首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cao S  Liu X  Yu M  Li J  Jia X  Bi Y  Sun L  Gao GF  Liu W 《Journal of virology》2012,86(9):4883-4891
The influenza A virus matrix 1 protein (M1) shuttles between the cytoplasm and the nucleus during the viral life cycle and plays an important role in the replication, assembly, and budding of viruses. Here, a leucine-rich nuclear export signal (NES) was identified specifically for the nuclear export of the M1 protein. The predicted NES, designated the Flu-A-M1 NES, is highly conserved among all sequences from the influenza A virus subtype, but no similar NES motifs are found in the M1 sequences of influenza B or C viruses. The biological function of the Flu-A-M1 NES was demonstrated by its ability to translocate an enhanced green fluorescent protein (EGFP)-NES fusion protein from the nucleus to the cytoplasm in transfected cells, compared to the even nuclear and cytoplasmic distribution of EGFP. The translocation of EGFP-NES from the nucleus to the cytoplasm was not inhibited by leptomycin B. NES mutations in M1 caused a nuclear retention of the protein and an increased nuclear accumulation of NEP during transfection. Indeed, as shown by rescued recombinant viruses, the mutation of the NES impaired the nuclear export of M1 and significantly reduced the virus titer compared to titers of wild-type viruses. The NES-defective M1 protein was retained in the nucleus during infection, accompanied by a lowered efficiency of the nuclear export of viral RNPs (vRNPs). In conclusion, M1 nuclear export was specifically dependent on the Flu-A-M1 NES and critical for influenza A virus replication.  相似文献   

2.
The hepatitis C virus (HCV) is a positive strand RNA virus of the Flavivirus family that replicates in the cytoplasm of infected hepatocytes. Previously, several nuclear localization signals (NLS) and nuclear export signals (NES) have been identified in HCV proteins, however, there is little evidence that these proteins travel into the nucleus during infection. We have recently shown that nuclear pore complex (NPC) proteins (termed nucleoporins or Nups) are present in the membranous web and are required during HCV infection. In this study, we identify a total of 11 NLS and NES sequences in various HCV proteins. We show direct interactions between HCV proteins and importin α5 (IPOA5/kapα1), importin β3 (IPO5/kap β3), and exportin 1 (XPO1/CRM1) both in-vitro and in cell culture. These interactions can be disrupted using peptides containing the specific NLS or NES sequences of HCV proteins. Moreover, using a synchronized infection system, we show that these peptides inhibit HCV infection during distinct phases of the HCV life cycle. The inhibitory effects of these peptides place them in two groups. The first group binds IPOA5 and inhibits infection during the replication stage of HCV life cycle. The second group binds IPO5 and is active during both early replication and early assembly. This work delineates the entire life cycle of HCV and the active involvement of NLS sequences during HCV replication and assembly. Given the abundance of NLS sequences within HCV proteins, our previous finding that Nups play a role in HCV infection, and the relocation of the NLS double-GFP reporter in HCV infected cells, this work supports our previous hypothesis that NPC-like structures and nuclear transport factors function in the membranous web to create an environment conducive to viral replication.  相似文献   

3.
Li HC  Huang EY  Su PY  Wu SY  Yang CC  Lin YS  Chang WC  Shih C 《PLoS pathogens》2010,6(10):e1001162
It remains unclear what determines the subcellular localization of hepatitis B virus (HBV) core protein (HBc) and particles. To address this fundamental issue, we have identified four distinct HBc localization signals in the arginine rich domain (ARD) of HBc, using immunofluorescence confocal microscopy and fractionation/Western blot analysis. ARD consists of four tight clustering arginine-rich subdomains. ARD-I and ARD-III are associated with two co-dependent nuclear localization signals (NLS), while ARD-II and ARD-IV behave like two independent nuclear export signals (NES). This conclusion is based on five independent lines of experimental evidence: i) Using an HBV replication system in hepatoma cells, we demonstrated in a double-blind manner that only the HBc of mutant ARD-II+IV, among a total of 15 ARD mutants, can predominantly localize to the nucleus. ii) These results were confirmed using a chimera reporter system by placing mutant or wild type HBc trafficking signals in the heterologous context of SV40 large T antigen (LT). iii) By a heterokaryon or homokaryon analysis, the fusion protein of SV40 LT-HBc ARD appeared to transport from nuclei of transfected donor cells to nuclei of recipient cells, suggesting the existence of an NES in HBc ARD. This putative NES is leptomycin B resistant. iv) We demonstrated by co-immunoprecipitation that HBc ARD can physically interact with a cellular factor TAP/NXF1 (Tip-associated protein/nuclear export factor-1), which is known to be important for nuclear export of mRNA and proteins. Treatment with a TAP-specific siRNA strikingly shifted cytoplasmic HBc to nucleus, and led to a near 7-fold reduction of viral replication, and a near 10-fold reduction in HBsAg secretion. v) HBc of mutant ARD-II+IV was accumulated predominantly in the nucleus in a mouse model by hydrodynamic delivery. In addition to the revised map of NLS, our results suggest that HBc could shuttle rapidly between nucleus and cytoplasm via a novel TAP-dependent NES.  相似文献   

4.
The zinc finger antiviral protein (ZAP) is a recently isolated host antiviral factor. It specifically inhibits the replication of Moloney murine leukemia virus (MMLV) and Sindbis virus (SIN) by preventing the accumulation of viral RNA in the cytoplasm. In this report, we demonstrate that ZAP is predominantly localized in the cytoplasm at steady state but shuttles between the nucleus and the cytoplasm in a CRM1-dependent manner. Two nuclear localization sequences (NLS) and one nuclear export sequence (NES) were identified. One NLS was mapped to amino acids 68-RARVCRRK-75 and the other mapped to a region including amino acids K405 and K406. The NES was mapped to amino acids 284-LEDVSVDV-291. These findings help to understand why ZAP specifically prevents the accumulation of viral RNA in the cytoplasm. These findings also suggest possible functions of ZAP in the nucleus.  相似文献   

5.
The bovine herpesvirus 1 (BHV-1) tegument protein VP22 is predominantly localized in the nucleus after viral infection. To analyze subcellular localization in the absence of other viral proteins, a plasmid expressing BHV-1 VP22 fused to enhanced yellow fluorescent protein (EYFP) was constructed. The transient expression of VP22 fused to EYFP in COS-7 cells confirmed the predominant nuclear localization of VP22. Analysis of the amino acid sequence of VP22 revealed that it does not have a classical nuclear localization signal (NLS). However, by constructing a series of deletion derivatives, we mapped the nuclear targeting domain of BHV-1 VP22 to amino acids (aa) 121 to 139. Furthermore, a 4-aa motif, 130PRPR133, was able to direct EYFP and an EYFP dimer (dEYFP) or trimer (tEYFP) predominantly into the nucleus, whereas a deletion or mutation of this arginine-rich motif abrogated the nuclear localization property of VP22. Thus, 130PRPR133 is a functional nonclassical NLS. Since we observed that the C-terminal 68 aa of VP22 mediated the cytoplasmic localization of EYFP, an analysis was performed on these C-terminal amino acid sequences, and a leucine-rich motif, 204LDRMLKSAAIRIL216, was detected. Replacement of the leucines in this putative nuclear export signal (NES) with neutral amino acids resulted in an exclusive nuclear localization of VP22. Furthermore, this motif was able to localize EYFP and dEYFP in the cytoplasm, and the nuclear export function of this NES could be blocked by leptomycin B. This demonstrates that this leucine-rich motif is a functional NES. These data represent the first identification of a functional NLS and NES in a herpesvirus VP22 homologue.  相似文献   

6.
Shuttling of proteins between nucleus and cytoplasm in mammalian cells is facilitated by the presence of nuclear localization signals (NLS) and nuclear export signals (NES), respectively. However, we have found that Tus, an E. coli replication fork arresting protein, contains separate sequences that function efficiently as NLS and NES in mammalian cell lines, as judged by cellular location of GFP-fusion proteins. The NLS was localized to a short stretch of 9 amino acids in the carboxy-terminus of Tus protein. Alterations of any of these basic amino acids almost completely abolished the nuclear targeting. The NES comprises a cluster of leucine/hydrophobic residues located within 21 amino acids at the amino terminus of Tus. Finally, we have shown that purified GFP-Tus fusion protein or GFP-Tus NLS fusion protein, when added to the culture media, was internalized very efficiently into mammalian cells. Thus, Tus is perhaps the first reported bacterial protein to possess both NLS and NES, and has the capability to transduce protein into mammalian cells.  相似文献   

7.
Many RNA viruses, which replicate predominantly in the cytoplasm, have nuclear components that contribute to their life cycle or pathogenesis. We investigated the intracellular localization of the multifunctional nonstructural protein 2 (nsP2) in mammalian cells infected with Venezuelan equine encephalitis virus (VEE), an important, naturally emerging zoonotic alphavirus. VEE nsP2 localizes to both the cytoplasm and the nucleus of mammalian cells in the context of infection and also when expressed alone. Through the analysis of a series of enhanced green fluorescent protein fusions, a segment of nsP2 that completely localizes to the nucleus of mammalian cells was identified. Within this region, mutation of the putative nuclear localization signal (NLS) PGKMV diminished, but did not obliterate, the ability of the protein to localize to the nucleus, suggesting that this sequence contributes to the nuclear localization of VEE nsP2. Furthermore, VEE nsP2 specifically interacted with the nuclear import protein karyopherin-alpha1 but not with karyopherin-alpha2, -3, or -4, suggesting that karyopherin-alpha1 transports nsP2 to the nucleus during infection. Additionally, a novel nuclear export signal (NES) was identified, which included residues L526 and L528 of VEE nsP2. Leptomycin B treatment resulted in nuclear accumulation of nsP2, demonstrating that nuclear export of nsP2 is mediated via the CRM1 nuclear export pathway. Disruption of either the NLS or the NES in nsP2 compromised essential viral functions. Taken together, these results establish the bidirectional transport of nsP2 across the nuclear membrane, suggesting that a critical function of nsP2 during infection involves its shuttling between the cytoplasm and the nucleus.  相似文献   

8.
Pan1 is an actin patch-associated protein involved in endocytosis. Our studies revealed that in oleate-grown cells Pan1 is located in the nucleus as well as in patches. One of three putative nuclear localization signals (NLS) of Pan1, NLS2, directed beta-galactosidase (beta-gal) to the nucleus. However, GFP-Pan1(886-1219), containing NLS2, was found in the cytoplasm indicating that it may contain a nuclear export signal (NES). A putative Pan1 NES, overlapping with NLS3, re-addressed NLS(H2B)-NES/NLS3-beta-gal from the nucleus to the cytoplasm. Inactivation of the NES allowed NLS3 to be effective. Thus, Pan1 contains functional NLSs and a NES and appears to shuttle in certain circumstances.  相似文献   

9.
The Rev protein is essential for the replication of lentiviruses. Rev is a shuttling protein that transports unspliced and partially spliced lentiviral RNAs from the nucleus to the cytoplasm via the nucleopore. To transport these RNAs, the human immunodeficiency virus type 1 (HIV-1) Rev uses the karyopherin β family importin β and CRM1 proteins that interact with the Rev nuclear localization signal (NLS) and nuclear exportation signal (NES), respectively. Recently, we reported the presence of new types of bipartite NLS and nucleolar localization signal (NoLS) in the bovine immunodeficiency virus (BIV) Rev protein. Here we report the characterization of the nuclear import and export pathways of BIV Rev. By using an in vitro nuclear import assay, we showed that BIV Rev is transported into the nucleus by a cytosolic and energy-dependent importin α/β classical pathway. Results from glutathione S-transferase (GST) pulldown assays that showed the binding of BIV Rev with importins α3 and α5 were in agreement with those from the nuclear import assay. We also identified a leptomycin B-sensitive NES in BIV Rev, which indicates that the protein is exported via CRM1 like HIV-1 Rev. Mutagenesis experiments showed that the BIV Rev NES maps between amino acids 109 to 121 of the protein. Remarkably, the BIV Rev NES was found to be of the cyclic AMP (cAMP)-dependent protein kinase inhibitor (PKI) type instead of the HIV-1 Rev type. In summary, our data showed that the nuclear import mechanism of BIV Rev is novel among Rev proteins characterized so far in lentiviruses.  相似文献   

10.
K Engel  A Kotlyarov    M Gaestel 《The EMBO journal》1998,17(12):3363-3371
To study the intracellular localization of MAPKAP kinase 2 (MK2), which carries a putative bipartite nuclear localization signal (NLS), we constructed a green fluorescent protein-MAPKAP kinase 2 fusion protein (GFP-MK2). In transfected cells, this protein is located predominantly in the nucleus; unexpectedly, upon stress, it rapidly translocates to the cytoplasm. This translocation can be blocked by the p38 MAP kinase inhibitor SB203580, indicating its regulation by phosphorylation. Molecular mimicry of MK2 phosphorylation at T317 in GFP-MK2 led to a mutant which is located almost exclusively in the cytoplasm of the cell, whereas the mutant T317A shows no stress-induced redistribution. Since leptomycin B, which inhibits the interaction of exportin 1 with the Rev-type leucine-rich nuclear export signal (NES), blocks stress-dependent translocation of GFP-MK2, it is supposed that phosphorylation-induced export of the protein causes the translocation. We have identified the region responsible for nuclear export in MK2 which is partially overlapping with and C-terminal to the autoinhibitory motif. This region contains a cluster of hydrophobic amino acids in the characteristic spacing of a leucine-rich Rev-type NES which is necessary to direct GFP-MK2 to the cytoplasm. However, unlike the Rev-type NES, this region alone is not sufficient for nuclear export. The data obtained indicate that MK2 contains a constitutively active NLS and a stress-regulated signal for nuclear export. Keywords: nuclear export/nuclear import/protein phosphorylation/signal transduction/stress response  相似文献   

11.

Background  

VP2 of chicken anemia virus (CAV) is a dual-specificity phosphatase required for virus infection, assembly and replication. The functions of the nuclear localization signal (NLS) and nuclear export signal (NES) of VP2 in the cell, however, are poorly understood. Our study identified the presence of a NLS in VP2 and showed that the protein interacted significantly with mini-chromosome maintenance protein 3 (MCM3) in the cell.  相似文献   

12.
Leptomycin B (LMB) is aStreptomycesmetabolite that inhibits nuclear export of the human immunodeficiency virus type 1 regulatory protein Rev at low nanomolar concentrations. Recently, LMB was shown to inhibit the function of CRM1, a receptor for the nuclear export signal (NES). Here we show evidence that LMB binds directly to CRM1 and that CRM1 is essential for NES-dependent nuclear export of proteins in both yeast and mammalian cells. Binding experiments with a biotinylated derivative of LMB and a HeLa cell extract led to identifying CRM1 as a major protein that bound to the LMB derivative. Microinjection of a purified anti-human CRM1 antibody into the mammalian nucleus specifically inhibited nuclear export of NES-containing proteins, as did LMB. Consistent with this, CRM1 was found to interact with NES, when assayed with immobilized NES and HeLa cell extracts. This association was disrupted by adding LMB or purified anti-human CRM1 antibody. The inhibition of CRM1 by LMB was also observed in fission yeast. The fission yeastcrm1mutant was defective in the nuclear export of NES-fused proteins, but not in the import of nuclear localization signal (NLS)-fused proteins. Interestingly, a protein containing both NES and NLS, which is expected to shuttle between nucleus and cytoplasm, was highly accumulated in the nucleus of thecrm1mutant cells or of cells treated with LMB. These results strongly suggest that CRM1 is the target of LMB and is an essential factor for nuclear export of proteins in eukaryotes.  相似文献   

13.
The nonstructural protein 2 (NS2) from parvovirus minute virus of mice (MVMp) is a 25-kDa polypeptide which localizes preferentially to the cytoplasm and associates with cellular proteins in cytoplasm. These lines of evidence suggest that NS2 is positively exported from the nucleus to cytoplasm and functions in cytoplasm. We report here that nuclear export of NS2 is inhibited by leptomycin B (LMB), a drug that specifically blocks nuclear export signal (NES)-chromosomal region maintenance 1 (CRM1) interactions. CRM1 binds specifically to the 81- to 106-amino-acid (aa) region of NS2, and the region of NS2 actually functions as a NES. Interestingly, this region appears to be distinct from a typical NES sequence, which consists of leucine-rich sequences. These results indicate that NS2 protein is continuously exported from the nucleus by a CRM1-dependent mechanism and suggest that CRM1 also exports to distinct type of NESs.  相似文献   

14.
15.
During the late phase of adenovirus infection, viral mRNA is efficiently transported from the nucleus to the cytoplasm while most cellular mRNA species are retained in the nucleus. Two viral proteins, E1B-55 kDa and E4orf6, are both necessary for these effects. The E4orf6 protein of adenovirus type 5 binds and relocalizes E1B-55 kDa, and the complex of the two proteins was previously shown to shuttle continuously between the nucleus and cytoplasm. Nucleocytoplasmic transport of the complex is achieved by a nuclear export signal (NES) within E4orf6. Mutation of this signal sequence severely reduces the ability of the E1B-55 kDa-E4orf6 complex to leave the nucleus. Here, we examined the role of functional domains within E4orf6 during virus infection. E4orf6 or mutants derived from it were transiently expressed, followed by infection with recombinant adenovirus lacking the E4 region and determination of virus yield. An arginine-rich putative alpha helix near the carboxy terminus of E4orf6 contributes to E1B-55 kDa binding and relocalization as well as to the synthesis of viral DNA, mRNA, and proteins. Further mutational analysis revealed that mutation of the NES within E4orf6 considerably reduces its ability to support virus production. The same effect was observed when nuclear export was blocked with a competitor. Further, a functional NES within E4orf6 contributed to the efficiency of late virus protein synthesis and viral DNA replication, as well as total and cytoplasmic accumulation of viral late mRNA. Our data support the view that NES-mediated nucleocytoplasmic shuttling strongly enhances most, if not all, intracellular activities of E4orf6 during the late phase of adenovirus infection.  相似文献   

16.
The human immunodeficiency Rev protein shuttles between the nucleus and cytoplasm, while accumulating to high levels in the nucleus. Rev has a nuclear localization signal (NLS; AA 35-50) with an arginine-rich motif (ARM) that interacts with importin beta and a leucine-rich nuclear export signal (NES; AA 75-84) recognized by CRM1/exportin 1. Here we explore nuclear targeting activities of the transport signals of Rev. GFP tagging and quantitative fluorescence microscopy were used to study the localization behavior of Rev NLS/ARM mutants under conditions inhibiting the export of Rev. Rev mutant M5 was actively transported to the nucleus, despite its known failure to bind importin beta. Microinjection of transport substrates with Rev-NES peptides revealed that the Rev-NES has both nuclear import and export activities. Replacement of amino acid residues "PLER" (77-80) of the NES with alanines abolished bidirectional transport activity of the Rev-NES. These results indicate that both transport signals of Rev have nuclear import capabilities and that the Rev NLS has more than one nuclear targeting activity. This suggests that Rev is able to use various routes for nuclear entry rather than depending on a single pathway.  相似文献   

17.
18.
Yu M  Liu X  Cao S  Zhao Z  Zhang K  Xie Q  Chen C  Gao S  Bi Y  Sun L  Ye X  Gao GF  Liu W 《Journal of virology》2012,86(9):4970-4980
The nuclear export of the influenza A virus ribonucleoprotein (vRNP) is crucial for virus replication. As a major component of the vRNP, nucleoprotein (NP) alone can also be shuttled out of the nucleus by interacting with chromosome region maintenance 1 (CRM1) and is therefore hypothesized to promote the nuclear export of the vRNP. In the present study, three novel nuclear export signals (NESs) of the NP--NES1, NES2, and NES3--were identified as being responsible for mediating its nuclear export. The nuclear export of NES3 was CRM1 dependent, whereas that of NES1 or NES2 was CRM1 independent. Inactivation of these NESs led to an overall nuclear accumulation of NP. Mutation of all three NP-NESs significantly impaired viral replication. Based on structures of influenza virus NP oligomers, these three hydrophobic NESs are found present on the surface of oligomeric NPs. Functional studies indicated that oligomerization is also required for nuclear export of NP. Together, these results suggest that the nuclear export of NP is important for virus replication and relies on its NESs and oligomerization.  相似文献   

19.
Regulated nucleocytoplasmic transport of proteins is central to cellular function and dysfunction during processes such as viral infection. Active protein trafficking into and out of the nucleus is dependent on the presence within cargo proteins of intrinsic specific modular signals for nuclear import (nuclear localization signals, NLSs) and export (nuclear export signals, NESs). Rabies virus (RabV) phospho (P) protein, which is largely responsible for antagonising the host anti-viral response, is expressed as five isoforms (P1-P5). The subcellular trafficking of these isoforms is thought to depend on a balance between the activities of a dominant N-terminal NES (N-NES) and a distinct C-terminal NLS (C-NLS). Specifically, the N-NES-containing isoforms P1 and P2 are cytoplasmic, whereas the shorter P3-P5 isoforms, which lack the N-NES, are believed to be nuclear through the activity of the C-NLS. Here, we show for the first time that RabV P contains an additional strong NLS in the N-terminal region (N-NLS), which, intriguingly, overlaps with the N-NES. This arrangement represents a novel nuclear trafficking module where the N-NLS is inactive in P1 but becomes activated in P3, concomitant with truncation of the N-NES, to become the principal targeting signal conferring nuclear accumulation. Understanding this unique switch arrangement of overlapping, co-regulated NES/NLS sequences is vital to delineating the critical role of RabV P protein in viral infection.  相似文献   

20.
We have developed a simple genetic assay to detect active nuclear localization (NLS) and export signals (NES) on the basis of their function within yeast cells. The bacterial LexA protein was modified (mLexA) to abolish its intrinsic NLS and fused to the activation domain of the yeast Gal4p (Gal4AD) with or without the SV40 large T-antigen NLS. In the import assay, if a tested protein fused to mLexA-Gal4AD contains a functional NLS, it will enter the cell nucleus and activate the reporter gene expression. In the export assay, if a tested protein fused to mLexA-SV40 NLS-Gal4AD contains a functional NES, it will exit into the cytoplasm, decreasing the reporter gene expression. We tested this system with known NLS and NES and then used it to demonstrate a NES activity of the capsid protein of a plant geminivirus. This approach may help to identify, analyze, and select for proteins containing functional NLS and NES.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号