共查询到20条相似文献,搜索用时 15 毫秒
1.
Yamada M Takeshita T Miura S Murata K Kimura Y Ishii N Nose M Sakagami H Kondo H Tashiro F Miyazaki JI Sasaki H Sugamura K 《Molecular and cellular biology》2001,21(11):3807-3819
STAM1, a member of the STAM (signal transducing adapter molecule) family, has a unique structure containing a Src homology 3 domain and ITAM (immunoreceptor tyrosine-based activation motif). STAM1 was previously shown to be associated with the Jak2 and Jak3 tyrosine kinases and to be involved in the regulation of intracellular signal transduction mediated by interleukin-2 (IL-2) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in vitro. Here we generated mice lacking STAM1 by using homologous recombination with embryonic stem cells. STAM1(-/-) mice were morphologically indistinguishable from their littermates at birth. However, growth retardation in the third week after birth was observed for the STAM1(-/-) mice. Unexpectedly, despite the absence of STAM1, hematopoietic cells, including T- and B-lymphocyte and other hematopoietic cell populations, developed normally and responded well to several cytokines, including IL-2 and GM-CSF. However, histological analyses revealed the disappearance of hippocampal CA3 pyramidal neurons in STAM1(-/-) mice. Furthermore, we observed that primary hippocampal neurons derived from STAM1(-/-) mice are vulnerable to cell death induced by excitotoxic amino acids or an NO donor. These data suggest that STAM1 is dispensable for cytokine-mediated signaling in lymphocytes but may be involved in the survival of hippocampal CA3 pyramidal neurons. 相似文献
2.
本研究采用离体海马脑片电生理研究技术,细胞外记录海马锥体细胞群体锋电位(population spike,PS),观察羟基马桑毒素(tutin)对大鼠海马脑片CA1区锥体细胞电活动的影响,探讨tutin是否具有致痛作用及其致痫机制。结果如下:(1)用40、30和20μg/ml浓度的tutin灌流海马脑片,可显著增高由顺向刺激Schaffer侧支所诱发的PS的幅度,灌流tutin 30min时,PS第一个波的幅度分别为对照的(388.7±20.1)%、(317.2±19.1)%和(180.9±11.6)%(各组n=5,P<0.05)。(2)伴随PS波幅的增高,可出现成串痫样放电波,波数4~11个不等。(3)灌流tutin后的部分脑片(n=9/34),在未刺激Schaffer侧支时也出现自发的成串、高幅痫样放电。(4)灌流CNQX阻断非NMDA受体后,再灌流tutin,PS幅度和放电波数均无显著性变化,即CNQX可完全抑制tutin所致的痫样放电;灌流AP-5阻断NMDA受体后,tutin仍可使PS幅度增高但放电波数无显著性增加,即AP-5可部分抑制tutin所致的痫样放电。上述结果表明,tutin可使海马脑片锥体细胞兴奋活动增强,具有致痫作用;兴奋性谷氨酸受体尤其是非NMDA受体可能介导tutin的致痫作用。 相似文献
3.
The present study showed a wide presence of CCL28 in mouse CNS, including cerebral, cerebellum, brain stem and spinal cord. In hippocampus, the expression of CCL28 at both mRNA and protein level was clarified. The CCL28 expression was mainly localized in pyramidal cells of CA area, granular cells of dentate gyrus and some interneurons in CA area and hilus. Double-labelling immunocytochemistry revealed that most of calbindin, calretinin and parvalbumin immunopositive neurons expressed CCL28. During and after pilocarpine induced status epilepticus (SE), a down-regulated expression of CCL28 in hippocampal interneurons in the CA1 area and in the hilus of the dentate gyrus was demonstrated. The present study may, therefore provide evidence that CCL28 may have a novel role in CNS and may be involved in the loss of hippocampal interneurons, and subsequent disinhibition of pyramidal neurons. 相似文献
4.
Shimizu T Hayashi Y Yamasaki R Yamada J Zhang J Ukai K Koike M Mine K von Figura K Peters C Saftig P Fukuda T Uchiyama Y Nakanishi H 《Journal of neurochemistry》2005,94(3):680-690
Although of clinical importance, little is known about the mechanism of seizure in neuronal ceroid lipofuscinosis (NCL). In the present study, we have attempted to elucidate the mechanism underlying the seizure of cathepsin D-deficient (CD-/-) mice that show a novel type of lysosomal storage disease with a phenotype resembling late infantile NCL. In hippocampal slices prepared from CD-/- mice at post-natal day (P)24, spontaneous burst discharges were recorded from CA3 pyramidal cells. At P24, the mean amplitude of IPSPs after stimulation of the mossy fibres was significantly smaller than that of wild-type mice, which was substantiated by the decreased level of gamma-aminobutyric acid (GABA) contents in the hippocampus measured by high-performance liquid chromatography (HPLC). At this stage, activated microglia were found to accumulate in the pyramidal cell layer of the hippocampal CA3 subfield of CD-/- mice. However, there was no significant change in the numerical density of GABAergic interneurons in the CA3 subfield of CD-/- mice at P24, estimated by counting the number of glutamate decarboxylase (GAD) 67-immunoreactive somata. In the hippocampus and the cortex of CD-/- mice at P24, some GABAergic interneurons displayed extremely high somatic granular immunoreactivites for GAD67, suggesting the lysosomal accumulation of GAD67. GAD67 levels in axon terminals abutting on to perisomatic regions of hippocampal CA3 pyramidal cells was not significantly changed in CD-/- mice even at P24, whereas the total protein levels of GAD67 in both the hippocampus and the cortex of CD-/- mice after P24 were significantly decreased as a result of degradation. Furthermore, the recombinant human GAD65/67 was rapidly digested by the lysosomal fraction prepared from the whole brain of wild-type and CD-/- mice. These observations strongly suggest that the reduction of GABA contents, presumably because of lysosomal degradation of GAD67 and lysosomal accumulation of its degraded forms, are responsible for the dysfunction of GABAergic interneurons in the hippocampal CA3 subfield of CD-/- mice. 相似文献
5.
The ultrastructure of symmetric (putatively inhibitory) axo-dendritic synapses on the membrane of hippocampal CA1 pyramidal neurons was investigated in young (20-day-old) and adult (1-year-old) mice. It was shown that synapses of adult animals contain, on average, fewer synaptic vesicles (SVs), and resting SVs of the reserve pool are mostly responsible for this difference. At the same time, in the synapses of adult mice SVs are localized closer to active zones, and the readily releasable pool of SVs is larger in these animals than in young mice. The observed changes in the spatial structure of SV pools presumably demonstrate the age-associated adaptation of inhibitory synapses providing the maintenance of adequate functional properties of hippocampal neuronal networks. Neirofiziologiya/Neurophysiology, Vol. 38, Nos. 5/6, pp. 407–411, September–December, 2006. 相似文献
6.
Computational models based on hippocampal connectivity have proposed that CA3 is uniquely positioned as an autoassociative memory network, capable of performing the competing functions of pattern completion and pattern separation. Recently, three independent studies, two using parallel neurophysiological recording methods and one using immediate-early gene imaging, have examined the responses of CA3 and CA1 ensembles to alterations of environmental context in rats. The results provide converging evidence that CA3 is capable of performing nonlinear transformations of sensory input patterns, whereas CA1 may represent changes in input in a more linear fashion. 相似文献
7.
Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons 总被引:7,自引:0,他引:7
Although radial oblique dendrites are a major synaptic input site in CA1 pyramidal neurons, little is known about their integrative properties. We have used multisite two-photon glutamate uncaging to deliver different spatiotemporal input patterns to single branches while simultaneously recording the uncaging-evoked excitatory postsynaptic potentials and local Ca2+ signals. Asynchronous input patterns sum linearly in spite of the spatial clustering and produce Ca2+ signals that are mediated by NMDA receptors (NMDARs). Appropriately timed and sized input patterns ( approximately 20 inputs within approximately 6 ms) produce a supralinear summation due to the initiation of a dendritic spike. The Ca2+ signals associated with synchronous input were larger and mediated by influx through both NMDARs and voltage-gated Ca2+ channels (VGCCs). The oblique spike is a fast Na+ spike whose duration is shaped by the coincident activation of NMDAR, VGCCs, and transient K+ currents. Our results suggest that individual branches can function as single integrative compartments. 相似文献
8.
Ischemic insult induces neuronal death in the CA1 subfields of the hippocampus which are designated generally as the most vulnerable brain region. Recent studies have shown that acidic and basic fibroblast growth factors are potent trophic factors that support the survival of neurons in many brain regions including the hippocampus. Here we demonstrate that continuous infusion of acidic fibroblast growth factor into the lateral cerebral ventricles beginning 2 days before ischemia prevents the death of the CA1 pyramidal cells in the hippocampus of gerbils. Furthermore, delayed continuous administration of acidic fibroblast growth factor starting 5 min after ischemia is equally protective. The results suggest a possible physiological function for acidic fibroblast growth factor in the normal support of hippocampal CA1 pyramidal cells and neurons in some other brain regions in considering the broad spectrum of responsive neurons. 相似文献
9.
The hyperpolarization-activated cation current, I(h), plays an important role in regulating intrinsic neuronal excitability in the brain. In hippocampal pyramidal neurons, I(h) is mediated by h channels comprised primarily of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel subunits, HCN1 and HCN2. Pyramidal neuron h channels within hippocampal area CA1 are remarkably enriched in distal apical dendrites, and this unique distribution pattern is critical for regulating dendritic excitability. We utilized biochemical and immunohistochemical approaches in organotypic slice cultures to explore factors that control h channel localization in dendrites. We found that distal dendritic enrichment of HCN1 is first detectable at postnatal day 13, reaching maximal enrichment by the 3rd postnatal week. Interestingly we found that an intact entorhinal cortex, which projects to distal dendrites of CA1 but not area CA3, is critical for the establishment and maintenance of distal dendritic enrichment of HCN1. Moreover blockade of excitatory neurotransmission using tetrodotoxin, 6-cyano-7-nitroquinoxaline-2,3-dione, or 2-aminophosphonovalerate redistributed HCN1 evenly throughout the dendrite without significant changes in protein expression levels. Inhibition of calcium/calmodulin-dependent protein kinase II activity, but not p38 MAPK, also redistributed HCN1 in CA1 pyramidal neurons. We conclude that activation of ionotropic glutamate receptors by excitatory temporoammonic pathway projections from the entorhinal cortex establishes and maintains the distribution pattern of HCN1 in CA1 pyramidal neuron dendrites by activating calcium/calmodulin-dependent protein kinase II-mediated downstream signals. 相似文献
10.
The activation of small-conductance calcium-activated potassium channels (SK) has a profound effect on membrane excitability. In hippocampal pyramidal neurons, SK channel activation by Ca2+ entry from a preceding burst of action potentials generates the slow afterhyperpolarization (AHP). Stimulation of a number of receptor types suppresses the slow AHP, inhibiting spike frequency adaptation and causing these neurons to fire tonically. Little is known of the gating properties of native SK channels in CNS neurons. By using excised inside-out patches, a small-amplitude channel has been resolved that was half-activated by approximately 0.6 microM Ca2+ in a voltage-independent manner. The channel possessed a slope conductance of 10 pS and exhibited nonstationary gating. These properties are in accord with those of cloned SK channels. The measured Ca2+ sensitivity of hippocampal SK channels suggests that the slow AHP is generated by activation of SK channels from a local rise of intracellular Ca2+. 相似文献
11.
成年大鼠海马CA1区锥体细胞KATP通道的特性 总被引:3,自引:0,他引:3
为了解成年大鼠海马CA1区锥体细胞KATP通道的特性,实验采用膜片钳技术的内面向外式记录法,在急性分离的CA1区锥体神经元上,研究了可被胞浆侧ATP所抑制的钾离子单通道的特性,当细胞膜内外两侧的K^ 浓度均为140mmol/L时,通道的电导为63pS,翻转电位为1.71mV,通道呈弱向内向整流性,在负钳制电位时,通道开放时常被短时的关闭所打断,而在正钳制电位时,这种短时程的关闭状态明显少于负钳制电位时,但通道开放概率未见明显的电压依赖性,ATP对通道活动的抑制作用呈浓度依赖性,抑制通道活动50%的ATP浓度为0.1mmol/L.KATP通道的特异性阻断剂tolbutamide(甲糖宁,1mmol/L)可完全阻断通道的活动,而KATP通道开放剂diazoxide(二氮嗪,1mmol/L)则不增强通道的活动。 相似文献
12.
R Dingledine 《Federation proceedings》1983,42(12):2881-2885
Recent pharmacological and biochemical evidence supports the idea that acidic amino acids act as neurotransmitters at several excitatory synapses in the hippocampus. In this paper I review work comparing certain physiological actions of N-methyl-DL-aspartate (NMA) and L-glutamate in a hippocampal slice preparation. Intracellular recordings were made from pyramidal neurons bathed in 1 microM tetrodotoxin; agonists were applied by focal ionophoresis. NMA evoked calcium spikes and produced an apparent increase in the input resistance of pyramidal cells, whereas glutamate was very weak in these respects. The depolarization and conductance change caused by NMA were voltage dependent: both could be abolished by hyperpolarizing the cell to -70 to -90 mV, but no reversal potential could be demonstrated. The results of pharmacological and ionic manipulations suggest that the primary action of NMA does not involve reduction of a conventional potassium conductance. It is suggested that N-methyl-D-aspartate (NMDA) receptor activation increases a voltage-sensitive calcium conductance leading to a transient rise in cytoplasmic calcium concentration. The significance of this event is discussed with respect to the possible synaptic functions of chemically gated, voltage-sensitive calcium channels, and in particular with respect to the possible roles that NMDA receptors might serve in the genesis of long-term potentiation of excitatory synapses in the hippocampus. 相似文献
13.
To determine the alterations in cellular function which may contribute to the chronic predisposition of neuronal tissue to epileptiform activity, the membrane properties and inhibitory processes of hippocampal CA1 pyramidal cells were investigated using in vitro slices prepared from commissural-kindled rats. No changes were observed in resting membrane potential, input resistance, spike amplitude, and membrane time constant of kindled CA1 pyramidal neurons when compared with controls. There were also no differences between control and kindled preparations in the amplitude of recurrent inhibitory postsynaptic potentials (IPSP) and in the duration of inhibition produced by either alvear (Alv) or stratum radiatum (SR) stimulation. Irrespective of group, repetitive stimulation of the Alv reduced the amplitude of the recurrent IPSP but failed to induce seizurelike activity. On the other hand, repetitive stimulation of SR frequently produced a neuronal burst discharge even though the duration and to some extent the amplitude of orthodromic inhibition was increased. On the basis of these data, it may be suggested that chronic changes in CA1 pyramidal cell membrane properties and transient reductions of inhibitory processes do not underlie the enhanced sensitivity of these neurons to seizure activity associated with kindling. 相似文献
14.
In vivo neuroprotective role of NMDA receptors against kainate-induced excitotoxicity in murine hippocampal pyramidal neurons 总被引:3,自引:0,他引:3
Activation of NMDA receptors has been shown to induce either neuronal cell death or neuroprotection against excitotoxicity in cultured cerebellar granule neurons in vitro. We have investigated the effects of pretreatment with NMDA on kainate-induced neuronal cell death in mouse hippocampus in vivo. The systemic administration of kainate (30 mg/kg), but not NMDA (100 mg/kg), induced severe damage in pyramidal neurons of the hippocampal CA1 and CA3 subfields 3-7 days later, without affecting granule neurons in the dentate gyrus. An immunohistochemical study using an anti-single-stranded DNA antibody and TdT-mediated dUTP nick end labeling analysis both revealed that kainate, but not NMDA, induced DNA fragmentation in the CA1 and CA3 pyramidal neurons 1-3 days after administration. Kainate-induced neuronal loss was completely prevented by the systemic administration of NMDA (100 mg/kg) 1 h to 1 day previously. No pyramidal neuron was seen with fragmented DNA in the hippocampus of animals injected with kainate 1 day after NMDA treatment. The neuroprotection mediated by NMDA was prevented by the non-competitive NMDA receptor antagonist MK-801. Taken together these results indicate that in vivo activation of NMDA receptors is capable of protecting against kainate-induced neuronal damage through blockade of DNA fragmentation in murine hippocampus. 相似文献
15.
The ability of synapses throughout the dendritic tree to influence neuronal output is crucial for information processing in the brain. Synaptic potentials attenuate dramatically, however, as they propagate along dendrites toward the soma. To examine whether excitatory axospinous synapses on CA1 pyramidal neurons compensate for their distance from the soma to counteract such dendritic filtering, we evaluated axospinous synapse number and receptor expression in three progressively distal regions: proximal and distal stratum radiatum (SR), and stratum lacunosum-moleculare (SLM). We found that the proportion of perforated synapses increases as a function of distance from the soma and that their AMPAR, but not NMDAR, expression is highest in distal SR and lowest in SLM. Computational models of pyramidal neurons derived from these results suggest that they arise from the compartment-specific use of conductance scaling in SR and dendritic spikes in SLM to minimize the influence of distance on synaptic efficacy. 相似文献
16.
The anticonvulsant activity of U-54494A was studied in a 4-aminopyridine (4-AP) epilepsy model using extracellular recordings in in vitro hippocampal slices. Field potentials were evoked by stimulation of Schaffer collaterals, and recorded from the CA1 region of the hippocampus after infusion of 4-AP in the absence and presence of U-54494A. The number and the total area of after discharges (AD) in the presence of 4-AP were significantly decreased by increasing concentrations of U-54494A. In contrast, U-54494A did not significantly change the latency, duration, or area of the evoked PS in this paradigm. Phenytoin, a standard anticonvulsant, decreased the PS area without affecting either the PS latency or duration, or the AD number or area in the same paradigm. These present results provide more evidence that U-54494A is a novel and effective anticonvulsant that may be useful in the treatment of paroxysmal activity, without having generalized depressive effects. 相似文献
17.
Properties of slow, cumulative sodium channel inactivation in rat hippocampal CA1 pyramidal neurons. 总被引:5,自引:0,他引:5
下载免费PDF全文

Sodium channels in the somata and dendrites of hippocampal CA1 pyramidal neurons undergo a form of long-lasting, cumulative inactivation that is involved in regulating back-propagating action potential amplitude and can influence dendritic excitation. Using cell-attached patch-pipette recordings in the somata and apical dendrites of CA1 pyramidal neurons, we determined the properties of slow inactivation on response to trains of brief depolarizations. We find that the amount of slow inactivation gradually increases as a function of distance from the soma. Slow inactivation is also frequency and voltage dependent. Higher frequency depolarizations increase both the amount of slow inactivation and its rate of recovery. Hyperpolarized resting potentials and larger command potentials accelerate recovery from slow inactivation. We compare this form of slow inactivation to that reported in other cell types, using longer depolarizations, and construct a simplified biophysical model to examine the possible gating mechanisms underlying slow inactivation. Our results suggest that sodium channels can enter slow inactivation rapidly from the open state during brief depolarizations or slowly from a fast inactivation state during longer depolarizations. Because of these properties of slow inactivation, sodium channels will modulate neuronal excitability in a way that depends in a complicated manner on the resting potential and previous history of action potential firing. 相似文献
18.
The translocation of synaptic Zn(2+) to the cytosolic compartment has been studied to understand Zn(2+) neurotoxicity in neurological diseases. However, it is unknown whether the moderate increase in Zn(2+) in the cytosolic compartment affects memory processing in the hippocampus. In the present study, the moderate increase in cytosolic Zn(2+) in the hippocampus was induced with clioquinol (CQ), a zinc ionophore. Zn(2+) delivery by Zn-CQ transiently attenuated CA1 long-term potentiation (LTP) in hippocampal slices prepared 2 h after i.p. injection of Zn-CQ into rats, when intracellular Zn(2+) levels was transiently increased in the CA1 pyramidal cell layer, followed by object recognition memory deficit. Object recognition memory was transiently impaired 30 min after injection of ZnCl(2) into the CA1, but not after injection into the dentate gyrus that did not significantly increase intracellular Zn(2+) in the granule cell layer of the dentate gyrus. Object recognition memory deficit may be linked to the preferential increase in Zn(2+) and/or the preferential vulnerability to Zn(2+) in CA1 pyramidal neurons. In the case of the cytosolic increase in endogenous Zn(2+) in the CA1 induced by 100 mM KCl, furthermore, object recognition memory was also transiently impaired, while ameliorated by co-injection of CaEDTA to block the increase in cytosolic Zn(2+). The present study indicates that the transient increase in cytosolic Zn(2+) in CA1 pyramidal neurons reversibly impairs object recognition memory. 相似文献
19.
The present study showed CCR7, CCR8, CCR9 and CCR10 in the normal Swiss mouse hippocampus at both protein and mRNA levels. CCR7, CCR9 and CCR10 were mainly localized in hippocampal principal cells and some interneurons. CCR9 was also found in the mossy fibres and/or terminals, suggesting an axonal or presynaptic localization, and CCR10 in apical dendrites of pyramidal neurons in the CA1 area. CCR8 was observed in interneurons. Double-labelling immunocytochemistry revealed that most of calbindin (CB)-, calretinin (CR)- and parvalbumin (PV)-immunopositive neurons expressed CCR7-10, except CR-immunopositive cells in which only 10 to 12% expressed CCR8. During and after pilocarpine-induced status epilepticus, progressive changes of each of CCR7, CCR8, CCR9 and CCR10 proteins occurred in different patterns at various time points. Sensitive real-time PCR showed similar change patterns at mRNA level. At the chronic stage, i.e. at 2 months after pilocarpine-induced status epilepticus, significant reduction of CCR7-10 expression in CB-, CR- and PV-immunpositive interneurons may suggest the phenotype change of surviving interneurons. Double labelling of CCR7, CCR8 and CCR9 with glial fibrillary acidic protein (GFAP) at the chronic stage may suggest an induced expression in reactive astrocytes. The present study may, therefore, for the first time, provide evidence that CCR7-10 may be involved in normal hippocampal activity. The demonstration of the progressive changes of CCR7-10 during and after status epilepticus may open a new area to reveal the mechanism of neuronal loss after status epilepticus and of epileptogenesis. 相似文献
20.
Dendrites of CA1 pyramidal cells of the hippocampus, along with those of a wide range of other cell types, support active
backpropagation of axonal action potentials. Consistent with previous work, recent experiments demonstrating that properties
of synaptic plasticity are different for distal synapses, suggest an important functional role of bAPs, which are known to
be prone to failure in distal locations. Using conductance-based models of CA1 pyramidal cells, we show that underlying “traveling
wave attractors” control action potential propagation in the apical dendrites. By computing these attractors, we dissect and
quantify the effects of IA channels and dendritic morphology on bAP amplitudes. We find that non-uniform activation properties of IA can lead to backpropagation failure similar to that observed experimentally in these cells. Amplitude of forward propagation
of dendritic spikes also depends strongly on the activation dynamics of IA. IA channel properties also influence transients at dendritic branch points and whether or not propagation failure results. The
branching pattern in the distal apical dendrites, combined with IA channel properties in this region, ensure propagation failure in the apical tuft for a large range of IA conductance densities. At the same time, these same properties ensure failure of forward propagating dendritic spikes initiated
in the distal tuft in the absence of some form of cooperativity of synaptic activation.
Electronic supplemary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Action Editor: Alain Destexhe 相似文献