首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Molecular membrane biology》2013,30(7-8):487-494
Abstract

We have shown previously that in T cells, LAT co-immunoprecipitates with the active but not the inactive-‘closed’ form of Lck, and that this interaction impacts negatively on Lck activity. Here we confirm that activation of T cells induced a transient LAT/Lck association within 4 min after stimulation, returning to basal levels by 30 min. Interestingly, autoimmune T cells isolated from patients with systemic lupus erythematosus, which contain a larger pool of active Lck and LAT, exhibited increased LAT/Lck association compared to healthy controls. To identify the domain of LAT responsible for its interaction with active Lck, a series of LAT truncation mutants were constructed and tested in co-immunoprecipitation experiments. We found that the segment comprising residues 112–126 of human LAT is required for its interaction with Lck. This domain is rich in negatively charged amino acids and is conserved among different species. Therefore, in addition to the conserved tyrosines, the 112–126 domain identified here could be important for certain functions of LAT in T cells.  相似文献   

2.
Lck is a member of the Src family of protein-tyrosine kinases and is essential for T cell development and function. Lck is localized to the inner surface of the plasma membrane and partitions into lipid rafts via dual acylation on its N terminus. We have tested the role of Lck binding domains in regulating Lck localization to lipid rafts. A form of Lck containing a point mutation inactivating the SH3 domain (W97ALck) was preferentially localized to lipid rafts compared with wild type or SH2 domain-inactive (R154K) Lck when expressed in Lck-deficient J.CaM1 cells. W97ALck incorporated more of the radioiodinated version of palmitic acid, 16-[(125)I]iodohexadecanoic acid. Overexpression of c-Cbl, a ligand of the Lck SH3 domain, depleted Lck from lipid rafts in Jurkat cells. Additionally, Lck localization to lipid rafts was enhanced in c-Cbl-deficient T cells. The association of Lck with c-Cbl in vivo required a functional SH3 domain. These results suggest a model whereby the SH3 domain negatively regulates basal localization of Lck to lipid rafts via association with c-Cbl.  相似文献   

3.
Dong S  Corre B  Nika K  Pellegrini S  Michel F 《PloS one》2010,5(11):e15114

Background

One of the earliest activation events following stimulation of the T cell receptor (TCR) is the phosphorylation of the immunoreceptor tyrosine-based activation motifs (ITAMs) within the CD3-associated complex by the Src family kinase Lck. There is accumulating evidence that a large pool of Lck is constitutively active in T cells but how the TCR is connected to Lck and to the downstream signaling cascade remains elusive.

Methodology/Principal Findings

We have analyzed the phosphorylation state of Lck and Fyn and TCR signaling in human naïve CD4+ T cells and in the transformed T cell line, Hut-78. The latter has been shown to be similar to primary T cells in TCR-inducible phosphorylations and can be highly knocked down by RNA interference. In both T cell types, basal phosphorylation of Lck and Fyn on their activatory tyrosine was observed, although this was much less pronounced in Hut-78 cells. TCR stimulation led to the co-precipitation of Lck with the transmembrane adaptor protein LAT (linker for activation of T cells), Erk-mediated phosphorylation of Lck and no detectable dephosphorylation of Lck inhibitory tyrosine. Strikingly, upon LAT knockdown in Hut-78 cells, we found that LAT promoted TCR-induced phosphorylation of Lck and Fyn activatory tyrosines, TCRζ chain phosphorylation and Zap-70 activation. Notably, LAT regulated these events at low strength of TCR engagement.

Conclusions/Significance

Our results indicate for the first time that LAT promotes TCR signal initiation and suggest that this adaptor may contribute to maintain active Lck in proximity of their substrates.  相似文献   

4.
The Src-related tyrosine kinase p56(lck) (Lck) is primarily expressed in T lymphocytes where it localizes to the cytosolic side of the plasma membrane and associates with the T cell coreceptors CD4 and CD8. As a model for acylated proteins, we studied how this localization of Lck is achieved. We followed newly synthesized Lck by pulse-chase analysis and found that membrane association of Lck starts soon after synthesis, but is not complete until at least 30-45 min later. Membrane-binding kinetics are similar in CD4/CD8-positive and CD4/CD8-negative cells. In CD4-positive T cells, the interaction with CD4 rapidly follows membrane association of Lck. Studying the route via which Lck travels from its site of synthesis to the plasma membrane, we found that: CD4 associates with Lck within 10 min of synthesis, long before CD4 has reached the plasma membrane; Lck associates with intracellular CD4 early after synthesis and with cell surface CD4 at later times; and transport of CD4-bound Lck to the plasma membrane is inhibited by Brefeldin A. These data indicate that the initial association of newly synthesized Lck with CD4, and therefore with membranes, occurs on intracellular membranes of the exocytic pathway. From this location Lck is transported to the plasma membrane.  相似文献   

5.
The Ixodes scapularis salivary protein Salp15 inhibits the activation of T cells through its interaction with the coreceptor CD4. Salp15 prevents the activation of Lck upon TCR engagement and the formation of lipid rafts. We have now analyzed the signaling pathways that are inhibited by the tick salivary protein in CD4(+) T cells. Salp15 affects tyrosine phosphorylation of several early signal components downstream of Lck, including LAT and Vav1, which results in improper actin polymerization. The effect of Salp15 is due to its interaction with CD4, as no effect was observed in CD4-negative T cells. Finally, we demonstrate that the peptide that mediates the interaction of Salp15 with CD4, P11, is able to recapitulate the immunosuppressive activity of the whole protein. These results clarify the molecular mechanisms of action of Salp15 on T cells and suggest that binding to CD4 is sufficient to elicit its immunosuppressive effect.  相似文献   

6.
The function of the second protein tyrosine phosphatase domain (D2) in two-domain protein tyrosine phosphatases (PTP) is not well understood. In CD45, D2 can interact with the catalytic domain (D1) and stabilize its activity. Although D2 itself has no detectable catalytic activity, it can bind substrate and may influence the substrate specificity of CD45. To further explore the function of D2 in T cells, a full-length construct of CD45 lacking the D1 catalytic domain (CD45RABC-D2) was expressed in CD45+ and CD45- Jurkat T cells. In CD45- Jurkat T cells, CD45RABC-D2 associated with Lck but, unlike its active counterpart CD45RABC, did not restore the induction of tyrosine phosphorylation or CD69 expression upon T cell receptor (TCR) stimulation. Expression of CD45RABC-D2 in CD45+ Jurkat T cells resulted in its association with Lck, increased the phosphorylation state of Lck, and reduced T cell activation. TCR-induced tyrosine phosphorylation was delayed, and although MAPK phosphorylation and CD69 expression were not significantly affected, the calcium signal and IL2 production were severely reduced. This indicates that the non-catalytic domains of CD45 can interact with Lck in T cells. CD45RABC-D2 acts as a dominant negative resulting in an increase in Lck phosphorylation and a preferential loss of the calcium signaling pathway, but not the MAPK pathway, upon TCR signaling. This finding suggests that, in addition to their established roles in the initiation of TCR signaling, CD45 and Lck may also influence the type of TCR signal generated.  相似文献   

7.
The protein tyrosine kinase c-Src is negatively regulated by phosphorylation of Tyr527 in its C-terminal tail. The repressed state is achieved through intramolecular interactions involving the phosphorylated tail, the Src homology 2 (SH2) domain and the SH3 domain. Both the SH2 and SH3 domains have also been shown to mediate the intermolecular interaction of Src with several proteins. To test which amino acids of the Src SH3 domain are important for these interactions, and whether the intra- and intermolecular associations involve the same residues, we carried out a detailed mutational analysis of the presumptive interaction surface. All mutations of conserved hydrophobic residues had an effect on both inter- and intramolecular interactions of the Src SH3 domain, although not all amino acids were equally important. Chimeric molecules in which the Src SH3 domain was replaced with those of spectrin or Lck showed derepressed kinase activity, whereas a chimera containing the Fyn SH3 domain was fully regulated. Since spectrin and Lck SH3 domains share the conserved hydrophobic residues characteristic of SH3 domains, other amino acids must be important for specificity. Mutational analysis of non- or semi-conserved residues in the RT and n-Src loops showed that some of these were also involved in inter- and intramolecular interactions. Stable transfection of selected SH3 domain mutants into NIH-3T3 cells showed that despite elevated levels of phosphotyrosine, the cells were morphologically normal, indicating that the SH3 domain was required for efficient transformation of NIH-3T3 cells by Src.  相似文献   

8.
T cell-specific adapter protein (TSAd), encoded by the SH2D2A gene, interacts with Lck through its C terminus and thus modulates Lck activity. Here we mapped Lck phosphorylation and interaction sites on TSAd and evaluated their functional importance. The three C-terminal TSAd tyrosines Tyr(280), Tyr(290), and Tyr(305) were phosphorylated by Lck and functioned as docking sites for the Lck Src homology 2 (SH2) domain. Binding affinities of the TSAd Tyr(P)(280) and Tyr(P)(290) phosphopeptides to the isolated Lck SH2 domain were similar to that observed for the Lck Tyr(P)(505) phosphopeptide, whereas the TSAd Tyr(P)(305) peptide displayed a 10-fold higher affinity. The proline-rich Lck SH3-binding site on TSAd as well as the Lck SH2 domain were required for efficient tyrosine phosphorylation of TSAd by Lck. Interaction sites on TSAd for both Lck SH2 and Lck SH3 were necessary for TSAd-mediated modulation of proximal TCR signaling events. We found that 20-30% of TSAd molecules are phosphorylated in activated T cells and that the proportion of TSAd to Lck molecules in such cells is approximately 1:1. Therefore, in activated T cells, a considerable number of Lck molecules may potentially be engaged by TSAd. In conclusion, Lck binds to TSAd prolines and phosphorylates and interacts with the three C-terminal TSAd tyrosines. We propose that through multivalent interactions with Lck, TSAd diverts Lck from phosphorylating other substrates, thus modulating its functional activity through substrate competition.  相似文献   

9.
CD45 is a transmembrane, two-domain protein-tyrosine phosphatase expressed exclusively in nucleated hematopoietic cells. The Src family kinase, Lck, is a major CD45 substrate in T cells and CD45 dephosphorylation of Lck is important for both T cell development and activation. However, how the substrate specificity of phosphatases such as CD45 is achieved is not well understood. Analysis of the interaction between the cytoplasmic domain of CD45 and its substrate, Lck, revealed that the active, membrane-proximal phosphatase domain of CD45 (CD45-D1) bound to the phosphorylated Lck kinase domain, the SH2 domain, and the unique N-terminal region of Lck. The second, inactive phosphatase domain (CD45-D2) bound only to the kinase domain of Lck. CD45-D2 was unable to bind phosphotyrosine, and its interaction with the kinase domain of Lck was independent of tyrosine phosphorylation. The binding of CD45-D2 was localized to subdomain X (SD10) of Lck. CD45-D2 bound similarly to Src family kinases but bound Csk to a lesser extent and did not bind significantly to the less related kinase, Erk1. CD45 dephosphorylated Lck and Src at similar rates but dephosphorylated Csk and Erk1 at lower rates. Replacement of Erk1 SD10 with that of Lck resulted in the binding of CD45-D2 and the conversion of Erk1 to a more efficient CD45 substrate. This demonstrates a role for CD45-D2 in binding substrate and identifies the SD10 region in Lck as a novel site involved in substrate recognition.  相似文献   

10.
The Lck tyrosine kinase molecule plays an essential role in T cell activation and T cell development. Using the expression cloning technique, we have isolated a gene that encodes a molecule, LckBP1, able to associate with murine Lck. Analysis of full-length LckBP1 cDNA indicates at least four potentially important segments: a four tandem 37 amino acid repeat motif with a potential helix-turn-helix DNA binding motif; a proline-rich region; a proline-glutamate repeat; and an SH3 domain. These four regions are very similar to the human haematopoietic-specific protein 1 (HS1). Deletion mutant analysis of LckBP1 revealed two proline-rich regions that permit association with Lck SH3. One region contains prolines conserved among HS1 and cortactin, and the other region contains a potential MAP kinase recognition site. In vivo association between Lck and LckBP1 was confirmed by immunoprecipitation of lysates from a pre-T cell line and adult thymocytes using antibodies specific for Lck and LckBP1. LckBP1 is tyrosine phosphorylated after T-cell receptor stimulation. The SH3 domain and the potential helix-turn-helix motif in LckBP1 suggest that this molecule may associate with various molecules and function as a DNA binding molecule. The data also suggest that LckBP1 mediates intracellular signalling through Lck in T cells.  相似文献   

11.
12.
Itk, a Tec family tyrosine kinase, acts downstream of Lck and phosphatidylinositol 3'-kinase to facilitate T cell receptor (TCR)-dependent calcium influxes and increases in extracellular-regulated kinase activity. Here we demonstrate interactions between Itk and crucial components of TCR-dependent signaling pathways. First, the inositide-binding pocket of the Itk pleckstrin homology domain directs the constitutive association of Itk with buoyant membranes that are the primary site of TCR activation and are enriched in both Lck and LAT. This association is required for the transphosphorylation of Itk. Second, the Itk proline-rich region binds to Grb2 and LAT. Third, the Itk Src homology (SH3) 3 and SH2 domains interact cooperatively with Syk-phosphorylated SLP-76. Notably, SLP-76 contains a predicted binding motif for the Itk SH2 domain and binds to full-length Itk in vitro. Finally, we show that kinase-inactive Itk can antagonize the SLP-76-dependent activation of NF-AT. The inhibition of NF-AT activation depends on the Itk pleckstrin homology domain, proline-rich region, and SH2 domain. Together, these observations suggest that multivalent interactions recruit Itk to LAT-nucleated signaling complexes and facilitate the activation of LAT-associated phospholipase Cgamma1 by Itk.  相似文献   

13.
BACKGROUND: The adaptor protein Gads is a Grb2-related protein originally identified on the basis of its interaction with the tyrosine-phosphorylated form of the docking protein Shc. Gads protein expression is restricted to hematopoietic tissues and cell lines. Gads contains a Src homology 2 (SH2) domain, which has previously been shown to have a similar binding specificity to that of Grb2. Gads also possesses two SH3 domains, but these have a distinct binding specificity to those of Grb2, as Gads does not bind to known Grb2 SH3 domain targets. Here, we investigated whether Gads is involved in T-cell signaling. RESULTS: We found that Gads is highly expressed in T cells and that the SLP-76 adaptor protein is a major Gads-associated protein in vivo. The constitutive interaction between Gads and SLP-76 was mediated by the carboxy-terminal SH3 domain of Gads and a 20 amino-acid proline-rich region in SLP-76. Gads also coimmunoprecipitated the tyrosine-phosphorylated form of the linker for activated T cells (LAT) adaptor protein following cross-linking of the T-cell receptor; this interaction was mediated by the Gads SH2 domain. Overexpression of Gads and SLP-76 resulted in a synergistic augmentation of T-cell signaling, as measured by activation of nuclear factor of activated T cells (NFAT), and this cooperation required a functional Gads SH2 domain. CONCLUSIONS: These results demonstrate that Gads plays an important role in T-cell signaling via its association with SLP-76 and LAT. Gads may promote cross-talk between the LAT and SLP-76 signaling complexes, thereby coupling membrane-proximal events to downstream signaling pathways.  相似文献   

14.
T cell membrane receptors and signaling molecules assemble at the immunological synapse (IS) in a supramolecular activation cluster (SMAC), organized into two differentiated subdomains: the central SMAC (cSMAC), with the TCR, Lck, and linker for activation of T cells (LAT), and the peripheral SMAC (pSMAC), with adhesion molecules. The mechanism of protein sorting to the SMAC subdomains is still unknown. MAL forms part of the machinery for protein targeting to the plasma membrane by specialized mechanisms involving condensed membranes or rafts. In this article, we report our investigation of the dynamics of MAL during the formation of the IS and its role in SMAC assembly in the Jurkat T cell line and human primary T cells. We observed that under normal conditions, a pool of MAL rapidly accumulates at the cSMAC, where it colocalized with condensed membranes, as visualized with the membrane fluorescent probe Laurdan. Mislocalization of MAL to the pSMAC greatly reduced membrane condensation at the cSMAC and redistributed machinery involved in docking microtubules or transport vesicles from the cSMAC to the pSMAC. As a consequence of these alterations, the raft-associated molecules Lck and LAT, but not the TCR, were missorted to the pSMAC. MAL, therefore, regulates membrane order and the distribution of microtubule and transport vesicle docking machinery at the IS and, by doing so, ensures correct protein sorting of Lck and LAT to the cSMAC.  相似文献   

15.
Some transmembrane proteins must associate with lipid rafts to function. However, even if acylated, transmembrane proteins should not pack well with ordered raft lipids, and raft targeting is puzzling. Acylation is necessary for raft targeting of linker for activation of T cells (LAT). To determine whether an acylated transmembrane domain is sufficient, we examined raft association of palmitoylated and nonpalmitoylated LAT transmembrane peptides in lipid vesicles by a fluorescence quenching assay, by microscopic examination, and by association with detergent-resistant membranes (DRMs). All three assays detected very low raft association of the nonacylated LAT peptide. DRM association was the same as a control random transmembrane peptide. Acylation did not measurably enhance raft association by the first two assays but slightly enhanced DRM association. The palmitoylated LAT peptide and a FLAG-tagged LAT transmembrane domain construct expressed in cells showed similar DRM association when both were reconstituted into mixed vesicles (containing cell-derived proteins and lipids and excess artificial raft-forming lipids) before detergent extraction. We conclude that the acylated LAT transmembrane domain has low inherent raft affinity. Full-length LAT in mixed vesicles associated better with DRMs than the peptide. However, cells appeared to contain two pools of LAT, with very different raft affinities. Since some LAT (but not the transmembrane domain construct) was isolated in a protein complex, and the Myc- and FLAG-tagged forms of LAT could be mutually co-immunoprecipitated, oligomerization or interactions with other proteins may enhance raft affinity of one pool of LAT. We conclude that both acylation and other factors, possibly protein-protein interactions, target LAT to rafts.  相似文献   

16.
In T lymphocytes, the Src-family protein tyrosine kinase p56lck (Lck) is mostly associated with the cytoplasmic face of the plasma membrane. To determine how this distribution is achieved, we analyzed the location of Lck in lymphoid and in transfected nonlymphoid cells by immunofluorescence. We found that in T cells Lck was targeted correctly, independently of the cell surface proteins CD4 and CD8 with which it interacts. Similarly, in transfected NIH-3T3 fibroblasts, Lck was localized at the plasma membrane, indicating that T cell–specific proteins are not required for targeting. Some variation in subcellular distribution was observed when Lck was expressed in HeLa and MDCK cells. In these cells, Lck associated with both the plasma membrane and the Golgi apparatus, while subsequent expression of CD4 resulted in the loss of Golgi-associated staining. Together, these data indicate that Lck contains intrinsic signals for targeting to the plasma membrane. Furthermore, delivery to this site may be achieved via association with exocytic transport vesicles.

A mutant Lck molecule in which the palmitoylation site at cysteine 5 was changed to lysine (LC2) localized to the plasma membrane and the Golgi region in NIH3T3 cells. However, the localization of a mutant in which the palmitoylation site at cysteine 3 was changed to serine (LC1) was indistinguishable from wild-type Lck. Chimeras composed of only the unique domain of Lck linked to either c-Src or the green fluorescent protein similarly localized to the plasma membrane of NIH-3T3 cells. Thus, the targeting of Lck appears to be determined primarily by its unique domain and may be influenced by the use of different palmitoylation sites.

  相似文献   

17.
The Src family tyrosine kinase Lck is essential for T cell development and T cell receptor (TCR) signaling. Lck is post-translationally fatty acylated at its N-terminus conferring membrane targeting and concentration in plasma membrane lipid rafts, which are lipid-based organisational platforms. Confocal fluorescence microscopy shows that Lck colocalizes in rafts with GPI-linked proteins, the adaptor protein LAT and Ras, but not with non-raft membrane proteins including the protein tyrosine phosphatase CD45. The TCR also associates with lipid rafts and its cross-linking causes coaggregation of raft-associated proteins including Lck, but not of CD45. Cross-linking of either the TCR or rafts strongly induces specific tyrosine phosphorylation of the TCR in the rafts. Remarkably, raft patching alone induces signalling events analogous to TCR stimulation, with the same dependence on expression of key TCR signalling molecules. Our results indicate a mechanism whereby TCR engagement promotes aggregation of lipid rafts, which facilitates colocalization of signaling proteins including Lck, LAT, and the TCR, while excluding CD45, thereby potentiating protein tyrosine phosphorylation and downstream signaling. We are currently testing this hypothesis as well as using imaging techniques such as fluorescence resonance energy transfer (FRET) microscopy to study the dynamics of proteins and lipids in lipid rafts in living cells undergoing signaling events. Recent data show that the key phosphoinositide PI(4,5)P2 is concentrated in T cell lipid rafts and that on stimulation of the cells it is rapidly converted to PI(3,4,5)P3 and diacylglycerol within rafts. Thus rafts are hotspots for both protein and lipid signalling pathways.  相似文献   

18.
Douglass AD  Vale RD 《Cell》2005,121(6):937-950
Membrane subdomains have been implicated in T cell signaling, although their properties and mechanisms of formation remain controversial. Here, we have used single-molecule and scanning confocal imaging to characterize the behavior of GFP-tagged signaling proteins in Jurkat T cells. We show that the coreceptor CD2, the adaptor protein LAT, and tyrosine kinase Lck cocluster in discrete microdomains in the plasma membrane of signaling T cells. These microdomains require protein-protein interactions mediated through phosphorylation of LAT and are not maintained by interactions with actin or lipid rafts. Using a two color imaging approach that allows tracking of single molecules relative to the CD2/LAT/Lck clusters, we demonstrate that these microdomains exclude and limit the free diffusion of molecules in the membrane but also can trap and immobilize specific proteins. Our data suggest that diffusional trapping through protein-protein interactions creates microdomains that concentrate or exclude cell surface proteins to facilitate T cell signaling.  相似文献   

19.
20.
Lipid rafts are critical to the assembly of the T-cell receptor (TCR) signaling machinery. It is not known whether lipid raft properties differ in CD4+ and CD8+ T cells and whether there are age-related differences that may account in part for immune senescence. Data presented here showed that time-dependent interleukin-2 (IL-2) production was different between CD4+ and CD8+ T cells. The defect in IL-2 production by CD4+ T cells was not due to lower levels of expression of the TCR or CD28. There was a direct correlation between the activation of p56(Lck) and LAT and their association/recruitment with the lipid raft fractions of CD4+ and CD8+ T cells. p56Lck, LAT and Akt/PKB were weakly phosphorylated in lipid rafts of stimulated CD4+ T cells of elderly as compared to young donors. Lipid rafts undergo changes in their lipid composition (ganglioside M1, cholesterol) in CD4+ and CD8+ T cells of elderly individuals. This study emphasizes the differential role of lipid rafts in CD4+ and CD8+ T-cell activation in aging and suggests that the differential localization of CD28 may explain disparities in response to stimulation in human aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号