首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A genome scan was performed for low-density lipoprotein cholesterol concentration (LDL-C) in white subjects who were ascertained through the NHLBI Family Heart Study (FHS). The NIH Mammalian Genotyping Service (Marshfield, Wis.) genotyped 401 autosomal markers spaced at approximate 10-cM intervals. Additional FHS families were genotyped by the FHS Molecular Laboratory at the University of Utah for 243 markers; 645 subjects were typed in both laboratories so that a combined map of the 644 markers from the two screening sets (average distance of 5.46 cM) could be produced. Analyses were done on 2,799 genotyped subjects in 500 families where at least two genotyped persons in the family had measured LDL-C levels (average number of genotyped family members=5.95). The variance components method was used as implemented in GeneHunter (Kruglyak et al. 1996). Prior to analysis, each phenotype was adjusted, within sex, for age, age squared, body mass index, waist-hip ratio, alcohol, smoking, medication status for diabetes and hypertension, estrogen use, and field center location. Linkage analyses were performed, first excluding 305 subjects on lipid-lowering medications, then again including the data from these subjects. The highest peak was on chromosome 11 at 56.3-56.4 cM, with a maximum lod score of 3.72. Two genome scans of lipid traits in other populations have found peaks in this region. Other scores at or above 1.9 occurred on chromosomes 5 (lod=1.89 at 1.6 cM), 10 (lod=2.47 at 127.1 cM), 17 (lod=2.33 at 116.3 cM), and 21 (lod=2.74 at 45.2 cM).  相似文献   

2.
3.
Although the predisposition to morbid obesity is heritable, the identities of the disease-causing genes are largely unknown. Therefore, we have conducted a genomewide search with 628 markers, using multigenerational Utah pedigrees to identify genes involved in predisposition to obesity. In the genomewide search, we identified a highly significant linkage to high body-mass index in female patients, at D4S2632, with a multipoint heterogeneity LOD (HLOD) score of 6.1 and a nonparametric linkage (NPL) score of 5.3. To further delineate the linkage, we increased both the marker density around D4S2632 and the size of our pedigree data set. As a result, the linkage evidence increased to a multipoint HLOD score of 9.2 (at D4S3350) and an NPL score of 11.3. Evidence from almost half of the families in this analysis support this linkage, and therefore the gene in this region might account for a significant percentage of the genetic predisposition to severe obesity in females. However, further studies are necessary to clarify the effect that this gene has in males and in the general population.  相似文献   

4.
We undertook a growth-based screen exploiting the degradation of CTL*, a chimeric membrane-bound ERAD substrate derived from soluble lumenal CPY*. We screened the Saccharomyces cerevisiae genomic deletion library containing approximately 5000 viable strains for mutants defective in endoplasmic reticulum (ER) protein quality control and degradation (ERAD). Among the new gene products we identified Yos9p, an ER-localized protein previously involved in the processing of GPI anchored proteins. We show that deficiency in Yos9p affects the degradation only of glycosylated ERAD substrates. Degradation of non-glycosylated substrates is not affected in cells lacking Yos9p. We propose that Yos9p is a lectin or lectin-like protein involved in the quality control of N-glycosylated proteins. It may act sequentially or in concert with the ERAD lectin Htm1p/Mnl1p (EDEM) to prevent secretion of malfolded glycosylated proteins and deliver them to the cytosolic ubiquitin-proteasome machinery for elimination.  相似文献   

5.
Protein phosphatase 1 (PP1) catalytic subunits typically combine with other proteins that modulate their activity, direct them to distinct substrates, or serve as substrates for PP1. More than 50 PP1-interacting proteins (PIPs) have been identified so far. Given there are approximately 10 000 phosphoproteins in mammals, many PIPs remain to be discovered. We have used arrays containing 100 carefully selected antibodies to identify novel PIPs that are important in cell proliferation and cell survival in murine fetal lung epithelial cells and human A549 lung cancer cells. The antibody arrays identified 31 potential novel PIPs and 11 of 17 well-known PIPs included as controls, suggesting a sensitivity of at least 65%. A majority of the interactions between PP1 and putative PIPs were isoform- or cell type-specific. We confirmed by co-immunoprecipitation that 9 of these proteins associate with PP1: APAF-1, Bax, E-cadherin, HSP-70, Id2, p19Skp1, p53, PCNA, and PTEN. We examined two of these interactions in greater detail in A549 cells. Exposure to nicotine enhanced association of PP1 with Bax (and Bad), but also induced inhibitory phosphorylation of PP1. In addition to p19Skp1, PP1alpha antibodies also coprecipitated cullin 1, suggesting that PP1alpha is associated with the SCF1 complex. This interaction was only detectable during the G1/S transition and S phase. Forced loss of PP1 function decreased the levels of p27Kip1, a well-known SCF1 substrate, suggesting that PP1 may rescue proteins from ubiquitin/proteasome-mediated destruction. Both of these novel interactions are consistent with PP1 facilitating cell cycle arrest and/or apoptosis.  相似文献   

6.
7.
Wang KS  Liu X  Zheng S  Zeng M  Pan Y  Callahan K 《Gene》2012,500(1):80-84

Objective

Genetic factors play an important role in modulating the vulnerability to body mass index (BMI). The purpose of this study is to identify novel genetic variants for BMI using genome-wide association (GWA) meta-analysis.

Methods

PLINK software was used to perform meta-analysis of two GWA studies (the FUSION and Marshfield samples) of 5218 Caucasian individuals with BMI. A replication study was conducted using the SAGE sample with 762 individuals.

Results

Through meta-analysis we identified 33 SNPs associated with BMI with p < 10− 4. The most significant association was observed with rs2967951 (p = 1.19 × 10− 6) at 5p15.2 within ROPN1L gene. Two additional SNPs within ROPN1L and 5 SNPs within MARCH6 (the top SNP was rs2607292 with 4.27 × 10− 6) further supported the association with BMI on 5p15.2 (p < 1.8 × 10− 5). Conditional analysis on 5p15.2 could not distinguish the effects of ROPN1L and MARCH6. Several SNPs within MARCH6 and ROPN1L were replicated in the SAGE sample (p < 0.05).

Conclusion

We identified a novel locus for BMI. These findings offer the potential for new insights into the pathogenesis of BMI and obesity and will serve as a resource for replication in other populations to elucidate the potential role of these genetic variants in BMI and obesity.  相似文献   

8.
The synthesis of a new paramagnetic (nitroxide) analogue of cholesterol is described. This compound (called CNO) contains a doxyl group in the lateral chain at position 25. Our results show that CNO retains three molecular interactions which characterize authentic cholesterol: It assumes an orientation perpendicular to the phospholipid bilayer with the doxyl group buried in the membrane core, as seen by ESR spectroscopy. It widens the transition temperature of dimyristoylphosphatidylcholine, to the same extent as cholesterol, as measured by Raman and ESR spectroscopies. It interacts with polyene antibiotics, such as amphotericin B and filipin, in the same manner as its model. This was proved on the one hand by the change in fluorescence of self quenched vesicle-entrapped calcein, after dilution in the external medium, provoked by filipin, and on the other hand by fluorescence quenching provoked by cobalt ions entering the vesicles under the influence of amphotericin B. We concluded that CNO, although it has a side chain different from genuine cholesterol, can help to solve many physiologically meaningful questions related to the distribution and movement rate of cholesterol itself.  相似文献   

9.
The western consensus is that obese women are considered attractive by Afro-Americans and by many societies from nonwestern developing countries. This belief rests mainly on results of nonstandardized surveys dealing only with body weight and size, ignoring body fat distribution. The anatomical distribution of female body fat as measured by the ratio of waist to hip circumference (WHR) is related to reproductive age, fertility, and risk for various major diseases and thus might play a role in judgment of attractiveness. Previous research (Singh 1993a, 1993b) has shown that in the United States Caucasian men and women judge female figures with feminine WHRs as attractive and healthy. To investigate whether young Indonesian and Afro-American men and women rate such figures similarly, female figures representing three body sizes (underweight, normal weight, and overweight) and four WHRs (two feminine and two masculine) were used. Results show that neither Indonesian nor Afro-American subjects judge overweight figures as attractive and healthy regardless of the size of WHR. They judged normal weight figures with feminine WHRs as most attractive, healthy, and youthful. The consensus on women’s attractiveness among Indonesian, Afro-American, and U.S. Caucasian male and female subjects suggests that various cultural groups have similar criteria for judging the ideal woman’s shape.  相似文献   

10.
To identify genetic loci influencing bone accrual, we performed a genome-wide association scan for total-body bone mineral density (TB-BMD) variation in 2,660 children of different ethnicities. We discovered variants in 7q31.31 associated with BMD measurements, with the lowest P = 4.1 × 10(-11) observed for rs917727 with minor allele frequency of 0.37. We sought replication for all SNPs located ± 500 kb from rs917727 in 11,052 additional individuals from five independent studies including children and adults, together with de novo genotyping of rs3801387 (in perfect linkage disequilibrium (LD) with rs917727) in 1,014 mothers of children from the discovery cohort. The top signal mapping in the surroundings of WNT16 was replicated across studies with a meta-analysis P = 2.6 × 10(-31) and an effect size explaining between 0.6%-1.8% of TB-BMD variance. Conditional analyses on this signal revealed a secondary signal for total body BMD (P = 1.42 × 10(-10)) for rs4609139 and mapping to C7orf58. We also examined the genomic region for association with skull BMD to test if the associations were independent of skeletal loading. We identified two signals influencing skull BMD variation, including rs917727 (P = 1.9 × 10(-16)) and rs7801723 (P = 8.9 × 10(-28)), also mapping to C7orf58 (r(2) = 0.50 with rs4609139). Wnt16 knockout (KO) mice with reduced total body BMD and gene expression profiles in human bone biopsies support a role of C7orf58 and WNT16 on the BMD phenotypes observed at the human population level. In summary, we detected two independent signals influencing total body and skull BMD variation in children and adults, thus demonstrating the presence of allelic heterogeneity at the WNT16 locus. One of the skull BMD signals mapping to C7orf58 is mostly driven by children, suggesting temporal determination on peak bone mass acquisition. Our life-course approach postulates that these genetic effects influencing peak bone mass accrual may impact the risk of osteoporosis later in life.  相似文献   

11.
Tumor necrosis factor alpha (TNF-α) is a potent inflammatory cytokine secreted upon cellular stress as well as immunological stimuli and is implicated in the pathology of inflammatory diseases and cancer. The therapeutic potential of modifying TNF-α pathway activity has been realized in several diseases, and antagonists of TNF-α have reached clinical applications. While much progress in the understanding of signaling downstream of the TNF-α receptor complex has been made, the compendium of factors required for signal transduction is still not complete. In order to find novel regulators of proinflammatory signaling induced by TNF-α, we conducted a genome-wide small interfering RNA screen in human cells. We identified several new candidate modulators of TNF-α signaling, which were confirmed in independent experiments. Specifically, we show that caspase 4 is required for the induction of NF-κB activity, while it appears to be dispensable for the activation of the Jun N-terminal protein kinase signaling branch. Taken together, our experiments identify caspase 4 as a novel regulator of TNF-α-induced NF-κB signaling that is required for the activation of IκB kinase. We further provide the genome-wide RNA interference data set as a compendium in a format compliant with minimum information about an interfering RNA experiment (MAIRE).  相似文献   

12.
Coeliac disease is a common multifactorial disease with a strong genetic component, which is not entirely explained by the HLA association. Four previous whole-genome screens have produced somewhat inconsistent results suggesting genetic heterogeneity. We attempted to overcome this problem by performing a genome-wide scan in a Finnish sub-population, expected to be more homogeneous than the general population of Finland. The families in our study originate from the northeastern part of Finland, the Koilliskaira region, which has been relatively isolated since its founding in the 16th century. Genealogical studies have confirmed that the families share a common ancestor in the 16th century. Nine families with altogether 23 patients were genotyped for 399 microsatellite markers and the data were analysed with parametric linkage analysis using two dominant and one recessive model. A region on chromosome 15q11-q13 was implicated with a LOD score of 3.14 using a highly penetrant dominant model. Addition of more markers and one more sib-pair increased the LOD score to 3.74. This result gives preliminary evidence for existence of a susceptibility factor in this chromosomal region.  相似文献   

13.
14.
To identify novel susceptibility loci for Crohn disease (CD), we undertook a genome-wide association study with more than 300,000 SNPs characterized in 547 patients and 928 controls. We found three chromosome regions that provided evidence of disease association with p-values between 10−6 and 10−9. Two of these (IL23R on Chromosome 1 and CARD15 on Chromosome 16) correspond to genes previously reported to be associated with CD. In addition, a 250-kb region of Chromosome 5p13.1 was found to contain multiple markers with strongly suggestive evidence of disease association (including four markers with p < 10−7). We replicated the results for 5p13.1 by studying 1,266 additional CD patients, 559 additional controls, and 428 trios. Significant evidence of association (p < 4 × 10−4) was found in case/control comparisons with the replication data, while associated alleles were over-transmitted to affected offspring (p < 0.05), thus confirming that the 5p13.1 locus contributes to CD susceptibility. The CD-associated 250-kb region was saturated with 111 SNP markers. Haplotype analysis supports a complex locus architecture with multiple variants contributing to disease susceptibility. The novel 5p13.1 CD locus is contained within a 1.25-Mb gene desert. We present evidence that disease-associated alleles correlate with quantitative expression levels of the prostaglandin receptor EP4, PTGER4, the gene that resides closest to the associated region. Our results identify a major new susceptibility locus for CD, and suggest that genetic variants associated with disease risk at this locus could modulate cis-acting regulatory elements of PTGER4.  相似文献   

15.
Psoriasis is a common chronic inflammatory skin disease with a strong genetic component. Few psoriasis-susceptibility loci have been reported, and only two have been confirmed in independent data sets. This article reports results of a genomewide scan that was performed, using 370 microsatellite markers, for psoriasis-susceptibility loci in 32 German extended families, comprising 162 affected and 195 unaffected individuals. Nonparametric linkage analysis of all families provided strong evidence for a novel psoriasis-susceptibility locus on chromosome 19p (Zlr=3.50; P=.0002). Parametric analysis revealed a heterogeneity LOD score of 4.06, corresponding to a genomewide significance level of.037, under the assumption of a recessive model with high disease-allele frequency and 66% as the proportion of linked families. This study confirms linkage of psoriasis to the HLA region on chromosome 6p and suggests additional regions on chromosomes 8q and 21q for further investigations.  相似文献   

16.
17.
Alu-mediated rearrangement of tumor suppressor genes occurs frequently during carcinogenesis. In breast cancer, this mechanism contributes to loss of the wild-type BRCA1 allele in inherited disease and to loss of heterozygosity in sporadic cancer. To identify genes required for suppression of Alu-mediated recombination we performed a genomewide screen of a collection of 4672 yeast gene deletion mutants using a direct repeat recombination assay. The primary screen and subsequent analysis identified 12 candidate genes including TSA, ELG1, and RRM3, which are known to play a significant role in maintaining genomic stability. Genetic analysis of the corresponding human homologs was performed in sporadic breast tumors and in inherited BRCA1-associated carcinomas. Sequencing of these genes in high risk breast cancer families revealed a potential role for the helicase PIF1 in cancer predisposition. PIF1 variant L319P was identified in three breast cancer families; importantly, this variant, which is predicted to be functionally damaging, was not identified in a large series of controls nor has it been reported in either dbSNP or the 1000 Genomes Project. In Schizosaccharomyces pombe, Pfh1 is required to maintain both mitochondrial and nuclear genomic integrity. Functional studies in yeast of human PIF1 L319P revealed that this variant cannot complement the essential functions of Pfh1 in either the nucleus or mitochondria. Our results provide a global view of nonessential genes involved in suppressing Alu-mediated recombination and implicate variation in PIF1 in breast cancer predisposition.  相似文献   

18.
Dynamic modification of histone proteins plays a key role in regulating gene expression. However, histones themselves can also be dynamic, which potentially affects the stability of histone modifications. To determine the molecular mechanisms of histone turnover, we developed a parallel screening method for epigenetic regulators by analyzing chromatin states on DNA barcodes. Histone turnover was quantified by employing a genetic pulse-chase technique called RITE, which was combined with chromatin immunoprecipitation and high-throughput sequencing. In this screen, the NuB4/HAT-B complex, containing the conserved type B histone acetyltransferase Hat1, was found to promote histone turnover. Unexpectedly, the three members of this complex could be functionally separated from each other as well as from the known interacting factor and histone chaperone Asf1. Thus, systematic and direct interrogation of chromatin structure on DNA barcodes can lead to the discovery of genes and pathways involved in chromatin modification and dynamics.  相似文献   

19.

Background  

Ubiquitin regulates a myriad of important cellular processes through covalent attachment to its substrates. A classic role for ubiquitin is to flag proteins for destruction by the proteasome. Recent studies indicate that ubiquitin-binding proteins (e.g. Rad23, Dsk2, Rpn10) play a pivotal role in transferring ubiquitylated proteins to the proteasome. However, the specific role of these ubiquitin receptors remains poorly defined. A key to unraveling the functions of these ubiquitin receptors is to identify their cellular substrates and biological circuits they are involved in. Although many strategies have been developed for substrate isolation, the identification of physiological targets of proteolytic pathways has proven to be quite challenging.  相似文献   

20.
Experiments and molecular simulations have shown that the hydrophobic mismatch between proteins and membranes contributes significantly to lipid-mediated protein-protein interactions. In this article, we discuss the effect of cholesterol on lipid-mediated protein-protein interactions as function of hydrophobic mismatch, protein diameter and protein cluster size, lipid tail length, and temperature. To do so, we study a mesoscopic model of a hydrated bilayer containing lipids and cholesterol in which proteins are embedded, with a hybrid dissipative particle dynamics-Monte Carlo method. We propose a mechanism by which cholesterol affects protein interactions: protein-induced, cholesterol-enriched, or cholesterol-depleted lipid shells surrounding the proteins affect the lipid-mediated protein-protein interactions. Our calculations of the potential of mean force between proteins and protein clusters show that the addition of cholesterol dramatically reduces repulsive lipid-mediated interactions between proteins (protein clusters) with positive mismatch, but does not affect attractive interactions between proteins with negative mismatch. Cholesterol has only a modest effect on the repulsive interactions between proteins with different mismatch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号