首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Myotubularin-related proteins (MTMRs) constitute a broad family of ubiquitously expressed phosphatases with 14 members in humans, of which eight are catalytically active phosphatases, while six are catalytically inactive. Active MTMRs possess 3-phosphatase activity toward both PtdIns3P and PtdIns(3, 5)P 2 poliphosphoinositides (PPIn), suggesting an involvement in intracellular trafficking and membrane homeostasis. Among MTMRs, catalytically active MTMR2 and inactive MTMR13 have a nonredundant function in nerve. Loss of either MTMR2 or MTMR13 causes Charcot–Marie–Tooth type 4B1 and B2 neuropathy, respectively, characterized by demyelination and redundant loops of myelin known as myelin outfoldings. In Mtmr2-null mouse nerves, these aberrant foldings occur at 3–4 weeks after birth, a time when myelination is established, and Schwann cells are still elongating to reach the final internodal length. Moreover, Mtmr2-specific ablation in Schwann cells is both sufficient and necessary to provoke CMT4B1 with myelin outfoldings. MTMR2 phospholipid phosphatase might regulate intracellular trafficking events and membrane homeostasis in Schwann cells during postnatal nerve development. In this review, we will discuss recent findings on the MTMR family with a major focus on MTMR2 and MTMR13 and their putative role in Schwann cell biology.  相似文献   

2.
Charcot-Marie-Tooth type 4B (CMT4B) is a severe autosomal recessive neuropathy with demyelination and myelin outfoldings of the nerve. This disorder is genetically heterogeneous, but thus far, mutations in myotubularin-related 2 (MTMR2) and MTMR13 genes have been shown to underlie CMT4B1 and CMT4B2, respectively. MTMR2 and MTMR13 belong to a family of ubiquitously expressed proteins sharing homology with protein tyrosine phosphatases (PTPs). The MTMR family, which has 14 members in humans, comprises catalytically active proteins, such as MTMR2, and catalytically inactive proteins, such as MTMR13. Despite their homology with PTPs, catalytically active MTMR phosphatases dephosphorylate both PtdIns3P and PtdIns(3,5)P2 phosphoinositides. Thus, MTMR2 and MTMR13 may regulate vesicular trafficking in Schwann cells. Loss of these proteins could lead to uncontrolled folding of myelin and, ultimately, to CMT4B. In this review, we discuss recent findings on this interesting protein family with the main focus on MTMR2 and MTMR13 and their involvement in the biology of Schwann cell and CMT4B neuropathies.  相似文献   

3.
Mutations in MTMR2, the myotubularin-related 2 gene, cause autosomal recessive Charcot-Marie-Tooth (CMT) type 4B1, a demyelinating neuropathy with myelin outfolding and azoospermia. MTMR2 encodes a ubiquitously expressed phosphatase whose preferred substrate is phosphatidylinositol (3,5)-biphosphate, a regulator of membrane homeostasis and vesicle transport. We generated Mtmr2-null mice, which develop progressive neuropathy characterized by myelin outfolding and recurrent loops, predominantly at paranodal myelin, and depletion of spermatids and spermatocytes from the seminiferous epithelium, which leads to azoospermia. Disruption of Mtmr2 in Schwann cells reproduces the myelin abnormalities. We also identified a novel physical interaction in Schwann cells, between Mtmr2 and discs large 1 (Dlg1)/synapse-associated protein 97, a scaffolding molecule that is enriched at the node/paranode region. Dlg1 homologues have been located in several types of cellular junctions and play roles in cell polarity and membrane addition. We propose that Schwann cell-autonomous loss of Mtmr2-Dlg1 interaction dysregulates membrane homeostasis in the paranodal region, thereby producing outfolding and recurrent loops of myelin.  相似文献   

4.
Charcot-Marie-Tooth disease (CMT) with autosomal recessive (AR) inheritance is a heterogeneous group of inherited motor and sensory neuropathies. In some families from Japan and Brazil, a demyelinating CMT, mainly characterized by the presence of myelin outfoldings on nerve biopsies, cosegregated as an autosomal recessive trait with early-onset glaucoma. We identified two such large consanguineous families from Tunisia and Morocco with ages at onset ranging from 2 to 15 years. We mapped this syndrome to chromosome 11p15, in a 4.6-cM region overlapping the locus for an isolated demyelinating ARCMT (CMT4B2). In these two families, we identified two different nonsense mutations in the myotubularin-related 13 gene, MTMR13. The MTMR protein family includes proteins with a phosphoinositide phosphatase activity, as well as proteins in which key catalytic residues are missing and that are thus called "pseudophosphatases." MTM1, the first identified member of this family, and MTMR2 are responsible for X-linked myotubular myopathy and Charcot-Marie-Tooth disease type 4B1, an isolated peripheral neuropathy with myelin outfoldings, respectively. Both encode active phosphatases. It is striking to note that mutations in MTMR13 also cause peripheral neuropathy with myelin outfoldings, although it belongs to a pseudophosphatase subgroup, since its closest homologue is MTMR5/Sbf1. This is the first human disease caused by mutation in a pseudophosphatase, emphasizing the important function of these putatively inactive enzymes. MTMR13 may be important for the development of both the peripheral nerves and the trabeculum meshwork, which permits the outflow of the aqueous humor. Both of these tissues have the same embryonic origin.  相似文献   

5.
Phosphoinositides control many different processes required for normal cellular function. Myotubularins are a family of Phosphatidylinositol 3-phosphate (PtdIns3P) phosphatases identified by the positional cloning of the MTM1 gene in patients suffering from X-linked myotubular myopathy and the MTMR2 gene in patients suffering from the demyelinating neuropathy Charcot-Marie-Tooth disease type 4B. MTM1 is a phosphatidylinositol phosphatase with reported specificity toward PtdIns3P, while the related proteins MTMR2 and MTMR3 hydrolyze both PtdIns3P and PtdIns(3,5)P2. We have investigated MTM1 and MTMR6 and find that they use PtdIns(3,5)P2 in addition to PtdIns3P as a substrate in vitro. The product of PtdIns(3,5)P2 hydrolysis, PtdIns5P, causes MTM1 to form a heptameric ring that is 12.5 nm in diameter, and it is a specific allosteric activator of MTM1, MTMR3, and MTMR6. A disease-causing mutation at arginine 69 of MTM1 falling within a putative pleckstrin homology domain reduces the ability of the enzyme to respond to PtdIns5P. We propose that the myotubularin family of enzymes utilize both PtdIns3P and PtdIns(3,5)P2 as substrates, and that PtdIns5P functions in a positive feedback loop controlling their activity. These findings highlight the importance of regulated phosphatase activity for the control of phosphoinositide metabolism.  相似文献   

6.
Charcot‐Marie‐Tooth disease type 4B is caused by mutations in the genes encoding either the lipid phosphatase myotubularin‐related protein‐2 (MTMR2) or its regulatory binding partner MTMR13/SBF2. Mtmr2 dephosphorylates PI‐3‐P and PI‐3,5‐P2 to form phosphatidylinositol and PI‐5‐P, respectively, while Mtmr13/Sbf2 is an enzymatically inactive member of the myotubularin protein family. We have found altered levels of the critical signalling protein AKT in mouse mutants for Mtmr2 and Mtmr13/Sbf2. Thus, we analysed the influence of Mtmr2 and Mtmr13/Sbf2 on signalling processes. We found that overexpression of Mtmr2 prevents the degradation of the epidermal growth factor receptor (EGFR) and leads to sustained Akt activation whereas Erk activation is not affected. Mtmr13/Sbf2 counteracts the blockage of EGFR degradation without affecting prolonged Akt activation. Our data indicate that Mtmr2 and Mtmr13/Sbf2 play critical roles in the sorting and modulation of cellular signalling which are likely to be disturbed in CMT4B.  相似文献   

7.
Charcot-Marie-Tooth disease type 4B (CMT4B) is a severe, demyelinating peripheral neuropathy characterized by distinctive, focally folded myelin sheaths. CMT4B is caused by recessively inherited mutations in either myotubularin-related 2 (MTMR2) or MTMR13 (also called SET-binding factor 2). MTMR2 encodes a member of the myotubularin family of phosphoinositide-3-phosphatases, which dephosphorylate phosphatidylinositol 3-phosphate (PI(3)P) and bisphosphate PI(3,5)P2. MTMR13 encodes a large, uncharacterized member of the myotubularin family. The MTMR13 phosphatase domain is catalytically inactive because the essential Cys and Arg residues are absent. Given the genetic association of both MTMR2 and MTMR13 with CMT4B, we investigated the biochemical relationship between these two proteins. We found that the endogenous MTMR2 and MTMR13 proteins are associated in human embryonic kidney 293 cells. MTMR2-MTMR13 association is mediated by coiled-coil sequences present in each protein. We also examined the cellular localization of MTMR2 and MTMR13 using fluorescence microscopy and subcellular fractionation. We found that (i) MTMR13 is a predominantly membrane-associated protein; (ii) MTMR2 and MTMR13 cofractionate in both a light membrane fraction and a cytosolic fraction; and (iii) MTMR13 membrane association is mediated by the segment of the protein which contains the pseudophosphatase domain. This work, which describes the first cellular or biochemical investigation of the MTMR13 pseudophosphatase protein, suggests that MTMR13 functions in association with MTMR2. Loss of MTMR13 function in CMT4B2 patients may lead to alterations in MTMR2 function and subsequent alterations in 3-phosphoinositide signaling. Such a mechanism would explain the strikingly similar phenotypes of patients with recessive mutations in either MTMR2 or MTMR13.  相似文献   

8.
The Saccharomyces cerevisiae FAB1 gene encodes the sole phosphatidylinositol 3-phosphate [PtdIns(3)P] 5-kinase responsible for synthesis of the polyphosphoinositide PtdIns(3,5)P(2). VAC7 encodes a 128-kDa transmembrane protein that localizes to vacuolar membranes. Both vac7 and fab1 null mutants have dramatically enlarged vacuoles and cannot grow at elevated temperatures. Additionally, vac7Delta mutants have nearly undetectable levels of PtdIns(3,5)P(2), suggesting that Vac7 functions to regulate Fab1 kinase activity. To test this hypothesis, we isolated a fab1 mutant allele that bypasses the requirement for Vac7 in PtdIns(3,5)P(2) production. Expression of this fab1 allele in vac7Delta mutant cells suppresses the temperature sensitivity, vacuolar morphology, and PtdIns(3,5)P(2) defects normally exhibited by vac7Delta mutants. We also identified a mutant allele of FIG4, whose gene product contains a Sac1 polyphosphoinositide phosphatase domain, which suppresses vac7Delta mutant phenotypes. Deletion of FIG4 in vac7Delta mutant cells suppresses the temperature sensitivity and vacuolar morphology defects, and dramatically restores PtdIns(3,5)P(2) levels. These results suggest that generation of PtdIns(3,5)P(2) by the Fab1 lipid kinase is regulated by Vac7, whereas turnover of PtdIns(3,5)P(2) is mediated in part by the Sac1 polyphosphoinositide phosphatase family member Fig4.  相似文献   

9.
10.
Endosomal phosphoinositides and human diseases   总被引:1,自引:0,他引:1  
Phosphoinositides (PIs) are lipid second messengers implicated in signal transduction and membrane trafficking. Seven distinct PIs can be synthesized by phosphorylation of the inositol ring of phosphatidylinositol (PtdIns), and their metabolism is accurately regulated by PI kinases and phosphatases. Two of the PIs, PtdIns3 P and PtdIns(3,5) P 2, are present on intracellular endosomal compartments, and several studies suggest that they have a role in membrane remodeling and trafficking. We refer to them as 'endosomal PIs'. An increasing number of human genetic diseases including myopathy and neuropathies are associated to mutations in enzymes regulating the turnover of these endosomal PIs. The PtdIns3 P and PtdIns(3,5) P 2 3-phosphatase myotubularin gene is mutated in X-linked centronuclear myopathy, whereas its homologs MTMR2 and MTMR13 and the PtdIns(3,5) P 2 5-phosphatase SAC3/FIG4 are implicated in Charcot–Marie–Tooth peripheral neuropathies. Mutations in the gene encoding the PtdIns3 P 5-kinase PIP5K3/PIKfyve have been found in patients affected with François–Neetens fleck corneal dystrophy. This review presents the roles of the endosomal PIs and their regulators and proposes defects of membrane remodeling as a common pathological mechanism for the corresponding diseases.  相似文献   

11.
Charcot-Marie-Tooth type 4B (CMT4B) is caused by mutations in the myotubularin-related 2 gene, MTMR2, on chromosome 11q22. To date, six loss of function mutations and one missense mutation have been demonstrated in CMT4B patients. It remains to be determined how dysfunction of a ubiquitously expressed phosphatase causes a demyelinating neuropathy. An animal model for CMT4B would provide insights into the pathogenesis of this disorder. We have therefore characterized the mouse homologue of MTMR2 by reconstructing the full-length Mtmr2 cDNA as well as the genomic structure. The 1932 nucleotide open reading frame corresponds to 15 coding exons, spanning a genomic region of approximately 55 kilobases, on mouse chromosome 9 as demonstrated by fluorescence in situ hybridization analysis. A comparison between the mouse and human genes revealed a similar genomic structure, except for the number of alternatively spliced exons in the 5'-untranslated region, two in mouse and three in man. In situ hybridization analysis of mouse embryos showed that Mtmr2 was ubiquitously expressed during organogenesis at E9.5, with some areas of enriched expression. At E14.5, Mtmr2 mRNA was more abundant in the peripheral nervous system, including in dorsal root ganglia and spinal roots.  相似文献   

12.
Charcot-Marie-Tooth disease (CMT) is an inherited peripheral neuropathy that has been linked to mutations in multiple genes. Mutations in the neurofilament light ( NFL ) chain gene lead to the CMT2E form whereas mutations in the myotubularin-related protein 2 and 13 ( MTMR2 and MTMR13 ) genes lead to the CMT4B form. These two forms share characteristic pathological hallmarks on nerve biopsies including concentric sheaths ('onion bulbs') and, in at least one case, myelin loops. In addition, MTMR2 protein has been shown to interact physically with both NFL and MTMR13. Here, we present evidence that CMT-linked mutations of MTMR2 can cause NFL aggregation in a cell line devoid of endogenous intermediate filaments, SW13vim. Mutations in the protein responsible for X-linked myotubular myopathy (myotubularin, MTM1) also induced NFL abnormalities in these cells. We also show that two MTMR2 mutant proteins, G103E and R283W, are unable to form dimers and undergo phosphorylation in vivo , implicating impaired complex formation in myotubularin-related pathology.  相似文献   

13.
In the budding yeast Saccharomyces cerevisiae, phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) is synthesized by a single phosphatidylinositol 3-phosphate 5-kinase, Fab1. Cells deficient in PtdIns(3,5)P2 synthesis exhibit a grossly enlarged vacuole morphology, whereas increased levels of PtdIns(3,5)P2 provokes the formation of multiple small vacuoles, suggesting a specific role for PtdIns(3,5)P2 in vacuole size control. Genetic studies have indicated that Fab1 kinase is positively regulated by Vac7 and Vac14; deletion of either gene results in ablation of PtdIns(3,5)P2 synthesis and the formation of a grossly enlarged vacuole. More recently, a suppressor of vac7Delta mutants was identified and shown to encode a putative phosphoinositide phosphatase, Fig4. We demonstrate that Fig4 is a magnesium-activated PtdIns(3,5)P2-selective phosphoinositide phosphatase in vitro. Analysis of a Fig4-GFP fusion protein revealed that the Fig4 phosphatase is localized to the limiting membrane of the vacuole. Surprisingly, in the absence of Vac14, Fig4-GFP no longer localizes to the vacuole. However, Fig4-GFP remains localized to the grossly enlarged vacuoles of vac7 deletion mutants. Consistent with these observations, we found that Fig4 physically associates with Vac14 in a common membrane-associated complex. Our studies indicate that Vac14 both positively regulates Fab1 kinase activity and directs the localization/activation of the Fig4 PtdIns(3,5)P2 phosphatase.  相似文献   

14.
Phosphatidylinositol-3,5-bisphosphate [PtdIns(3,5)P2] regulates several vacuolar functions, including acidification, morphology, and membrane traffic. The lipid kinase Fab1 converts phosphatidylinositol-3-phosphate [PtdIns(3)P] to PtdIns(3,5)P2. PtdIns(3,5)P2 levels are controlled by the adaptor-like protein Vac14 and the Fig4 PtdIns(3,5)P2-specific 5-phosphatase. Interestingly, Vac14 and Fig4 serve a dual function: they are both implicated in the synthesis and turnover of PtdIns(3,5)P2 by an unknown mechanism. We now show that Fab1, through its chaperonin-like domain, binds to Vac14 and Fig4 and forms a vacuole-associated signaling complex. The Fab1 complex is tethered to the vacuole via an interaction between the FYVE domain in Fab1 and PtdIns(3)P on the vacuole. Moreover, Vac14 and Fig4 bind to each other directly and are mutually dependent for interaction with the Fab1 kinase. Our observations identify a protein complex that incorporates the antagonizing Fab1 lipid kinase and Fig4 lipid phosphatase into a common functional unit. We propose a model explaining the dual roles of Vac14 and Fig4 in the synthesis and turnover of PtdIns(3,5)P2.  相似文献   

15.
Phosphatidylinositol 3,5-bisphosphate (PtdIns[3,5]P(2)) was first identified as a non-abundant phospholipid whose levels increase in response to osmotic stress. In yeast, Fab1p catalyzes formation of PtdIns(3,5)P(2) via phosphorylation of PtdIns(3)P. We have identified Vac14p, a novel vacuolar protein that regulates PtdIns(3,5)P(2) synthesis by modulating Fab1p activity in both the absence and presence of osmotic stress. We find that PtdIns(3)P levels are also elevated in response to osmotic stress, yet, only the elevation of PtdIns(3,5)P(2) levels are regulated by Vac14p. Under basal conditions the levels of PtdIns(3,5)P(2) are 18-28-fold lower than the levels of PtdIns(3)P, PtdIns(4)P, and PtdIns(4,5)P(2). After a 10 min exposure to hyperosmotic stress the levels of PtdIns(3,5)P(2) rise 20-fold, bringing it to a cellular concentration that is similar to the other phosphoinositides. This suggests that PtdIns(3,5)P(2) plays a major role in osmotic stress, perhaps via regulation of vacuolar volume. In fact, during hyperosmotic stress the vacuole morphology of wild-type cells changes dramatically, to smaller, more highly fragmented vacuoles, whereas mutants unable to synthesize PtdIns(3,5)P(2) continue to maintain a single large vacuole. These findings demonstrate that Vac14p regulates the levels of PtdIns(3,5)P(2) and provide insight into why PtdIns(3,5)P(2) levels rise in response to osmotic stress.  相似文献   

16.
Perturbations in phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2)-synthesizing enzymes result in enlarged endocytic organelles from yeast to humans, indicating evolutionarily conserved function of PtdIns(3,5)P2 in endosome-related events. This is reinforced by the structural and functional homology of yeast Vac14 and human Vac14 (ArPIKfyve), which activate yeast and mammalian PtdIns(3,5)P2-producing enzymes, Fab1 and PIKfyve, respectively. In yeast, PtdIns(3,5)P2-specific phosphatase, Fig4, in association with Vac14, turns over PtdIns(3,5)P2, but whether such a mechanism operates in mammalian cells and what the identity of mammalian Fig4 may be are unknown. Here we have identified and characterized Sac3, a Sac domain phosphatase, as the Fig4 mammalian counterpart. Endogenous Sac3, a widespread 97-kDa protein, formed a stable ternary complex with ArPIKfyve and PIKfyve. Concordantly, Sac3 cofractionated and colocalized with ArPIKfyve and PIKfyve. The intrinsic Sac3(WT) phosphatase activity preferably hydrolyzed PtdIns(3,5)P2 in vitro, although the other D5-phosphorylated polyphosphoinositides were also substrates. Ablation of endogenous Sac3 by short interfering RNAs elevated PtdIns(3,5)P2 in (32)P-labeled HEK293 cells. Ectopically expressed Sac3(WT) in COS cells colocalized with and dilated EEA1-positive endosomes, consistent with the PtdIns(3,5)P2 requirement in early endosome dynamics. In vitro reconstitution of carrier vesicle formation from donor early endosomes revealed a gain of function upon Sac3 loss, whereas PIKfyve or ArPIKfyve protein depletion produced a loss of function. These data demonstrate a coupling between the machinery for PtdIns(3,5)P2 synthesis and turnover achieved through a physical assembly of PIKfyve, ArPIKfyve, and Sac3. We suggest that the tight regulation in PtdIns(3,5)P2 homeostasis is mechanistically linked to early endosome dynamics in the course of cargo transport.  相似文献   

17.
Phosphoinositides play an important role in organelle identity by recruiting effector proteins to the host membrane organelle, thus decorating that organelle with molecular identity. Phosphatidylinositol-3,5-bisphos- phate [PtdIns(3,5)P(2) ] is a low-abundance phosphoinositide that predominates in endolysosomes in higher eukaryotes and in the yeast vacuole. Compared to other phosphoinositides such as PtdIns(4,5)P(2) , our understanding of the regulation and function of PtdIns(3,5)P(2) remained rudimentary until more recently. Here, we review many of the recent developments in PtdIns(3,5)P(2) function and regulation. PtdIns(3,5)P(2) is now known to espouse functions, not only in the regulation of endolysosome morphology, trafficking and acidification, but also in autophagy, signaling mediation in response to stresses and hormonal cues and control of membrane and ion transport. In fact, PtdIns(3,5)P(2) misregulation is now linked with several human neuropathologies including Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis. Given the functional versatility of PtdIns(3,5)P(2) , it is not surprising that regulation of PtdIns(3,5)P(2) metabolism is proving rather elaborate. PtdIns(3,5)P(2) synthesis and turnover are tightly coupled via a protein complex that includes the Fab1/PIKfyve lipid kinase and its antagonistic Fig4/Sac3 lipid phosphatase. Most interestingly, many PtdIns(3,5)P(2) regulators play simultaneous roles in its synthesis and turnover.  相似文献   

18.
Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) helps control various endolysosome functions including organelle morphology, membrane recycling, and ion transport. Further highlighting its importance, PtdIns(3,5)P2 misregulation leads to the development of neurodegenerative diseases like Charcot-Marie-Tooth disease. The Fab1/PIKfyve lipid kinase phosphorylates PtdIns(3)P into PtdIns(3,5)P2 whereas the Fig4/Sac3 lipid phosphatase antagonizes this reaction. Interestingly, Fab1 and Fig4 form a common protein complex that coordinates synthesis and degradation of PtdIns(3,5)P2 by a poorly understood process. Assembly of the Fab1 complex requires Vac14/ArPIKfyve, a multimeric scaffolding adaptor protein that coordinates synthesis and turnover of PtdIns(3,5)P2. However, the properties and function of Vac14 multimerization remain mostly uncharacterized. Here we identify several conserved C-terminal motifs on Vac14 required for self-interaction and provide evidence that Vac14 likely forms a dimer. We also show that monomeric Vac14 mutants do not support interaction with Fab1 or Fig4, suggesting that Vac14 multimerization is likely the first molecular event in the assembly of the Fab1 complex. Finally, we show that cells expressing monomeric Vac14 mutants have enlarged vacuoles that do not fragment after hyperosmotic shock, which indicates that PtdIns(3,5)P2 levels are greatly abated. Therefore, our observations support an essential role for the Vac14 homocomplex in controlling PtdIns(3,5)P2 levels.  相似文献   

19.
In recent times 3-phosphoinositides have emerged as important regulators of cell metabolism, survival, and proliferation. During the last year, the phospholipid phosphatidylinositol 3, 5-bisphosphate (PtdIns3,5P2) was identified in yeast, fibroblasts, SV40-transformed kidney (COS-7) cells, and platelets. The discovery of this novel phospholipid has increased the complexity of the metabolism relating to the generation of biologically active inositol-containing lipids. We describe here the identification of PtdIns3,5P2 in the CTLL-2 mouse T-lymphocyte cell line using two in vivo radiolabeling protocols. Treatment of the cells with UV radiation led to an increase in the cellular content of PtdIns3,5P2. In contrast, preincubation of the cells with wortmannin or treatment with hypertonic medium (high concentration sorbitol) led to the opposite effect. Herein we demonstrate that interleukin-2 (IL-2), the growth factor required for CTLL-2 cell proliferation, was able to increase the level of PtdIns3,5P2 with similar kinetics to that of the formation of phosphatidylinositol 3,4-bisphosphate (PtdIns3, 4P2). An increase in this novel 3-phosphorylated lipid in response to IL-2 seems to be a general property of this cytokine because a similar result was obtained when the pre-B cell line BaF/3 expressing the high affinity IL-2 receptor was used. Using a constitutively active regulatory subunit of type I phosphatidylinositol 3-kinase and cells expressing a deletion of the serine-rich domain of the IL-2 receptor beta chain, which is required for IL-2-stimulated type I phosphatidylinositol 3-kinase activation, we demonstrate that IL-2-induced generation of PtdIns3, 5P2 is related to the activation of this enzyme. The results show for the first time the identification of PtdIns3,5P2 in both T- and B-lymphocytes and indicate its positive regulation by the mitogen IL-2.  相似文献   

20.
Inositol lipids play key roles in many fundamental cellular processes that include growth, cell survival, motility, and membrane trafficking. Recent studies on the PTEN and Myotubularin proteins have underscored the importance of inositol lipid 3-phosphatases in cell function. Inactivating mutations in the genes encoding PTEN and Myotubularin are key steps in the progression of some cancers and in the onset of X-linked myotubular myopathy, respectively. Myotubularin-related protein 3 (MTMR3) shows extensive homology to Myotubularin, including the catalytic domain, but additionally possesses a C-terminal extension that includes a FYVE domain. We show that MTMR3 is an inositol lipid 3-phosphatase, with a so-far-unique substrate specificity. It is able to hydrolyze PtdIns3P and PtdIns3,5P2, both in vitro and when heterologously expressed in S. cerevisiae, and to thereby provide the first clearly defined route for the cellular production of PtdIns5P. Overexpression of a catalytically dead MTMR3 (C413S) in mammalian cells induces a striking formation of vacuolar compartments that enclose membranous structures that are highly concentrated in mutant proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号