone resource for many animals on the island. We collected information on spatial patterns of occurrence of cacti, tortoises, and woody vegetation and compared recruitment of juvenile cacti in areas occupied versus unoccupied by tortoises. Reintroduced tortoises appeared to suppress cactus recruitment near the few remaining adult cacti at the study site, but facilitate it at longer distances, with tortoise–cactus interactions mediated by the presence of woody vegetation, which likely alters tortoise movements and thereby patterns of cactus seed dispersal. The net effect of tortoises on cacti appeared to be positive insofar as tortoise presence was associated with greater recruitment of juveniles into cactus populations. Our study provides support for reintroducing endangered reptiles and other animals to aid ecosystem restoration in areas where they might once have played an important role in grazing upon and dispersing plants.  相似文献   

6.
Several factors have combined with an upper respiratory tract disease (URTD) to produce declines on some population numbers of desert tortoises (Gopherus agassizii) in the western USA. This study was designed to determine the seroepidemiology of URTD in a population of wild adult tortoises at the Desert Tortoise Research Natural Area (DTNA) study site in Kern County (California, USA). Prior to initiation of the study, there was a dramatic decline in the number of individuals in this population. At each individual time point, samples were obtained from 12 to 20 tortoises with radiotransmitters during winter, spring, summer, and fall from 1992 through 1995. During the course of the study, 35 animals were sampled at one or more times. Only 10 animals were available for consistent monitoring throughout the 4 yr period. Specific antibody (Ab) levels to Mycoplasma agassizii were determined for individual tortoises by an enzyme-linked immunosorbent assay (ELISA) test. Specific Ab levels were not influenced by the gender of the tortoise. Levels of Ab and distribution of ELISA+, ELISA- and suspect animals were not consistently affected by season within a single year or for a season among the study years. Significantly more tortoises presented with clinical signs in 1992 and 1995. The profile of ELISA+ animals with clinical signs shifted from 5% (1992) to 42% (1995). In 1992, 52% of tortoises lacked clinical signs and were ELISA-. In 1995, this category accounted for only 19% of tortoises. Based on the results of this study, we conclude that URTD was present in this population as evidenced by the presence of ELISA+ individual animals, and that the infectious agent is still present as evidenced by seroconversion of previously ELISA- animals during the course of the study. There is evidence to suggest that animals may remain ELISA+ without showing overt disease, a clinical pattern consistent with the chronic nature of most mycoplasmal infections. Further, there are trends suggesting that the clinical expression of disease may be cyclical. Continued monitoring of this population could provide valuable information concerning the spread of URTD in wild tortoise populations.  相似文献   

7.
Aldabra Atoll has the largest population of giant tortoises (Aldabrachelys gigantea) in the world. As such an important biological resource, it is necessary to understand how the effects of climate change will impact this keystone species; in particular the frequency of drought, which is likely to affect tortoise habitat. To assess whether drought frequency has changed over the last 50 years on Aldabra, we calculated the standardized precipitation index (SPI) to identify drought periods using monthly rainfall data collected during 1969–2013. We found that drought frequency has increased to more than six drought months per year today compared with about two months per year in the 1970s (t = 2.884, p = 0.006). We used MODIS normalized difference vegetation index (NDVI) as a proxy for vegetation activity, to determine how vegetation has responded to the changing drought frequency between 2000 and 2013. We found that Aldabra’s vegetation is highly responsive to changes in rainfall: anomalies in long-term mean monthly NDVI across Aldabra were found to decrease below the mean during most drought periods and increase above the mean during most non-drought periods. To investigate the response of tortoise habitat to rainfall, we extracted mean NDVI anomalies for three key habitat types. Open mixed scrub and grasslands, the preferred habitat of tortoises, showed the greatest decrease in vegetation activity during drought periods, and the greatest increase in average greenness during non-drought periods. Recent analysis has shown vegetation changes on Aldabra in recent decades. If these changes are caused by decreased precipitation, then the increased frequency of drought could impact the tortoise population, in both the short and long term, by limiting the quality and quantity of forage and/or shade availability within favoured habitats, and by changing the habitat composition across the atoll.  相似文献   

8.
Inconspicuous, secretive, or sparsely distributed species receive relatively little research attention, potentially leading to uncertainty about their status and lack of efforts to conserve them. Karoo dwarf tortoises (Chersobius boulengeri) are endemic to South Africa, spend most of the time in retreats at remote arid locations, and are seldom seen. We conducted a 3-year (2018–2020) mark-recapture study to investigate the size and structure of the only Karoo dwarf tortoise population currently known to exist. The population in the 16-ha core of our study site consisted primarily of adult males and females, at a density of 3.3 individuals/ha. Many individuals had severely worn shells and appeared old. Small individuals (straight carapace length <65 mm) represented just 8% of the population and were mostly recent hatchlings. Overall, tortoises had high estimated survival rates (0.77–0.95; lower 95% confidence limit for the smallest tortoises was 0.16), despite a 15-month drought. The lack of small individuals may reflect low levels of recruitment and population decline. Predation by corvids was an obvious threat to all size classes. We estimated that the local population across the 250-ha study area was 800–900 males and females, and recommend precautionary conservation measures focused on reducing human-subsidized avian predation.  相似文献   

9.
Understanding wildlife movements and habitat selection are critical to drafting conservation and management plans. We studied a population of eastern Hermann’s tortoise (Testudo hermanni boettgeri) in a traditionally managed rural landscape in Romania, near the northern edge of the species geographic distribution. We used telemetry to radio-track 24 individuals between 2005 and 2008 and performed a Euclidian distance-based habitat selection analysis to investigate habitats preferred by tortoises at both landscapes (second-order order selection) and individual (third-order selection) home range scales. The home range size for tortoises in our study area was 3.79?±?0.62 ha and did not differ by gender or season (pre- and post-nesting seasons). Their movement ecology was characterized by short-distance movements (daily mean?=?31.18?±?1.59 m), apparently unaffected by habitat type. In contrast to other studies, movements of males and females were of similar magnitude. At the landscape (population home range) scale, grasslands and shrubs were preferred, but tortoises also showed affinity to forest edges. At the individual home range scale, tortoises selected grassland and shrub habitats, avoided forests, and used forest edges randomly. Creeks were avoided at both spatial scales. Our results suggest that tortoise home ranges contain well-defined associations of habitats despite a higher selection for grasslands. As such, avoiding land conversion to other uses and maintaining habitat heterogeneity through traditional practices (e.g., manual mowing of grasslands, livestock grazing) are critical for the persistence of tortoise populations.  相似文献   

10.
Increasingly, renewable energy comprises a larger share of global energy production. Across the western United States, public lands are being developed to support renewable energy production. Where there are conflicts with threatened or endangered species, translocation can be used in an attempt to mitigate negative effects. For the threatened Mojave desert tortoise (Gopherus agassizii), we sought to compare habitat- and space-use patterns between short-distance translocated, resident, and control groups. We tested for differences in home range size based on utilization distributions and used linear mixed-effects models to compare space-use intensity, while controlling for demographic and environmental variables. In addition, we examined mean movement distances as well as home range overlap between years and for male and female tortoises in each study group. During the first active season post-translocation, home range size was greater and space-use intensity was lower for translocated tortoises than resident and control groups. These patterns were not present in the second season. In both years, there was no difference in home range size or space-use intensity between control and resident groups. Translocation typically resulted in one active season of questing followed by a second active season characterized by space-use patterns that were indistinguishable from control tortoises. Across both years, the number of times a tortoise was found in a burrow was positively related to greater space-use intensity. Minimizing the time required for translocated tortoises to exhibit patterns similar to non-translocated individuals may have strong implications for conservation by reducing exposure to adverse environmental conditions and predation. With ongoing development, our results can be used to guide future efforts aimed at understanding how translocation strategies influence patterns of animal space use.  相似文献   

11.
The distribution of resources and food selection are fundamental to the ecology, life history, physiology, population dynamics, and conservation of animals. Introduced plants are changing foraging dynamics of herbivores in many ecosystems often with unknown consequences. Galapagos tortoises, like many herbivores, undertake migrations along elevation gradients driven by variability in vegetation productivity which take them into upland areas dominated by introduced plants. We sought to characterize diet composition of two species of Galapagos tortoises, focussing on how the role of introduced forage species changes over space and the implications for tortoise conservation. We quantified the distribution of tortoises with elevation using GPS telemetry. Along the elevation gradient, we quantified the abundance of introduced and native plant species, estimated diet composition by recording foods consumed by tortoises, and assessed tortoise physical condition from body weights and blood parameter values. Tortoises ranged between 0 and 429 m in elevation over which they consumed at least 64 plant species from 26 families, 44 percent of which were introduced species. Cover of introduced species and the proportion of introduced species in tortoise diets increased with elevation. Introduced species were positively selected for by tortoises at all elevations. Tortoise physical condition was either consistent or increased with elevation at the least biologically productive season on Galapagos. Santa Cruz tortoises are generalist herbivores that have adapted their feeding behavior to consume many introduced plant species that has likely made a positive contribution to tortoise nutrition. Some transformed habitats that contain an abundance of introduced forage species are compatible with tortoise conservation.  相似文献   

12.
Aldabrachelys gigantea (Aldabra giant tortoise) is one of only two giant tortoise species left in the world and survives as a single wild population of over 100,000 individuals on Aldabra Atoll, Seychelles. Despite this large current population size, the species faces an uncertain future because of its extremely restricted distribution range and high vulnerability to the projected consequences of climate change. Captive‐bred A. gigantea are increasingly used in rewilding programs across the region, where they are introduced to replace extinct giant tortoises in an attempt to functionally resurrect degraded island ecosystems. However, there has been little consideration of the current levels of genetic variation and differentiation within and among the islands on Aldabra. As previous microsatellite studies were inconclusive, we combined low‐coverage and double‐digest restriction‐associated DNA (ddRAD) sequencing to analyze samples from 33 tortoises (11 from each main island). Using 5426 variant sites within the tortoise genome, we detected patterns of within‐island population structure, but no differentiation between the islands. These unexpected results highlight the importance of using genome‐wide genetic markers to capture higher‐resolution genetic structure to inform future management plans, even in a seemingly panmictic population. We show that low‐coverage ddRAD sequencing provides an affordable alternative approach to conservation genomic projects of non‐model species with large genomes.  相似文献   

13.
Morphometric and meristic data from 32 specimens from Río Negro Province do not allow differentiation between G. donosobarrosi and G. chilensis. The significance of morphological and genetic differentiation among Argentinian tortoises is yet to be determined; southern Chaco tortoises undergo ontogenetic and sexual dichromatism. Geochelone chilensis has an extensive latitudinal range (Map 1). Field investigations indicate that Chaco tortoises occupy, and apparently excavate, burrows in the southern portion of the range, prior reports of the species’ southern limit are evaluated and the link between tortoise distribution and “monte”; vegetation is discussed. The season of reproduction and clutch size are noted. Extensive internal pet traffic has markedly affected tortoise populations in some areas; near the southern limit of the range, however, there is little commercial collecting.  相似文献   

14.
In the Eastern Cape Province of South Africa, larvae and nymphs of Ablyomma marmoreum Koch occur in habitats in which there is tree cover and herbaceous ground cover. Immatures of A. marmoreum are parasitic on reptiles, birds, and mammals. Adults occur only on reptiles. The major host for all stages is the moutain tortoise (Geochelone pardalis), and in the home areas of tortoises the density of ticks is high. Larvae are active in late summer and autumn. The rate of feeding is temperature-dependent, and some larvae which attach on tortoises in late autumn do not complete feeding until the following spring. Nymphs which occur in the home area of a tortoise become active in response to CO2 in early spring. Adults, and nymphs which occur outside the home area of a tortoise, become active in summer in response to rising temperatures. In nymphs which feed in spring, and hence develop into adults in midsummer, the life cycle is completed in 1 year. In nymphs which fed in midsummer, the life cycle is completed in 2 years.  相似文献   

15.
Changes to animal movement in response to human‐induced changes to the environment are of growing concern in conservation. Most research on this problem has focused on terrestrial endotherms, but changes to herpetofaunal movement are also of concern given their limited dispersal abilities and specialized thermophysiological requirements. Animals in the desert region of the southwestern United States are faced with environmental alterations driven by development (e.g., solar energy facilities) and climate change. Here, we study the movement ecology of a desert species of conservation concern, the Mojave desert tortoise (Gopherus agassizii). We collected weekly encounter locations of marked desert tortoises during the active (nonhibernation) seasons in 2013–2015, and used those data to discriminate movements among activity centers from those within them. We then modeled the probability of movement among activity centers using a suite of covariates describing characteristics of tortoises, natural and anthropogenic landscape features, vegetation, and weather. Multimodel inference indicated greatest support for a model that included individual tortoise characteristics, landscape features, and weather. After controlling for season, date, age, and sex, we found that desert tortoises were more likely to move among activity centers when they were further from minor roads and in the vicinity of barrier fencing; we also found that movement between activity centers was more common during periods of greater rainfall and during periods where cooler temperatures coincided with lower rainfall. Our findings indicate that landscape alterations and climate change both have the potential to impact movements by desert tortoises during the active season. This study provides an important baseline against which we can detect future changes in tortoise movement behavior.  相似文献   

16.
Mycoplasma agassizi has been identified as a cause of upper respiratory tract disease (URTD) in the threatened Mojave population of the desert tortoise (Gopherus agassizii), and anti-M. agassizii antibodies have been found by ELISA in as many as 15% of these animals across their geographic range. Here we report that a cohort of 16 egg-reared desert tortoises never exposed to M. agassizii had ELISA antibody titers to this organism that overlapped with titers obtained from some M. agassizii-infected tortoises. These natural antibodies were predominantly of the IgM class. Western blots of plasma from these non-infected tortoises produced a characteristic banding pattern against M. agassizii antigens. A group of 38 wild-caught desert tortoises was tested by ELISA, and although some of these tortoises had antibody titers significantly higher than the non-infected tortoises, there was considerable overlap at the lower titer levels. However, Western blot analysis revealed distinct banding patterns that could readily distinguish between the non-infected tortoises and tortoises with acquired antibodies, regardless of ELISA antibody titers. We conclude that desert tortoises have natural antibodies to M. agassizii that can compromise the determination of infection status by ELISA. However, the Western blot technique can distinguish between natural and acquired antibody patterns and can be used to confirm the diagnosis of M. agassizii infections in the desert tortoise.  相似文献   

17.
Understanding the relationships between environmental variables and wildlife activity is an important part of effective management. The desert tortoise (Gopherus agassizii), an imperiled species of arid environments in the southwest US, may have increasingly restricted windows for activity due to current warming trends. In summer 2013, we deployed 48 motion sensor cameras at the entrances of tortoise burrows to investigate the effects of temperature, sex, and day of the year on the activity of desert tortoises. Using generalized estimating equations, we found that the relative probability of activity was associated with temperature (linear and quadratic), sex, and day of the year. Sex effects showed that male tortoises are generally more active than female tortoises. Temperature had a quadratic effect, indicating that tortoise activity was heightened at a range of temperatures. In addition, we found significant support for interactions between sex and day of the year, and sex and temperature as predictors of the probability of activity. Using our models, we were able to estimate air temperatures and times (days and hours) that were associated with maximum activity during the study. Because tortoise activity is constrained by environmental conditions such as temperature, it is increasingly vital to conduct studies on how tortoises vary their activity throughout the Sonoran Desert to better understand the effects of a changing climate.  相似文献   

18.
The conservation of tortoises poses a unique situation because several threatened species are commonly kept as pets within their native ranges. Thus, there is potential for captive populations to be a reservoir for repatriation efforts. We assess the utility of captive populations of the threatened Agassiz’s desert tortoise (Gopherus agassizii) for recovery efforts based on genetic affinity to local areas. We collected samples from 130 captive desert tortoises from three desert communities: two in California (Ridgecrest and Joshua Tree) and the Desert Tortoise Conservation Center (Las Vegas) in Nevada. We tested all samples for 25 short tandem repeats and sequenced 1,109 bp of the mitochondrial genome. We compared captive genotypes to a database of 1,258 Gopherus samples, including 657 wild caught G. agassizii spanning the full range of the species. We conducted population assignment tests to determine the genetic origins of the captive individuals. For our total sample set, only 44 % of captive individuals were assigned to local populations based on genetic units derived from the reference database. One individual from Joshua Tree, California, was identified as being a Morafka’s desert tortoise, G. morafkai, a cryptic species which is not native to the Mojave Desert. Our data suggest that captive desert tortoises kept within the native range of G. agassizii cannot be presumed to have a genealogical affiliation to wild tortoises in their geographic proximity. Precautions should be taken before considering the release of captive tortoises into the wild as a management tool for recovery.  相似文献   

19.
Following field observations of wild Agassiz's desert tortoises (Gopherus agassizii) with oral lesions similar to those seen in captive tortoises with herpesvirus infection, we measured the prevalence of antibodies to Testudinid herpesvirus (TeHV) 3 in wild populations of desert tortoises in California. The survey revealed 30.9% antibody prevalence. In 2009 and 2010, two wild adult male desert tortoises, with gross lesions consistent with trauma and puncture wounds, respectively, were necropsied. Tortoise 1 was from the central Mojave Desert and tortoise 2 was from the northeastern Mojave Desert. We extracted DNA from the tongue of tortoise 1 and from the tongue and nasal mucosa of tortoise 2. Sequencing of polymerase chain reaction products of the herpesviral DNA-dependent DNA polymerase gene and the UL39 gene respectively showed 100% nucleotide identity with TeHV2, which was previously detected in an ill captive desert tortoise in California. Although several cases of herpesvirus infection have been described in captive desert tortoises, our findings represent the first conclusive molecular evidence of TeHV2 infection in wild desert tortoises. The serologic findings support cross-reactivity between TeHV2 and TeHV3. Further studies to determine the ecology, prevalence, and clinical significance of this virus in tortoise populations are needed.  相似文献   

20.
Most research of upper respiratory tract disease (mycoplasmal URTD) in the threatened Mojave Desert tortoise (Gopherus agassizii) has worked under the hypothesis that the pathogen, Mycoplasma agassizii, has a relatively consistent and predictable effect on tortoise populations across their natural range. In contrast, we hypothesized that multiple factors influence the prevalence of disease and analyzed biological and environmental variables that vary significantly across the Mojave Desert. We used multiple regression models to analyze associations between mycoplasmal URTD and the genetic structure of 24 tortoise populations, levels of natural antibody (NAb) to M. agassizii in tortoises (one component of the innate immune system), precipitation, and colder thermal regimes. We detected a significant, positive association between mean levels of NAb and seroprevalence to M. agassizii. We hypothesized that NAbs may provide tolerance to mycoplasmal infections and that more tolerant populations may act as host reservoirs of disease. We also detected significant associations between colder winters and mycoplasmal URTD, suggesting that colder winters may depress tortoise immune resistance against M. agassizii or enhance conditions for the growth of M. agassizii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号