首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When it escapes early detection, malignant melanoma becomes a highly lethal and treatment-refractory cancer. Melastatin is greatly downregulated in metastatic melanomas and is widely believed to function as a melanoma tumor suppressor. Here we report that tumor suppressive activity is not mediated by melastatin but instead by a microRNA (miR-211) hosted within an intron of melastatin. Increasing expression of miR-211 but not melastatin reduced migration and invasion of malignant and highly invasive human melanomas characterized by low levels of melastatin and miR-211. An unbiased network analysis of melanoma-expressed genes filtered for their roles in metastasis identified three central node genes: IGF2R, TGFBR2, and NFAT5. Expression of these genes was reduced by miR-211, and knockdown of each gene phenocopied the effects of increased miR-211 on melanoma invasiveness. These data implicate miR-211 as a suppressor of melanoma invasion whose expression is silenced or selected against via suppression of the entire melastatin locus during human melanoma progression.  相似文献   

2.
Processing of intronic microRNAs   总被引:9,自引:0,他引:9  
Kim YK  Kim VN 《The EMBO journal》2007,26(3):775-783
  相似文献   

3.
4.
5.
6.
The splicing of nuclear pre-mRNAs is catalyzed by a large, multicomponent ribonucleoprotein complex termed the spliceosome. Elucidation of the molecular mechanism of splicing identified small nuclear RNAs (snRNAs) as important components of the spliceosome, which, by analogy to the self-splicing group II introns, are implicated in formation of the catalytic center. In particular, the 5' splice site (5'SS) and the branch site, which represent the two substrates for the first step of splicing, are first recognized by U1 and U2 snRNPs, respectively. This initial recognition of splice sites is responsible for the global definition of exons and introns, and represents the primary target for regulation of splicing. Subsequently, pairing interaction between the 5'SS and U1 snRNA is disrupted and replaced by a new interaction of the 5'SS with U6 snRNA. The 5'SS signal contains an invariant GU dinucleotide present at the 5' end of nearly all known introns, however, the mechanism by which the spliceosome recognizes this element is not known. We have identified and characterized a specific UV light-induced crosslink formed between the 5'SS RNA and hPrp8, a protein component of U5 snRNP in the spliceosome that is likely to reflect a specific recognition of the GU dinucleotide for splicing. Because recognition of the 5'SS must be linked to formation of the catalytic site, the identification of a specific and direct interaction between the 5'SS and Prp8 has significant implications for the role of this protein in the mechanism of mRNA splicing.  相似文献   

7.
Conformational change within the spliceosome is required between the first catalytic step of pre-mRNA splicing, when the branch site attacks the 5' splice site (SS), and the second step, when the 5' exon attacks the 3'SS. Little is known, however, about repositioning of the reaction substrates during this transition. Whereas the 5'SS is positioned for the first step by pairing with the invariant U6 snRNA-ACAGAG site, we demonstrate that this pairing interaction must be disrupted to allow transition to the second step. We propose that removal of the branch structure from the catalytic center is in competition with binding of the 3'SS substrate for the second step. Changes in the relative occupancy of first and second step substrates at the catalytic center alter efficiency of the two steps of splicing, allowing use of suboptimal intron sequences and thereby altering substrate selectivity.  相似文献   

8.
Specific recognition of the 5' splice site (5'SS) by the spliceosome components was studied using a simple in vitro system in which a short 5'SS RNA oligonucleotide specifically induces the assembly of snRNP particles into spliceosome-like complexes and actively participates in a trans-splicing reaction. Short-range cross-liking demonstrates that a U5 snRNP protein component, p220 (the human analogue of the yeast Prp8) specifically interacts with the invariant GU dinucleotide at the 5' end of the intron. The GU:p220 interaction can be detected in the functional splicing complex B. Although p220 has been known to contact several nucleotides around the 5' splice junction, the p220:GU dinucleotide interaction described here is remarkably specific. Consistent with the high conservation of the GU, even minor modifications of this element affect recognition of the 5'SS RNA by p220. Substitution of uridine at the GU with base analogues containing a large methyl or iodo group, but not a smaller flouro group at base position 5, interferes with association of 5'SS RNA with snRNP complexes and their functional participation in splicing.  相似文献   

9.
10.
To identify splicing factors in proximity of the 5' splice site (5'SS), we followed a crosslinking profile of site-specifically modified, photoreactive RNA substrates. Upon U4/U5/U6 snRNP addition, the 5'SS RNA crosslinks in an ATP-dependent manner to U6 snRNA, an unidentified protein p27, and the 100-kDa U5 snRNP protein, a human ortholog of an ATPase/RNA helicase yPrp28p. The 5'SS:hPrp28p crosslink maps to the highly conserved TAT motif in proximity of the ATP-binding site in hPrp28p. We propose that hPrp28p acts as a helicase to unwind the 5'SS:U1 snRNA duplex, and at the same time as a 5'SS translocase, which, upon NTP-dependent conformational change, positions the 5'SS for pairing with U6 snRNA within the spliceosome. This repositioning of the 5'SS takes place regardless of whether the 5'SS is originally duplexed with U1 snRNA.  相似文献   

11.
12.
M Sha  T Levy  P Kois    M M Konarska 《RNA (New York, N.Y.)》1998,4(9):1069-1082
We have developed a site-specific chemical modification technique to incorporate a photoreactive azidophenacyl (APA) group at designated internal positions along the RNA phosphodiester backbone. Using this technique, we have analyzed interactions of the 5' splice site (5'SS) RNA within the spliceosome. Several crosslinked products can be detected within complex B using the derivatized 5'SS RNAs, including U6 snRNA, hPrp8p, and 114-, 90-, 70-, 54-, and 27-kDa proteins. The 5'SS RNAs derivatized at intron positions +4 to +8 crosslink to U6 snRNA, confirming the previously reported pairing interaction between these sequences. hPrp8p and p70 are crosslinked to the 5'SS RNA when the APA is placed within the 5' exon. Finally, a set of unidentified proteins, including p114, p54, and p27, is detected with the 5'SS RNA derivatized at intron positions +4 to +8. Introduction of the bulky APA group near the 5'SS junction (positions -2 to +3) strongly interferes with complex B formation and thus no APA crosslinks are observed at these positions. Together with our earlier observation that hPrp8p crosslinks to the GU dinucleotide at the 5' end of the intron, these results suggest that the inhibitory effect of APA results from steric hindrance of the hPrp8p:5'SS interaction. Unexpectedly, thio-modifications within the region of the 5'SS RNA that is involved in base pairing to U6 snRNA strongly stimulate complex B formation.  相似文献   

13.
14.
Nam8, a component of yeast U1 snRNP, is optional for mitotic growth but required during meiosis, because Nam8 collaborates with Mer1 to promote splicing of essential meiotic mRNAs AMA1, MER2 and MER3. Here, we identify SPO22 and PCH2 as novel targets of Nam8-dependent meiotic splicing. Whereas SPO22 splicing is co-dependent on Mer1, PCH2 is not. The SPO22 intron has a non-consensus 5' splice site (5'SS) that dictates its Nam8/Mer1-dependence. SPO22 splicing relies on Mer1 recognition, via its KH domain, of an intronic enhancer 5'-AYACCCUY. Mutagenesis of KH and the enhancer highlights Arg214 and Gln243 and the CCC triplet as essential for Mer1 activity. The Nam8-dependent PCH2 pre-mRNA has a consensus 5'SS and lacks a Mer1 enhancer. For PCH2, a long 5' exon and a non-consensus intron branchpoint dictate Nam8-dependence. Our results implicate Nam8 in two distinct meiotic splicing regulons. Nam8 is composed of three RRM domains, flanked by N-terminal leader and C-terminal tail segments. The leader, tail and RRM1 are dispensable for splicing meiotic targets and unnecessary for vegetative Nam8 function in multiple synthetic lethal genetic backgrounds. Nam8 activity is enfeebled by alanine mutations in the putative RNA binding sites of the RRM2 and RRM3 domains.  相似文献   

15.
16.
Both experimental work and surveys of the lengths of internal exons in nature have suggested that vertebrate internal exons require a minimum size of approximately 50 nucleotides for efficient inclusion in mature mRNA. This phenomenon has been ascribed to steric interference between complexes involved in recognition of the splicing signals at the two ends of short internal exons. To determine whether U1 small nuclear ribonucleoprotein, a multicomponent splicing factor that is involved in the first recognition of splice sites, contributes to the lower size limit of vertebrate internal exons, we have taken advantage of our previous observation that U1 small nuclear RNAs (snRNAs) which bind upstream or downstream of the 5' splice site (5'SS) stimulate splicing of the upstream intron. By varying the position of U1 binding relative to the 3'SS, we show that U1-dependent splicing of the upstream intron becomes inefficient when U1 is positioned 48 nucleotides or less downstream of the 3'SS, suggesting a minimal distance between U1 and the 3'SS of approximately 50 nucleotides. This distance corresponds well to the suggested minimum size of internal exons. The results of experiments in which the 3'SS region of the reporter was duplicated suggest an optimal distance of greater than 72 nucleotides. We have also found that inclusion of a 24-nucleotide miniexon is promoted by the binding of U1 to the downstream intron but not by binding to the 5'SS. Our results are discussed in the context of models to explain constitutive splicing of small exons in nature.  相似文献   

17.
18.
19.
A short 5' splice site RNA oligonucleotide (5'SS RNA oligo) undergoes both steps of splicing when a second RNA containing the 3' splice site region (3'SS RNA) is added in trans. This trans-splicing reaction displays the same 5' and 3' splice site sequence requirements as cis-splicing of full-length pre-mRNA. The analysis of RNA-snRNP complexes formed on each of the two splice site RNAs is consistent with the formation of partial complexes, which then associate to form the complete spliceosome. Specifically, U2 snRNP bound to the 3'SS RNA associates with U4/U5/U6 snRNP bound to the 5'SS RNA oligo. Thus, as expected, trans-splicing depends on the integrity of U2, U4, and U6 snRNAs. However, unlike cis-splicing, trans-splicing is enhanced when the 5' end of U1 snRNA is blocked or removed or when the U1 snRNP is depleted. Thus, the early regulatory requirement for U1 snRNP, which is essential in cis-splicing, is bypassed in this trans-splicing system. This simplified trans-splicing reaction offers a unique model system in which to study the mechanistic details of pre-mRNA splicing.  相似文献   

20.
The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila   总被引:11,自引:0,他引:11  
Okamura K  Hagen JW  Duan H  Tyler DM  Lai EC 《Cell》2007,130(1):89-100
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号