首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Establishing the ancestral area of a group of organisms is one of the central objectives of historical biogeography. I applied three methods of ancestral area analysis, Fitch optimization, weighted ancestral area analysis and dispersal-vicariance analysis (DIVA) to establish the ancestral area of the iguanian lizard genus Phymaturus . I then extended the analysis to hypothesize the ancestral area for Liolaemidae ( Ctenoblepharys , Liolaemus and Phymaturus ). The ancestral area for Phymaturus is Patagonia Central or Patagonia Central-Cordillera Andina and Valle Central. For Liolaemidae, the ancestral area is Patagonia Central-Coastal Perú, or Patagonia Central-Patagonia Occidental-Cordillera Andina and Valle Central-Coastal Perú. The ancestral area of Phymaturus is congruent with previous studies, but the inclusion of Ctenoblepharys poses some questions regarding the distribution of the ancestor of the family.  相似文献   

2.
Aims  To delimit areas of endemism in the Patagonian steppe using endemicity analysis (EA), which evaluates areas of endemism by means of an endemicity index, and to compare the resulting endemic areas with those proposed for the Patagonian steppe by previous authors.
Location  The Patagonian steppe, a region of South America found approximately below parallel 36° S to the east of the Andes Mountains.
Methods  Distributional data for 159 species of insects collected in the Patagonian steppe, and consisting of 1317 georeferenced samples were used to identify areas of endemism. A data grid of presence and absence (with cells of 1° × 1°) was constructed. Initially, two different types of EA were performed, seeking areas defined by 'four or more' species. A first analysis was performed without taking into consideration those quadrats where no species had been recorded (empty quadrats), which in many cases meant a discontinuous distribution. The second analysis was performed assuming a continuous distribution for each species. A third analysis, assuming continuous distributions, was performed using 'three or more' as the number of species necessary for an area to be identified as an endemic area.
Results  In the first two analyses, EA recognized the same five areas of endemism: western Patagonia, south-western Payunia, northern Suabandean, southern Subandean and Austral Patagonia. The results of the third analysis allowed the identification of three more areas of endemism: northern Payunia, Chubutian and Santacrucian.
Main conclusions  We identified five areas of endemism for the Patagonian steppe, some of which have been defined in previous contributions. These areas are: Western Patagonia, Payunia and Subandean Patagonia (which can be divided into septentrional and meridional), Central Patagonia (Chubutence and Santacrucense) and Austral Patagonia.  相似文献   

3.
Aim The Alstroemeriaceae is among 28 angiosperm families shared between South America, New Zealand and/or Australia; here, we examine the biogeography of Alstroemeriaceae to better understand the climatic and geological settings for its diversification in the Neotropics. We also compare Alstroemeriaceae with the four other Southern Hemisphere families that expanded from Patagonia to the equator, to infer what factors may have permitted such expansions across biomes. Location South America, Central America, Australia and New Zealand. Methods Three chloroplast genes, one mitochondrial gene and one nuclear DNA region were sequenced for 153 accessions representing 125 of the 200 species of Alstroemeriaceae from throughout the distribution range; 25 outgroup taxa were included to securely infer evolutionary directions and be able to use both ingroup and outgroup fossil constraints. A relaxed‐clock model relied on up to three fossil calibrations, and ancestral ranges were inferred using statistical dispersal–vicariance analysis (S‐DIVA). Southern Hemisphere disjunctions in the flowering plants were reviewed for key biological traits, divergence times, migration directions and habitats occupied. Results The obtained chronogram and ancestral area reconstruction imply that the most recent common ancestor of Colchicaceae and Alstroemeriaceae lived in the Late Cretaceous in southern South America/Australasia, the ancestral region of Alstroemeriaceae may have been South America/Antarctica, and a single New Zealand species is due to recent dispersal from South America. Chilean Alstroemeria diversified with the uplift of the Patagonian Andes c. 18 Ma, and a hummingbird‐pollinated clade (Bomarea) reached the northern Andes at 11–13 Ma. The South American Arid Diagonal (SAAD), a belt of arid vegetation caused by the onset of the Andean rain shadow 14–15 Ma, isolated a Brazilian clade of Alstroemeria from a basal Chilean/Argentinean grade. Main conclusions Only Alstroemeriaceae, Calceolariaceae, Cunoniaceae, Escalloniaceae and Proteaceae have expanded and diversified from Patagonia far into tropical latitudes. All migrated northwards along the Andes, but also reached south‐eastern Brazil, in most cases after the origin of the SAAD. Our results from Alstroemeria now suggest that the SAAD may have been a major ecological barrier in southern South America.  相似文献   

4.
A Polydora species was found boring in shells of the abalone Haliotis discus hannai cultivated in land-based tanks in Coquimbo, Chile. Spionid polychaetes of Polydora and related genera have been reported from Chile but no worms similar to those found in abalone have been described. The abalone pest corresponds in morphology to Polydora uncinata Sato-Okoshi, 1998, a shell-boring species which was originally described from Japan and never reported from outside the country. It is suggested that occurrence of the species in Chile resulted from its accidental transportation from Japan. Adult worms were most likely transported to Coquimbo with imported abalone brood stock. Prevalence of abalone infestation by worms in Coquimbo varied substantially among cultivation tanks, reaching values as high as 98.8%. Up to 42 worms were found in one shell. The worms often caused formation of nacreous blisters which covered up to 50% of the inner shell surface. Egg capsules with developing larvae were present in female burrows. Larval development was entirely lecithotrophic, with larvae feeding on numerous nurse eggs, staying inside egg capsules until 16–17-segment stage and hatching shortly before metamorphosis. Polydora uncinata is redescribed based on individuals from Coquimbo to alert zoologists in case of accidental release of worms into Chilean coastal waters. Regardless of how the species was transported to Chile, its release to the natural ecosystem may have negative unforeseen impacts on the native fauna.  相似文献   

5.
The homobasidiomycetes is a diverse group of macrofungi that includes mushrooms, puffballs, coral fungi, and other forms. This study used maximum likelihood methods to determine if there are general trends (evolutionary tendencies) in the evolution of fruiting body forms in homobasidiomycetes, and to estimate the ancestral forms of the homobasidiomycetes and euagarics clade. Character evolution was modeled using a published 481-species phylogeny under two character-coding regimes: additive binary coding, using DISCRETE, and multistate (five-state) coding, using MULTISTATE. Inferences regarding trends in character evolution made under binary coding were often in conflict with those made under multistate coding, suggesting that the additive binary coding approach cannot serve as a surrogate for multistate methods. MULTISTATE was used to develop a"minimal"model of fruiting body evolution, in which the 20 parameters that specify rates of transformations among character states were grouped into the fewest possible rate categories. The minimal model required only four rate categories, one of which is approaching zero, and suggests the following conclusions regarding trends in evolution of homobasidiomycete fruiting bodies: (1) there is an active trend favoring the evolution of pileate-stipitate forms (those with a cap and stalk); (2) the hypothesis that the evolution of gasteroid forms (those with internal spore production, such as puffballs) is irreversible cannot be rejected; and (3) crustlike resupinate forms are not a particularly labile morphology. The latter finding contradicts the conclusions of a previous study that used binary character coding. Ancestral state reconstructions under binary coding suggest that the ancestor of the homobasidiomycetes was resupinate and the ancestor of the euagarics clade was pileate-stipitate, but ancestral state reconstructions under multistate coding did not resolve the ancestral form of either node. The results of this study illustrate the potential sensitivity of comparative analyses to character state definitions.  相似文献   

6.
Mainland colonization by island lizards   总被引:4,自引:0,他引:4  
Aim We investigate biogeographic relationships within the lizard genus Anolis Daudin, 1802 to test the hypothesis that the mainland (Central and South American) Norops‐clade species descended from a West Indian Anolis ancestor. Previous hypotheses have suggested that close island relatives of mainland Norops species (the Cuban Anolis sagrei and Jamaican A. grahami series) represent over‐water dispersal from a mainland ancestor. These previous hypotheses predict that the A. sagrei and A. grahami series should be phylogenetically nested within a Norops clade whose ancestral geography traces to the mainland. If Norops is West Indian in origin, then West Indian species should span the deepest phylogenetic divergences within the Norops clade. Location Central and South America and West Indian islands. Methods The phylogenetic relationships of Anolis lizards are reconstructed from aligned DNA sequences using both parsimony and Bayesian approaches. Hypotheses are tested in two ways: (1) by reconstructing the ancestral geographic location for the Norops clade using Pagel & Lutzoni's (2002) Bayesian approach, and (2) by testing alternative topological arrangements via Wilcoxon Signed‐Ranks tests ( Templeton, 1983 ) and Shimodaira–Hasegawa tests ( Shimodaira & Hasegawa, 1999 ). Results Our evidence supports an origin of mainland Norops anoles from a West Indian ancestor. A West Indian ancestor to the Norops clade is statistically supported, and alternatives to the biogeographic pattern [Cuban (Jamaican, Mainland)] are statistically rejected by Shimodaira–Hasegawa tests, although not by Wilcoxon Signed‐Ranks tests. Main conclusions Our data support the hypothesis of a West Indian origin for mainland Norops. This result contradicts previous hypotheses and suggests that island forms may be an important source for mainland biodiversity.  相似文献   

7.
Aim We used mitochondrial DNA sequence data to reconstruct the phylogeny of a large clade of tanagers (Aves: Thraupini). We used the phylogeny of this Neotropical bird group to identify areas of vicariance, reconstruct ancestral zoogeographical areas and elevational distributions, and to investigate the correspondence of geological events to speciation events. Location The species investigated are found in 18 of the 22 zoogeographical regions of South America, Central America and the Caribbean islands; therefore, we were able to use the phylogeny to address the biogeographical history of the entire region. Methods Molecular sequence data were gathered from two mitochondrial markers (cytochrome b and ND2) and analysed using Bayesian and maximum‐likelihood approaches. Dispersal–vicariance analysis (DIVA) was used to reconstruct zoogeographical areas and elevational distributions. A Bayesian framework was also used to address changes in elevation during the evolutionary history of the group. Results Our phylogeny was similar to previous tanager phylogenies constructed using fewer species; however, we identified three genera that are not monophyletic and uncovered high levels of sequence divergence within some species. DIVA identified early diverging nodes as having a Northern Andean distribution, and the most recent common ancestor of the species included in this study occurred at high elevations. Most speciation events occurred either within highland areas or within lowland areas, with few exchanges occurring between the highlands and lowlands. The Northern Andes has been a source for lineages in other regions, with more dispersals out of this area relative to dispersals into this area. Most of the dispersals out of the Northern Andes were dispersals into the Central Andes; however, a few key dispersal events were identified out of the Andes and into other zoogeographical regions. Main conclusions The timing of diversification of these tanagers correlates well with the main uplift of the Northern Andes, with the highest rate of speciation occurring during this timeframe. Central American tanagers included in this study originated from South American lineages, and the timing of their dispersal into Central America coincides with or post‐dates the completion of the Panamanian isthmus.  相似文献   

8.
Darters (Percidae: Etheostomatinae), a species‐rich group of North American freshwater fishes, vary in the presence of a premaxillary fraenum, a strip of skin that connects the premaxillary bones to the snout, and it is hypothesized that this trait is a trophic adaptation to particular substrata. Ancestral state reconstructions and analyses of phylogenetic associations between presence of the premaxillary fraenum and preferred stream substratum were conducted in a clade of closely related darters (snubnose darters and allies) that vary in morphology and habitat preferences. The most recent common ancestor of this clade was inferred to possess a fraenum and to inhabit rocky substrata, consistent with previous hypotheses, but a significant correlation between fraenum presence and substratum type across the phylogeny was not found.  相似文献   

9.
Gymnocarpos has only about ten species distributed in the arid regions of Asia and Africa, but it exhibits a geographical disjunction between eastern Central Asia and western North Africa and Minor Asia. We sampled eight species of the genus and sequenced two chloroplast regions (rps16 and psbB–psbH), and the nuclear rDNA (ITS) to study the phylogeny and biogeography. The results of the phylogenetic analyses corroborated that Gymnocarpos is monophyletic, in the phylogenetic tree two well supported clades are recognized: clade 1 includes Gymnocarpos sclerocephalus and G. decandrus, mainly the North African group, whereas clade 2 comprises the remaining species, mainly in the Southern Arabian Peninsula. Molecular dating analysis revealed that the divergence age of Gymnocarpos was c. 31.33 Mya near the Eocene and Oligocene transition boundary, the initial diversification within Gymnocarpos dated to c. 6.69 Mya in the late Miocene, and the intraspecific diversification mostly occurred during the Quaternary climate oscillations. Ancestral area reconstruction suggested that the Southern Arabian Peninsula was the ancestral area for Gymnocarpos. Our conclusions revealed that the aridification since mid‐late Miocene significantly affected the diversification of the genus in these areas.  相似文献   

10.
Nucleotide sequences were determined for the complete S genome segments of the six distinct hantavirus genotypes from Argentina and for two cell culture-isolated Andes virus strains from Chile. Phylogenetic analysis indicates that, although divergent from each other, all Argentinian hantavirus genotypes group together and form a novel phylogenetic clade with the Andes virus. The previously characterized South American hantaviruses Laguna Negra virus and Rio Mamore virus make up another clade that originates from the same ancestral node as the Argentinian/Chilean viruses. Within the clade of Argentinian/Chilean viruses, three subclades can be defined, although the branching order is somewhat obscure. These are made of (i) "Lechiguanas-like" virus genotypes, (ii) Maciel virus and Pergamino virus genotypes, and (iii) strains of the Andes virus. Two hantavirus genotypes from Brazil, Araraquara and Castello dos Sonhos, were found to group with Maciel virus and Andes virus, respectively. The nucleocapsid protein amino acid sequence variability among the members of the Argentinian/Chilean clade does not exceed 5.8%. It is especially low (3.5%) among oryzomyine species-associated virus genotypes, suggesting recent divergence from the common ancestor. Interestingly, the Maciel and Pergamino viruses fit well with the rest of the clade although their hosts are akodontine rodents. Taken together, these data suggest that under conditions in which potential hosts display a high level of genetic diversity and are sympatric, host switching may play a prominent role in establishing hantavirus genetic diversity. However, cospeciation still remains the dominant factor in the evolution of hantaviruses.  相似文献   

11.
We propose a simple statistical approach for using Dispersal-Vicariance Analysis (DIVA) software to infer biogeographic histories without fully bifurcating trees. In this approach, ancestral ranges are first optimized for a sample of Bayesian trees. The probability P of an ancestral range r at a node is then calculated as P(rY) = ∑t^n=1 F(rY)t Pt where Y is a node, and F(rY) is the frequency of range r among all the optimal solutions resulting from DIVA optimization at node Y, t is one of n topologies optimized, and Pt is the probability of topology t. Node Y is a hypothesized ancestor shared by a specific crown lineage and the sister of that lineage "x", where x may vary due to phylogenetic uncertainty (polytomies and nodes with posterior probability 〈 100%). Using this method, the ancestral distribution at Y can be estimated to provide inference of the geographic origins of the specific crown group of interest. This approach takes into account phylogenetic uncertainty as well as uncertainty from DIVA optimization. It is an extension of the previously described method called Bayes-DIVA, which pairs Bayesian phylogenetic analysis with biogeographic analysis using DIVA. Further, we show that the probability P of an ancestral range at Y calculated using this method does not equate to pp*F(rY) on the Bayesian consensus tree when both variables are 〈 100%, where pp is the posterior probability and F(rY) is the frequency of range r for the node containing the specific crown group. We tested our DIVA-Bayes approach using Aesculus L., which has major lineages unresolved as a polytomy. We inferred the most probable geographic origins of the five traditional sections of Aesculus and ofAesculus californica Nutt. and examined range subdivisions at parental nodes of these lineages. Additionally, we used the DIVA-Bayes data from Aesculus to quantify the effects on biogeographic inference of including two wildcard fossil taxa in phylogenetic analysis. Our analysis resolved the geographic  相似文献   

12.
Phylogenetic approaches to inferring ancestral character states are becoming increasingly sophisticated; however, the potential remains for available methods to yield strongly supported but inaccurate ancestral state estimates. The consistency of ancestral states inferred for two or more characters affords a useful criterion for evaluating ancestral trait reconstructions. Ancestral state estimates for multiple characters that entail plausible phenotypes when considered together may reasonably be assumed to be reliable. However, the accuracy of inferred ancestral states for one or more characters may be questionable where combined reconstructions imply implausible phenotypes for a proportion of internal nodes. This criterion for assessing reconstructed ancestral states is applied here in evaluating inferences of ancestral limb morphology in the scincid lizard clade Lerista. Ancestral numbers of digits for the manus and pes inferred assuming the models that best fit the data entail ancestral digit configurations for many nodes that differ fundamentally from configurations observed among known species. However, when an alternative model is assumed for the pes, inferred ancestral digit configurations are invariably represented among observed phenotypes. This indicates that a suboptimal model for the pes (and not the model providing the best fit to the data) yields accurate ancestral state estimates.  相似文献   

13.
Previous studies of phylogenetic relationships among cypresses have recovered separate Old and New World lineages, resolved a Southeast Asian species sister to the New World clade, and split the New World group into two principal lineages (i.e., the Macrocarpa and Arizonica clades) having fundamentally different geographic distributions. Collectively, these observations suggested a number of intriguing hypotheses regarding the origin and biogeographic history of the New World cypresses (NWC). In this study, we use DNA sequence data to examine the historical biogeography of NWC. Divergence times are estimated in BEAST using fossil-calibrated minimum age constraints, and a spatial history of the group reconstructed using Statistical Dispersal-Vicariance Analysis. Results presented here suggest ancestral NWC colonized the New World from Asia, perhaps by a more widespread trans-Beringian ancestor, in the late Cretaceous or early Cenozoic. Strong positive correlations between species age and geographic location (i.e., latitude and longitude) suggest current distributions were influenced by directional migration (northwest to southeast) as climates cooled and became increasingly arid in the latter half of the Cenozoic. Although our data support a middle Eocene (45 Mya) origin for NWC, nearly all species are apparently no more than late Miocene (6 Mya) in age, and net diversification rates in the group are among the highest reported to date for gymnosperms. Key coastal to interior migrations underlie the fundamentally different biogeographies of the Macrocarpa and Arizonica clades, with the Transverse Ranges of southern California being a barrier to north–south migration of certain species from these two lineages.  相似文献   

14.

Background  

Phylogenetic analyses of the Annonaceae consistently identify four clades: a basal clade consisting of Anaxagorea, and a small 'ambavioid' clade that is sister to two main clades, the 'long branch clade' (LBC) and 'short branch clade' (SBC). Divergence times in the family have previously been estimated using non-parametric rate smoothing (NPRS) and penalized likelihood (PL). Here we use an uncorrelated lognormal (UCLD) relaxed molecular clock in BEAST to estimate diversification times of the main clades within the family with a focus on the Asian genus Pseuduvaria within the SBC. Two fossil calibration points are applied, including the first use of the recently discovered Annonaceae fossil Futabanthus. The taxonomy and morphology of Pseuduvaria have been well documented, although no previous dating or biogeographical studies have been undertaken. Ancestral areas at internal nodes within Pseuduvaria are determined using dispersal-vicariance analysis (DIVA) and weighted ancestral area analysis (WAAA).  相似文献   

15.
The weevil subtribe Listroderina belongs in the tribe Rhytirrhinini (subfamily Cyclominae), and has 25 genera and 300 species in the Americas. The distributional history of this subtribe was reconstructed applying dispersal-vicariance analysis (DIVA) using its genera as terminals. The results suggest that Listroderina originated within an area presently represented by the Central Chile, Paramo, Puna, Patagonia and Subantarctic subregions of the Andean region. Posteriorly, the subtribe was affected by extinctions and was confined to Central Chile, Paramo and Subantarctic subregions. Later, extinctions and dispersals took place and the subtribe was restricted to the Paramo and Puna subregions. From there, a dispersal event to the Subantarctic subregion occurred, enlarging again the geographical range of the subtribe. Subsequently, a vicariant event separated the Puna and Paramo subregions from the Subantarctic one. While the Macrostyphlus generic group was confined to the Paramo and Puna subregions and from there dispersed to other areas, the Antarctobius , Falklandius , Listronotus , and Listroderes generic groups diversified in the Subantarctic subregion. The results obtained by DIVA may be linked to major geological events of South America. Thus, the geobiotic scenarios recorded in this subcontinent since the late Cretaceous could be used to interpret the biogeographical events which drove Listroderina evolution.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 339–352.  相似文献   

16.
In the Southern and Southeastern Brazilian highlands, a clade of seven species of Petunia that are endemic to the region (P. altiplana, P. bonjardinensis, P. guarapuavensis, P. mantiqueirensis, P. reitzii, P. saxicola and P. scheideana) exists in association with grassland formations. These formations are isolated in high-altitude regions, being surrounded by forested areas, and experienced contraction-expansion cycles associated with the glacial cycles of the Pleistocene. To understand the evolutionary history of this group, the divergence of which is probably linked to these past shifts in habitat, we analysed the sequences of the plastidial intergenic spacers trnH-psbA and trnS-trnG from populations throughout the known distributions of all seven species. The common ancestor of this highland clade started to differentiate ~0.9 million years (Myr) ago, which corresponds to a high diversification rate of 2.06 species per Myr in the intervening period. The high level of haplotype sharing among several species in the clade and the absence of reciprocal monophyly suggest the persistence of ancestral polymorphisms during speciation events and/or past hybridization, because no hybrid was found. Four of the five species displayed very low genetic diversity and possessed either one or two haplotypes, which is consistent with long-term isolation in restricted areas. The three more diverse species displayed significant population structure, and P. altiplana showed a clear signs of population growth during the last glacial period. These results suggest that diversification occurred as a result of expansion of the ancestral species of the clade during glacial periods followed by fragmentation and isolation during retraction in interglacial periods.  相似文献   

17.
Based on the 1958 Vema cruise and the 1965 Anton Bruun cruise 11 off the west coast of Central America and south through the islands east of the tip of South America, 143 trawl samples were examined for abyssal polychaetous annelida. The cruise tracks designated 7 major areas: Central America (1), Ecuador-Peru (II), Central and Southern Chile (III), Chile and the Magellan Strait (IV), Tierra del Fuego (V), the Island Complex (Falkland, South Georgia and South Sandwich Islands) (VI), the Drake Strait and Antarctic Peninsula (VII). The collections yielded 7,015 individuals and 322 species from 52 families. The relatively small number of species was attributed mainly to sampling effort, collecting gear and processing techniques. Each major area was characterized in terms of the number of individuals, the number of species, mean number of individuals, mean number of species and mean H′, SR, J′ and DI. Species diversity was significantly higher in Central America (I) than in the other areas. The relationships between biotic and abiotic measures (depth and areas of upwelling) were examined. There were no significant associations for the entire data base with depth. Moreover, there was no association between abundance of polychaetes and areas of upwelling which was hypothesized. In fact, relative abundance was highest in the deepest portions of Central America (I) (Guatemala Basin) and Ecuador—Peru (II) (Milne—Edwards Deep) compared to shallower areas closer to areas of upwelling. Quantitative collecting gear and refined processing techniques will be required to more accurately address these relationships. Dominant families were identified in terms of number of species and number of individuals. These families conformed well with world wide generalizations of dominant families. Dominant species were identified based on the Biological Index Value. The top twenty or dominant species for each major area were identified. A number of these dominant species occurred widely throughout the major areas. The dominant species for the entire data set were determined. In general these species were very eurybathic which was consistent with other worldwide depth distributions of abyssal polychaetes. Based on biotic measures (mean number of species, mean H', SR, J′ and DI) and the Simpson and Dice similarity co-efficients, several zoogeographic patterns emerged. The polychaete fauna from Central America (I) to southern Chile (II) formed a relatively homogeneous group. Polychaetes from Central America (I) had affinities with faunas studied off western Mexiko. The Chile and Magellan Strait (IV) area seemed to be a transition area which yielded to another relatively homogeneous fauna comprising areas V—VII. The latter fauna belonged to an Antarctic polychaete fauna which was documented earlier in other studies with a larger data base and more sophisticated analysis. It is hoped that the present study will help to provide a start to fill the zoogeographic gap of this enormous and bathymetrically diverse area.  相似文献   

18.
The distribution of the genus Barbadocladius Cranston & Krosch (Diptera: Chironomidae), previously reported from Chile to Bolivia, has extended northwards. Larvae, pupae and pupal exuviae of this genus have been found in the high mountain tropical streams of Peru to 9°22′56″, but are restricted to very high altitude streams (altitudes over 3,278 m asl) compared to the lower altitude streams (below 1,100 m asl) in which the genus is reported in Chile and Argentina. Based on morphological studies, both described species in the genus, Barbadocladius andinus Cranston & Krosch and Barbadocladius limay Cranston & Krosch, have been found in Peru as pupae or pupal exuviae. Morphological analysis of the larvae and pupae revealed no differences between the two described species from Patagonia and Peru, which are of similar size and with a similar armament of hooklets and spines in pupal tergites and sternites. However, molecular analysis of larvae and pupae revealed that in Peru, there are at least two different evolutionary lines, one distributed widely and another restricted to one site. Phylogenetic analysis (using cox1 mitochondrial sequences) of all available sequences of Barbadocladius shows that the Chilean and Argentinean material differs from that of Peru. Therefore, a total of four molecular segregates are identified, although morphologically, neither larvae nor the pupae may be differentiated.  相似文献   

19.
We investigate the phylogeny, biogeography, time of origin and diversification, ancestral area reconstruction and large‐scale distributional patterns of an ancient group of arachnids, the harvestman suborder Cyphophthalmi. Analysis of molecular and morphological data allow us to propose a new classification system for the group; Pettalidae constitutes the infraorder Scopulophthalmi new clade , sister group to all other families, which are divided into the infraorders Sternophthalmi new clade and Boreophthalmi new clade . Sternophthalmi includes the families Troglosironidae, Ogoveidae, and Neogoveidae; Boreophthalmi includes Stylocellidae and Sironidae, the latter family of questionable monophyly. The internal resolution of each family is discussed and traced back to its geological time origin, as well as to its original landmass, using methods for estimating divergence times and ancestral area reconstruction. The origin of Cyphophthalmi can be traced back to the Carboniferous, whereas the diversification time of most families ranges between the Carboniferous and the Jurassic, with the exception of Troglosironidae, whose current diversity originates in the Cretaceous/Tertiary. Ancestral area reconstruction is ambiguous in most cases. Sternophthalmi is traced back to an ancestral land mass that contained New Caledonia and West Africa in the Permian, whereas the ancestral landmass for Neogoveidae included the south‐eastern USA and West Africa, dating back to the Triassic. For Pettalidae, most results include South Africa, or a combination of South Africa with the Australian plate of New Zealand or Sri Lanka, as the most likely ancestral landmass, back in the Jurassic. Stylocellidae is reconstructed to the Thai‐Malay Penisula during the Jurassic. Combination of the molecular and morphological data results in a hypothesis for all the cyphophthalmid genera, although the limited data available for some taxa represented only in the morphological partition negatively affects the phylogenetic reconstruction by decreasing nodal support in most clades. However, it resolves the position of many monotypic genera not available for molecular analysis, such as Iberosiro, Odontosiro, Speleosiro, Managotria or Marwe, although it does not place Shearogovea or Ankaratra within any existing family. The biogeographical data show a strong correlation between relatedness and formerly adjacent landmasses, and oceanic dispersal does not need to be postulated to explain disjunct distributions, especially when considering the time of divergence. The data also allow testing of the hypotheses of the supposed total submersion of New Zealand and New Caledonia, clearly falsifying submersion of the former, although the data cannot reject the latter. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 92–130.  相似文献   

20.
Palaeobiogeographic reconstructions are underpinned by phylogenies, divergence times and ancestral area reconstructions, which together yield ancestral area chronograms that provide a basis for proposing and testing hypotheses of dispersal and vicariance. Methods for area coding include multi-state coding with a single character, binary coding with multiple characters and string coding. Ancestral reconstruction methods are divided into parsimony versus Bayesian/likelihood approaches. We compared nine methods for reconstructing ancestral areas for placental mammals. Ambiguous reconstructions were a problem for all methods. Important differences resulted from coding areas based on the geographical ranges of extant species versus the geographical provenance of the oldest fossil for each lineage. Africa and South America were reconstructed as the ancestral areas for Afrotheria and Xenarthra, respectively. Most methods reconstructed Eurasia as the ancestral area for Boreoeutheria, Euarchontoglires and Laurasiatheria. The coincidence of molecular dates for the separation of Afrotheria and Xenarthra at approximately 100 Ma with the plate tectonic sundering of Africa and South America hints at the importance of vicariance in the early history of Placentalia. Dispersal has also been important including the origins of Madagascar's endemic mammal fauna. Further studies will benefit from increased taxon sampling and the application of new ancestral area reconstruction methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号