首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Cutler JE  Corti M  Lambert P  Ferris M  Xin H 《PloS one》2011,6(7):e22030
Disseminated candidiasis is the third leading nosocomial blood stream infection in the United States and is often fatal. We previously showed that disseminated candidiasis was preventable in normal mice by immunization with either a glycopeptide or a peptide synthetic vaccine, both of which were Candida albicans cell wall derived. A weakness of these studies is that, unlike humans, mice do not have a C. albicans GI flora and they lack Candida serum antibodies. We examined the influence of C. albicans GI tract colonization and serum antibodies on mouse vaccination responses to the peptide, Fba, derived from fructose bisphosphate aldolase which has cytosolic and cell wall distributions in the fungus. We evaluated the effect of live C. albicans in drinking water and antimicrobial agents on establishment of Candida colonization of the mouse GI tract. Body mass, C. albicans in feces, and fungal-specific serum antibodies were monitored longitudinally. Unexpectedly, C. albicans colonization occurred in mice that received only antibiotics in their drinking water, provided that the mice were housed in the same room as intentionally colonized mice. The fungal strain in unintentionally colonized mice appeared identical to the strain used for intentional GI-tract colonization. This is the first report of horizontal transmission and spontaneous C. albicans colonization in mice. Importantly, many Candida-colonized mice developed serum fungal-specific antibodies. Despite the GI-tract colonization and presence of serum antibodies, the animals made antibodies in response to the Fba immunogen. This mouse model has potential for elucidating C. albicans horizontal transmission and for exploring factors that induce host defense against disseminated candidiasis. Furthermore, a combined protracted GI-tract colonization with Candida and the possibility of serum antibody responses to the presence of the fungus makes this an attractive mouse model for testing the efficacy of vaccines designed to prevent human disseminated candidiasis.  相似文献   

2.
Defining criteria for anti-mannan antibodies to protect against candidiasis   总被引:5,自引:0,他引:5  
Prevention of hematogenously disseminated candidiasis and mucocutaneous disease, including Candida vaginitis, through immunological approaches is appealing for the following reason. A long-acting and safe vaccine that protects against both serotypes of Candida albicans and other important species, such as C. tropicalis and C. glabrata, should significantly reduce the incidence of various forms of candidiasis by these etiologic agents. Through extensive experimentation on protective responses in experimental animals against Candida mannan components, others and we have evidence that antibodies specific for short-chain beta-linked oligomannosides are protective against candidiasis. Although the mechanism of protection against vaginal infection requires further investigation, experimentally the ability of antibody to rapidly deposit high amounts of complement factor C3 onto the yeast cell wall is requisite for enhancing resistance against disseminated candidiasis.  相似文献   

3.
We have evaluated the effect of antibodies against the Candida albicans glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a potential immunotherapeutic treatment for acute invasive candidiasis in a murine model of infection. Three different approaches were assayed: (i) active immunization of mice using recombinant His-tagged GAPDH, (ii) treatment of fungal yeast cells with anti-GAPDH antibodies prior to infection, and (iii) passive transfer of polyclonal anti-GAPDH antibodies. Results showed that all three approaches, although tending to show a slight beneficial effect in some instances, fail to have a relevant and statistically significant effect on the infection course, determined by survival curves and fungal burden in kidneys. This suggests that the cell wall-associated GAPDH of C. albicans, despite its potential role in virulence, does not appear to be a suitable target protein for the development of immunotherapeutic strategies against candidiasis, although further studies may be required to confirm this observation.  相似文献   

4.
The examination of 90 patients with superficial and visceral candidiasis, as well as Candida carriers, has revealed that the heavy contamination of the body with fungi of the genus Candida is accompanied by the specific transformation of the immune system, manifested by differences in the character of sensitization to Candida antigens: in the patients with superficial and visceral candidiasis the B-system of immunity is sensitized to a greater degree, while in the Candida carriers the sensitization of the T-system is more pronounced. Despite the fact that the immune system of patients with the disseminated form of visceral candidiasis is capable of developing the delayed hypersensitivity (DH) reaction to bacterial allergens, such patients have been shown to develop DH to Candida antigens only in rare cases. This is probably due to disturbances in their immunocompetent systems, caused, seemingly, by the secondary immune insufficiency.  相似文献   

5.
Neutrophils (PMNs) constitute the main mechanism of host defense against acute invasive and disseminated candidiasis. Recent studies have demonstrated that tumor necrosis factor-alpha (TNFalpha), interleukin-6 (IL-6) and granulocyte colony-stimulating factor (G-CSF) play an important role in the recruitment of PMNs at the site of invasive Candida infection. In the absence of either TNFalpha or IL-6, the course of experimental disseminated candidiasis is more severe, due to defective PMN recruitment. Treatment of mice with recombinant G-CSF (rG-CSF) leads to a significantly reduced mortality during disseminated candidiasis. The outgrowth of Candida albicans from the organs of rG-CSF-treated mice is significantly decreased. Treatment with the combination of rG-CSF and fluconazole has an additive effect on the reduction of fungal load in the organs. In subacute or chronic disseminated Candida infection, rG-CSF is less effective, indicating that neutrophil recruitment and activation are crucial in acute, life-threatening candidiasis, whereas other host defense mechanisms control the outcome of less overwhelming invasive Candida infection.  相似文献   

6.
TNF-alpha and lymphotoxin-alpha (LT) are members of the TNF family, and these cytokines play crucial roles in the defense against infection with Candida albicans. The aim of the present study was to investigate the role of endogenous TNF and LT during disseminated candidiasis in TNF-/-LT-/- knockout mice. The TNF- and LT-deficient animals had a significantly increased mortality following C. albicans infection compared with control mice, and this was due to a 10- to 1000-fold increased outgrowth of the yeast in their organs. No differences between TNF-/-LT-/- mice and TNF+/+LT+/+ were observed when mice were rendered neutropenic, suggesting that activation of neutrophils mediates the beneficial effects of endogenous TNF and LT. Histopathology of the organs, combined with neutrophil recruitment experiments, showed a dramatic delay in the neutrophil recruitment at the sites of Candida infection in the TNF-/-LT-/- mice. Moreover, the neutrophils of deficient animals were less potent to phagocytize Candida blastospores than control neutrophils. In contrast, the killing of Candida and the oxygen radical production did not differ between neutrophils of TNF-/-LT-/- and TNF+/+LT+/+ mice. Peak circulating IL-6 was significantly higher in TNF-/-LT-/- mice during infection. Peritoneal macrophages of TNF-/-LT-/- mice did not produce TNF, and synthesized significantly lower amounts of IL-1alpha, IL-1beta, IL-6, and macrophage-inflammatory protein-1alpha than macrophages of TNF+/+LT+/+ animals did. In conclusion, endogenous TNF and/or LT contribute to host resistance to disseminated candidiasis, and their absence in TNF-/-LT-/- mice renders the animals susceptible through impaired recruitment of neutrophils and impaired phagocytosis of C. albicans.  相似文献   

7.
Filler SG 《Cytokine》2012,58(1):129-132
Candida spp. are the most common cause of mucosal and disseminated fungal infections in humans. Studies using mutant strains of mice have provided initial information about the roles of dectin-1, CARD9, and Th17 cytokines in the host defense against candidiasis. Recent technological advances have resulted in the identification of mutations in specific genes that predispose humans to develop candidal infection. The analysis of individuals with these mutations demonstrates that dectin-1 is critical for the host defense against vulvovaginal candidiasis and candidal colonization of the gastrointestinal tract. They also indicate that CARD9 is important for preventing both mucosal and disseminated candidiasis, whereas the Th17 response is necessary for the defense against mucocutaneous candidiasis. This article reviews the recent studies of genetic defects in humans that result in an increased susceptibility to candidiasis and discusses how these studies provide new insight into the host defense against different types of candidal infections.  相似文献   

8.
We recently demonstrated that in vitro peroxisome proliferator-activated receptor-gamma (PPARgamma) activation of mouse peritoneal macrophages by IL-13 or PPARgamma ligands promotes uptake and killing of Candida albicans through mannose receptor overexpression. In this study, we demonstrate that i.p. treatment of immunocompetent and immunodeficient (RAG-2(-/-)) mice with natural and synthetic PPARgamma-specific ligands or with IL-13 decreases C. albicans colonization of the gastrointestinal (GI) tract 8 days following oral infection with the yeast. We also showed that Candida GI infection triggers macrophage recruitment in cecum mucosa. These mucosal macrophages, as well as peritoneal macrophages, overexpress the mannose receptor after IL-13 and rosiglitazone treatments. The treatments promote macrophage activation against C. albicans as suggested by the increased ability of peritoneal macrophages to phagocyte C. albicans and to produce reactive oxygen intermediates after yeast challenge. These effects on C. albicans GI infection and on macrophage activation are suppressed by treatment of mice with GW9662, a selective PPARgamma antagonist, and are reduced in PPARgamma(+/-) mice. Overall, these data demonstrate that IL-13 or PPARgamma ligands attenuate C. albicans infection of the GI tract through PPARgamma activation and hence suggest that PPARgamma ligands may be of therapeutic value in esophageal and GI candidiasis in immunocompromised patients.  相似文献   

9.
Antibody response to Candida albicans cell wall antigens   总被引:3,自引:0,他引:3  
The cell wall of Candida albicans is not only the structure where many essential biological functions reside but is also a significant source of candidal antigens. The major cell wall components that elicit a response from the host immune system are proteins and glycoproteins, the latter being predominantly mannoproteins. Both carbohydrate and protein moieties are able to trigger immune responses. Proteins and glycoproteins exposed at the most external layers of the wall structure are involved in several types of interactions of fungal cells with the exocellular environment. Thus, coating of fungal cells with host antibodies has the potential to profoundly influence the host-parasite interaction by affecting antibody-mediated functions such as opsonin-enhanced phagocytosis and blocking the binding activity of fungal adhesins to host ligands. In this review we examine various members of the protein and glycoprotein fraction of the C. albicans cell wall that elicit an antibody response in vivo. Some of the studies demonstrate that certain cell wall antigens and anti-cell wall antibodies may be the basis for developing specific and sensitive serologic tests for the diagnosis of candidiasis, particularly the disseminated form. In addition, recent studies have focused on the potential of antibodies against the cell wall protein determinants in protecting the host against infection. Hence, a better understanding of the humoral response triggered by the cell wall antigens of C. albicans may provide the basis for the development of (i) effective procedures for the serodiagnosis of disseminated candidiasis, and (ii) novel prophylactic (vaccination) and therapeutic strategies to control this type of infections.  相似文献   

10.
We have reviewed the existing data on the efficacy of anidulafungin, which is the most recent echinocandin in the experimental treatment of fungal infections. The scarce published data practically only refers to disseminated and pulmonary aspergillosis and to disseminated candidiasis. Anidulafungin shows fungistatic activity against Aspergillus fumigatus, and fungicidal activity against Candida albicans and Candida glabrata.  相似文献   

11.
Lipoteichoic acids (LTA) are amphiphilic polymers that are important constituents of the cell wall of many Gram-positive bacteria. The chemical structures of LTA vary among organisms, albeit in the majority of Gram-positive bacteria the LTAs feature a common poly-1,3-(glycerolphosphate) backbone. Previously, the specificity of opsonic antibodies for this backbone present in some Gram-positive bacteria has been demonstrated, suggesting that this minimal structure may be sufficient for vaccine development. In the present work, we studied a well-defined synthetic LTA-fragment, which is able to inhibit opsonic killing of polyclonal rabbit sera raised against native LTA from Enterococcus faecalis 12030. This promising compound was conjugated with BSA and used to raise rabbit polyclonal antibodies. Subsequently, the opsonic activity of this serum was tested in an opsonophagocytic assay and specificity was confirmed by an opsonophagocytic inhibition assay. The conjugated LTA-fragment was able to induce specific opsonic antibodies that mediate killing of the clinical strains E. faecalis 12030, Enterococcus faecium E1162, and community-acquired Staphylococcus aureus strain MW2 (USA400). Prophylactic immunization with the teichoic acid conjugate and with the rabbit serum raised against this compound was evaluated in active and passive immunization studies in mice, and in an enterococcal endocarditis rat model. In all animal models, a statistically significant reduction of colony counts was observed indicating that the novel synthetic LTA-fragment conjugate is a promising vaccine candidate for active or passive immunotherapy against E. faecalis and other Gram-positive bacteria.  相似文献   

12.
We sought to define protective mechanisms of immunity to Staphylococcus aureus and Candida albicans bloodstream infections in mice immunized with the recombinant N-terminus of Als3p (rAls3p-N) vaccine plus aluminum hydroxide (Al(OH3) adjuvant, or adjuvant controls. Deficiency of IFN-γ but not IL-17A enhanced susceptibility of control mice to both infections. However, vaccine-induced protective immunity against both infections required CD4+ T-cell-derived IFN-γ and IL-17A, and functional phagocytic effectors. Vaccination primed Th1, Th17, and Th1/17 lymphocytes, which produced pro-inflammatory cytokines that enhanced phagocytic killing of both organisms. Vaccinated, infected mice had increased IFN-γ, IL-17, and KC, increased neutrophil influx, and decreased organism burden in tissues. In summary, rAls3p-N vaccination induced a Th1/Th17 response, resulting in recruitment and activation of phagocytes at sites of infection, and more effective clearance of S. aureus and C. albicans from tissues. Thus, vaccine-mediated adaptive immunity can protect against both infections by targeting microbes for destruction by innate effectors.  相似文献   

13.
The opportunistic pathogen Candida albicans expresses on its surface Als (Agglutinin like sequence) proteins, which play an important role in the adhesion to host cells and in the development of candidiasis. The binding specificity of these proteins is broad, as they can bind to various mammalian proteins, such as extracellular matrix proteins, and N- and E-cadherins. The N-terminal part of Als proteins constitutes the substrate-specific binding domain and is responsible for attachment to epithelial and endothelial cells. We have used glycan array screening to identify possible glycan receptors for the binding domain of Als1p-N. Under those conditions, Als1p-N binds specifically to fucose-containing glycans, which adds a lectin function to the functional diversity of the Als1 protein. The binding between Als1p-N and BSA-fucose glycoconjugate was quantitatively characterized using surface plasmon resonance, which demonstrated a weak millimolar affinity between Als1p-N and fucose. Furthermore, we have also quantified the affinity of Als1p-N to the extracellular matrix proteins proteins fibronectin and laminin, which is situated in the micromolar range. Surface plasmon resonance characterization of Als1p-N-Als1p-N interaction was in the micromolar affinity range.  相似文献   

14.
Candida albicans causes diverse mucosal and systemic diseases. Although this versatility likely depends upon carefully co-ordinated gene expression, epigenetic regulation in C. albicans remains poorly characterized. Screening a genomic expression library, we identified C. albicans Set1p as an immunogenic protein with homology to a lysine histone methyltransferase of Saccharomyces cerevisiae. In this study, we demonstrated that total immunoglobulin, IgG and IgM titers against a unique Set1p N-terminal fragment were significantly higher among patients with disseminated candidiasis (DC) or oropharyngeal candidiasis than controls. Disruption of SET1 resulted in complete loss of methylation of histone 3 at lysine residue 4, hyperfilamentous growth under embedded conditions, less negative cell surface charges and diminished adherence to epithelial cells, effects that were reversed upon gene re-insertion at a disrupted locus. During murine DC, the null mutant was associated with prolonged survival and lower tissue burdens. Taken together, our findings suggest that SET1 regulates multiple processes important to the pathogenesis of candidiasis. The Set1p N-terminal fragment does not exhibit significant homology to eukaryotic or microbial proteins, and might represent a novel therapeutic, preventive or diagnostic target.  相似文献   

15.
Anti-β-glucan antibodies elicited by a laminarin-conjugate vaccine confer cross-protection to mice challenged with major fungal pathogens such as Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans. To gain insights into protective β-glucan epitope(s) and protection mechanisms, we studied two anti-β-glucan monoclonal antibodies (mAb) with identical complementarity-determining regions but different isotypes (mAb 2G8, IgG2b and mAb 1E12, IgM). C. albicans, the most relevant fungal pathogen for humans, was used as a model.Both mAbs bound to fungal cell surface and to the β1,3-β1,6 glucan of the fungal cell wall skeleton, as shown by immunofluorescence, electron-microscopy and ELISA. They were also equally unable to opsonize fungal cells in a J774 macrophage phagocytosis and killing assay. However, only the IgG2b conferred substantial protection against mucosal and systemic candidiasis in passive vaccination experiments in rodents. Competition ELISA and microarray analyses using sequence-defined glucan oligosaccharides showed that the protective IgG2b selectively bound to β1,3-linked (laminarin-like) glucose sequences whereas the non-protective IgM bound to β1,6- and β1,4-linked glucose sequences in addition to β1,3-linked ones. Only the protective IgG2b recognized heterogeneous, polydisperse high molecular weight cell wall and secretory components of the fungus, two of which were identified as the GPI-anchored cell wall proteins Als3 and Hyr1. In addition, only the IgG2b inhibited in vitro two critical virulence attributes of the fungus, hyphal growth and adherence to human epithelial cells.Our study demonstrates that the isotype of anti-β-glucan antibodies may affect details of the β-glucan epitopes recognized, and this may be associated with a differing ability to inhibit virulence attributes of the fungus and confer protection in vivo. Our data also suggest that the anti-virulence properties of the IgG2b mAb may be linked to its capacity to recognize β-glucan epitope(s) on some cell wall components that exert critical functions in fungal cell wall structure and adherence to host cells.  相似文献   

16.
Our research on pathogenesis of disseminated candidiasis led to the discovery that antibodies specific for Candida albicans cell surface β-1, 2–mannotriose [β-(Man)3] protect mice. A 14 mer peptide Fba, which derived from the N-terminal portion of the C. albicans cytosolic/cell surface protein fructose-bisphosphate aldolase, was used as the glycan carrier and resulted in a novel synthetic glycopeptide vaccine β-(Man)3-Fba. By a dendritic cell-based immunization approach, this conjugate induced protective antibody responses against both the glycan and peptide parts of the vaccine. In this report, we modified the β-(Man)3-Fba conjugate by coupling it to tetanus toxoid (TT) in order to improve immunogenicity and allow for use of an adjuvant suitable for human use. By new immunization procedures entirely compatible with human use, the modified β-(Man)3-Fba-TT was administered either alone or as a mixture made with alum or monophosphoryl lipid A (MPL) adjuvants and given to mice by a subcutaneous (s.c.) route. Mice vaccinated with or, surprisingly, without adjuvant responded well by making robust antibody responses. The immunized groups showed a high degree of protection against a lethal challenge with C. albicans as evidenced by increased survival times and reduced kidney fungal burden as compared to control groups that received only adjuvant or DPBS buffer prior to challenge. To confirm that induced antibodies were protective, sera from mice immunized against the β-(Man)3-Fba-TT conjugate transferred protection against disseminated candidiasis to naïve mice, whereas C. albicans-absorbed immune sera did not. Similar antibody responses and protection induced by the β-(Man)3-Fba-TT vaccine was observed in inbred BALB/c and outbred Swiss Webster mice. We conclude that addition of TT to the glycopeptide conjugate results in a self-adjuvanting vaccine that promotes robust antibody responses without the need for additional adjuvant, which is novel and represents a major step forward in vaccine design against disseminated candidiasis.  相似文献   

17.
Systemic candidiasis remains a major cause of disease and death, particularly among immunocompromised patients. The cell wall of Candida albicans defines the interface between host and pathogen and surface proteins are major elicitors of host immune responses during candidiasis. The C. albicans ecm33 mutant (RML2U) presents an altered cell wall, which entails an increase in the outermost protein layer. Vaccination of BALB/c mice with RML2U mutant protected them from a subsequent lethal infection with virulent strain SC5314 in a systemic candidiasis model. Using immunoproteomics (2-DE followed by Immunoblotting) we detected 29 immunoreactive proteins specifically recognized by antibodies from vaccinated mice sera, six of which are described as immunogenic for the first time (Gnd1p, Cit1p, Rpl10Ep, Yst1p, Cys4p, Efb1p). Furthermore, identification of wild type and mutant cell surface proteome (surfome), confirmed us that the mutant surfome presented a larger number of proteins than the wild type. Interestingly, proteins exclusively identified in the mutant surfome (Met6p, Eft2p, Tkl1p, Rpl10Ep, Atp1p, Atp2p) were also detected as immunogenic, supporting the idea that their surface location enhances their immunoprotective capacity.  相似文献   

18.
The incidence of life-threatening, hematogenously disseminated candidiasis, which is predominantly caused by Candida albicans, parallels the use of modern medical procedures that adversely affect the immune system. Limited antifungal drug choices and emergence of drug-resistant C. albicans strains indicate the need for novel prevention and therapeutic strategies. We are developing vaccines and Abs that enhance resistance against experimental candidiasis. However, the prevalence of serum anti-Candida Abs in candidiasis patients has led to the misconception that Abs are not protective. To explain the apparent discrepancy between such clinical observations and our work, we compared functional activities of C. albicans-specific protective and nonprotective mAbs. Both kinds of Abs are agglutinins that fix complement and are specific for cell surface mannan, but the protective Abs recognize beta-mannan, and the nonprotective Ab is specific for alpha-mannan. By several indirect and direct measures, the protective mAbs more efficiently bind complement factor C3 to the yeast cell than do nonprotective Ab. We hypothesize that the C3 deposition causes preferential association of blood-borne fungi with host phagocytic cells that are capable of killing the fungus. We conclude from these results that the protective potential of Abs is dependent on epitope specificity, serum titer, and ability to rapidly and efficiently fix complement to the fungal surface. The mechanism of protection appears to be associated with enhanced phagocytosis and killing of the fungus.  相似文献   

19.
20.
Beta-1,2-linked mannosides from Candida albicans phosphopeptidomannan (PPM) bind to macrophages through a receptor independent from the macrophage alpha-linked mannose receptor and stimulate these cells to secrete immune mediators. Anti-beta-1,2-linked mannoside but not anti-alpha-linked mannoside antibodies produced after immunization with neoglycoproteins protect animals from disseminated candidiasis. In this study, peptides that mimic beta-1,2-linked mannosides were isolated using phage display methodology. A phage library expressing random peptides was panned with an anti-beta-1,2-linked mannoside monoclonal antibody (mAb). After three rounds of biopanning, the isolated phages were able to inhibit recognition of C. albicans by the mAb. Sixty percent of the phages had an identical DNA insert corresponding to the peptide sequence FHENWPS that was recognized specifically by the mAb. Injection of KLH-coupled peptide into mice generated high titers of polyclonal antibodies against C. albicans yeast cell walls. The anti-FHENWPS antibodies bound to C. albicans PPM and were inhibited by soluble beta-1,2-mannotetraose. Together, these data provide evidence for mimotopic activity of the peptide selected by biopanning with the anti-beta-1,2-oligomannoside mAb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号