首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Trypanosoma cruzi, an intracellular protozoan parasite that infects humans and other mammalian hosts, is the etiologic agent in Chagas disease. This parasite can invade a wide variety of mammalian cells. The mechanism(s) by which T. cruzi invades its host cell is not completely understood. The activation of many signaling receptors during invasion has been reported; however, the exact mechanism by which parasites cross the host cell membrane barrier and trigger fusion of the parasitophorous vacuole with lysosomes is not understood.

Methodology/Principal Findings

In order to explore the role of the Low Density Lipoprotein receptor (LDLr) in T. cruzi invasion, we evaluated LDLr parasite interactions using immunoblot and immunofluorescence (IFA) techniques. These experiments demonstrated that T. cruzi infection increases LDLr levels in infected host cells, inhibition or disruption of LDLr reduces parasite load in infected cells, T. cruzi directly binds recombinant LDLr, and LDLr-dependent T. cruzi invasion requires PIP2/3. qPCR analysis demonstrated a massive increase in LDLr mRNA (8000 fold) in the heart of T. cruzi infected mice, which is observed as early as 15 days after infection. IFA shows a co-localization of both LDL and LDLr with parasites in infected heart.

Conclusions/Significance

These data highlight, for the first time, that LDLr is involved in host cell invasion by this parasite and the subsequent fusion of the parasitophorous vacuole with the host cell lysosomal compartment. The model suggested by this study unifies previous models of host cell invasion for this pathogenic protozoon. Overall, these data indicate that T. cruzi targets LDLr and its family members during invasion. Binding to LDL likely facilitates parasite entry into host cells. The observations in this report suggest that therapeutic strategies based on the interaction of T. cruzi and the LDLr pathway should be pursued as possible targets to modify the pathogenesis of disease following infection.  相似文献   

2.

Background

Diagnosis of Trypanosoma cruzi infection by direct pathogen detection is complicated by the low parasite burden in subjects persistently infected with this agent of human Chagas disease. Determination of infection status by serological analysis has also been faulty, largely due to the lack of well-characterized parasite reagents for the detection of anti-parasite antibodies.

Methods

In this study, we screened more than 400 recombinant proteins of T. cruzi, including randomly selected and those known to be highly expressed in the parasite stages present in mammalian hosts, for the ability to detect anti-parasite antibodies in the sera of subjects with confirmed or suspected T. cruzi infection.

Findings

A set of 16 protein groups were identified and incorporated into a multiplex bead array format which detected 100% of >100 confirmed positive sera and also documented consistent, strong and broad responses in samples undetected or discordant using conventional serologic tests. Each serum had a distinct but highly stable reaction pattern. This diagnostic panel was also useful for monitoring drug treatment efficacy in chronic Chagas disease.

Conclusions

These results substantially extend the variety and quality of diagnostic targets for Chagas disease and offer a useful tool for determining treatment success or failure.  相似文献   

3.

Background

The two available drugs for treatment of T. cruzi infection, nifurtimox and benznidazole (BZ), have potential toxic side effects and variable efficacy, contributing to their low rate of use. With scant economic resources available for antiparasitic drug discovery and development, inexpensive, high-throughput and in vivo assays to screen potential new drugs and existing compound libraries are essential.

Methods

In this work, we describe the development and validation of improved methods to test anti-T. cruzi compounds in vitro and in vivo using parasite lines expressing the firefly luciferase (luc) or the tandem tomato fluorescent protein (tdTomato). For in vitro assays, the change in fluorescence intensity of tdTomato-expressing lines was measured as an indicator of parasite replication daily for 4 days and this method was used to identify compounds with IC50 lower than that of BZ.

Findings

This method was highly reproducible and had the added advantage of requiring relatively low numbers of parasites and no additional indicator reagents, enzymatic post-processes or laborious visual counting. In vivo, mice were infected in the footpads with fluorescent or bioluminescent parasites and the signal intensity was measured as a surrogate of parasite load at the site of infection before and after initiation of drug treatment. Importantly, the efficacy of various drugs as determined in this short-term (<2 weeks) assay mirrored that of a 40 day treatment course.

Conclusion

These methods should make feasible broader and higher-throughput screening programs needed to identify potential new drugs for the treatment of T. cruzi infection and for their rapid validation in vivo.  相似文献   

4.

Background

Trypanosoma cruzi is the etiological agent of Chagas disease, a debilitating illness that affects millions of people in the Americas. A major finding of the T. cruzi genome project was the discovery of a novel multigene family composed of approximately 1,300 genes that encode mucin-associated surface proteins (MASPs). The high level of polymorphism of the MASP family associated with its localization at the surface of infective forms of the parasite suggests that MASP participates in host–parasite interactions. We speculate that the large repertoire of MASP sequences may contribute to the ability of T. cruzi to infect several host cell types and/or participate in host immune evasion mechanisms.

Methods

By sequencing seven cDNA libraries, we analyzed the MASP expression profile in trypomastigotes derived from distinct host cells and after sequential passages in acutely infected mice. Additionally, to investigate the MASP antigenic profile, we performed B-cell epitope prediction on MASP proteins and designed a MASP-specific peptide array with 110 putative epitopes, which was screened with sera from acutely infected mice.

Findings and Conclusions

We observed differential expression of a few MASP genes between trypomastigotes derived from epithelial and myoblast cell lines. The more pronounced MASP expression changes were observed between bloodstream and tissue-culture trypomastigotes and between bloodstream forms from sequential passages in acutely infected mice. Moreover, we demonstrated that different MASP members were expressed during the acute T. cruzi infection and constitute parasite antigens that are recognized by IgG and IgM antibodies. We also found that distinct MASP peptides could trigger different antibody responses and that the antibody level against a given peptide may vary after sequential passages in mice. We speculate that changes in the large repertoire of MASP antigenic peptides during an infection may contribute to the evasion of host immune responses during the acute phase of Chagas disease.  相似文献   

5.

Background

Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi. Despite the vast number of studies evaluating the pathophysiological mechanisms of the disease, the influence of parasite burden on kidney lesions remains unclear. Thus, the main goal of this work was to evaluate the effect of T. cruzi infection on renal function and determine whether there was a correlation between parasite load and renal injury using an acute experimental model of the disease.

Methodology/Principal Findings

Low, medium and high parasite loads were generated by infecting C57BL/6 mice with 300 (low), 3,000 (medium) or 30,000 (high) numbers of “Y” strain trypomastigotes. We found that mice infected with T. cruzi trypomastigotes show increased renal injury. The infection resulted in reduced urinary excretion and creatinine clearance. We also observed a marked elevation in the ratio of urine volume to kidney and body weight, blood urea nitrogen, chloride ion, nitric oxide, pro- and anti-inflammatory cytokines and the number of leukocytes in the blood and/or renal tissues of infected mice. Additionally, we observed the presence of the parasite in the cortical/medullary and peri-renal region, an increase of inflammatory infiltrate and of vascular permeability of the kidney. Overall, most renal changes occurred mainly in animals infected with high parasitic loads.

Conclusions/Significance

These data demonstrate that T. cruzi impairs kidney function, and this impairment is more evident in mice infected with high parasitic loads. Moreover, these data suggest that, in addition to the extensively studied cardiovascular effects, renal injury should be regarded as an important indicator for better understanding the pan-infectivity of the parasite and consequently for understanding the disease in experimental models.  相似文献   

6.

Background

Chagas disease is a neglected disease caused by the intracellular parasite Trypanosoma cruzi. Around 30% of the infected patients develop chronic cardiomyopathy or megasyndromes, which are high-cost morbid conditions. Immune response against myocardial self-antigens and exacerbated Th1 cytokine production has been associated with the pathogenesis of the disease. As IL-17 is involved in the pathogenesis of several autoimmune, inflammatory and infectious diseases, we investigated its role during the infection with T. cruzi.

Methodology/Principal Findings

First, we detected significant amounts of CD4, CD8 and NK cells producing IL-17 after incubating live parasites with spleen cells from normal BALB/c mice. IL-17 is also produced in vivo by CD4+, CD8+ and NK cells from BALB/c mice on the early acute phase of infection. Treatment of infected mice with anti-mouse IL-17 mAb resulted in increased myocarditis, premature mortality, and decreased parasite load in the heart. IL-17 neutralization resulted in increased production of IL-12, IFN-γ and TNF-α and enhanced specific type 1 chemokine and chemokine receptors expression. Moreover, the results showed that IL-17 regulates T-bet, RORγt and STAT-3 expression in the heart, showing that IL-17 controls the differentiation of Th1 cells in infected mice.

Conclusion/Significance

These results show that IL-17 controls the resistance to T. cruzi infection in mice regulating the Th1 cells differentiation, cytokine and chemokine production and control parasite-induced myocarditis, regulating the influx of inflammatory cells to the heart tissue. Correlations between the levels of IL-17, the extent of myocardial destruction, and the evolution of cardiac disease could identify a clinical marker of disease progression and may help in the design of alternative therapies for the control of chronic morbidity of chagasic patients.  相似文献   

7.

Background

Trypanosoma cruzi, the causative agent of Chagas disease, has high affinity for lipoproteins and adipose tissue. Infection results in myocarditis, fat loss and alterations in lipid homeostasis. This study was aimed at analyzing the effect of high fat diet (HFD) on regulating acute T. cruzi infection-induced myocarditis and to evaluate the effect of HFD on lipid metabolism in adipose tissue and heart during acute T. cruzi infection.

Methodology/Principal Findings

CD1 mice were infected with T. cruzi (Brazil strain) and fed either a regular control diet (RD) or HFD for 35 days following infection. Serum lipid profile, tissue cholesterol levels, blood parasitemia, and tissue parasite load were analyzed to evaluate the effect of diet on infection. MicroPET and MRI analysis were performed to examine the morphological and functional status of the heart during acute infection. qPCR and immunoblot analysis were carried out to analyze the effect of diet on the genes involved in the host lipid metabolism during infection. Oil red O staining of the adipose tissue demonstrated reduced lipolysis in HFD compared to RD fed mice. HFD reduced mortality, parasitemia and cardiac parasite load, but increased parasite load in adipocytes. HFD decreased lipolysis during acute infection. Both qPCR and protein analysis demonstrated alterations in lipid metabolic pathways in adipose tissue and heart in RD fed mice, which were further modulated by HFD. Both microPET and MRI analyses demonstrated changes in infected RD murine hearts which were ameliorated by HFD.

Conclusion/Significance

These studies indicate that Chagasic cardiomyopathy is associated with a cardiac lipidpathy and that both cardiac lipotoxicity and adipose tissue play a role in the pathogenesis of Chagas disease. HFD protected mice from T. cruzi infection-induced myocardial damage most likely due to the effects of HFD on both adipogenesis and T. cruzi infection-induced cardiac lipidopathy.  相似文献   

8.

Background

Millions of people are infected with Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. Anti-trypanosomal drug therapy can cure infected individuals, but treatment efficacy is highest early in infection. Vector control campaigns disrupt transmission of T. cruzi, but without timely diagnosis, children infected prior to vector control often miss the window of opportunity for effective chemotherapy.

Methods and Findings

We performed a serological survey in children 2–18 years old living in a peri-urban community of Arequipa, Peru, and linked the results to entomologic, spatial and census data gathered during a vector control campaign. 23 of 433 (5.3% [95% CI 3.4–7.9]) children were confirmed seropositive for T. cruzi infection by two methods. Spatial analysis revealed that households with infected children were very tightly clustered within looser clusters of households with parasite-infected vectors. Bayesian hierarchical mixed models, which controlled for clustering of infection, showed that a child''s risk of being seropositive increased by 20% per year of age and 4% per vector captured within the child''s house. Receiver operator characteristic (ROC) plots of best-fit models suggest that more than 83% of infected children could be identified while testing only 22% of eligible children.

Conclusions

We found evidence of spatially-focal vector-borne T. cruzi transmission in peri-urban Arequipa. Ongoing vector control campaigns, in addition to preventing further parasite transmission, facilitate the collection of data essential to identifying children at high risk of T. cruzi infection. Targeted screening strategies could make integration of diagnosis and treatment of children into Chagas disease control programs feasible in lower-resource settings.  相似文献   

9.

Background

9 million people are infected with Trypanosoma cruzi in Latin America, plus more than 300,000 in the United States, Canada, Europe, Australia, and Japan. Approximately 30% of infected individuals develop circulatory or digestive pathology. While in underdeveloped countries transmission is mainly through hematophagous arthropods, transplacental infection prevails in developed ones.

Methodology/Principal Findings

During infection, T. cruzi calreticulin (TcCRT) translocates from the endoplasmic reticulum to the area of flagellum emergence. There, TcCRT acts as virulence factor since it binds maternal classical complement component C1q that recognizes human calreticulin (HuCRT) in placenta, with increased parasite infectivity. As measured ex vivo by quantitative PCR in human placenta chorionic villi explants (HPCVE) (the closest available correlate of human congenital T. cruzi infection), C1q mediated up to a 3–5-fold increase in parasite load. Because anti-TcCRT and anti-HuCRT F(ab′)2 antibody fragments are devoid of their Fc-dependent capacity to recruit C1q, they reverted the C1q-mediated increase in parasite load by respectively preventing its interaction with cell-bound CRTs from both parasite and HPCVE origins. The use of competing fluid-phase recombinant HuCRT and F(ab′)2 antibody fragments anti-TcCRT corroborated this. These results are consistent with a high expression of fetal CRT on placental free chorionic villi. Increased C1q-mediated infection is paralleled by placental tissue damage, as evidenced by histopathology, a damage that is ameliorated by anti-TcCRT F(ab′)2 antibody fragments or fluid-phase HuCRT.

Conclusions/Significance

T. cruzi infection of HPCVE is importantly mediated by human and parasite CRTs and C1q. Most likely, C1q bridges CRT on the parasite surface with its receptor orthologue on human placental cells, thus facilitating the first encounter between the parasite and the fetal derived placental tissue. The results presented here have several potential translational medicine aspects, specifically related with the capacity of antibody fragments to inhibit the C1q/CRT interactions and thus T. cruzi infectivity.  相似文献   

10.

Background

New safe and effective treatments for Chagas disease (CD) are urgently needed. Current chemotherapy options for CD have significant limitations, including failure to uniformly achieve parasitological cure or prevent the chronic phase of CD, and safety and tolerability concerns. Fexinidazole, a 2-subsituted 5-nitroimidazole drug candidate rediscovered following extensive compound mining by the Drugs for Neglected Diseases initiative and currently in Phase I clinical study for the treatment of human African trypanosomiasis, was evaluated in experimental models of acute and chronic CD caused by different strains of Trypanosoma cruzi.

Methods and Findings

We investigated the in vivo activity of fexinidazole against T. cruzi, using mice as hosts. The T. cruzi strains used in the study were previously characterized in murine models as susceptible (CL strain), partially resistant (Y strain), and resistant (Colombian and VL-10 strains) to the drugs currently in clinical use, benznidazole and nifurtimox. Our results demonstrated that fexinidazole was effective in suppressing parasitemia and preventing death in infected animals for all strains tested. In addition, assessment of definitive parasite clearance (cure) through parasitological, PCR, and serological methods showed cure rates of 80.0% against CL and Y strains, 88.9% against VL-10 strain, and 77.8% against Colombian strain among animals treated during acute phase, and 70% (VL-10 strain) in those treated in chronic phase. Benznidazole had a similar effect against susceptible and partially resistant T. cruzi strains. Fexinidazole treatment was also shown to reduce myocarditis in all animals infected with VL-10 or Colombian resistant T. cruzi strains, although parasite eradication was not achieved in all treated animals at the tested doses.

Conclusions

Fexinidazole is an effective oral treatment of acute and chronic experimental CD caused by benznidazole-susceptible, partially resistant, and resistant T. cruzi. These findings illustrate the potential of fexinidazole as a drug candidate for the treatment of human CD.  相似文献   

11.

Background

Trypanosoma cruzi is a protozoan parasite that causes severe disease in millions of habitants of developing countries. Currently there is no vaccine to prevent this disease and the available drugs have the consequences of side effects. Live vaccines are likely to be more effective in inducing protection than recombinant proteins or DNA vaccines; however, safety problems associated to their use have been pointed out. In recent years, increasing knowledge on the molecular genetics of Trypanosomes has allowed the identification and elimination of genes that may be necessary for parasite infectivity and survival. In this sense, targeted deletion or disruption of specific genes in the parasite genome may protect against such reversion to virulent genotypes.

Methods and Findings

By targeted gene disruption we generated monoallelic mutant parasites for the dhfr-ts gene in a T. cruzi strain that has been shown to be naturally attenuated. In comparison to T. cruzi wild type epimastigotes, impairment in growth of dhfr-ts+/− mutant parasites was observed and mutant clones displayed decreased virulence in mice. Also, a lower number of T. cruzi-specific CD8+ T cells, in comparison to those induced by wild type parasites, was detected in mice infected with mutant parasites. However, no remarkable differences in the protective effect of TCC wild type versus TCC mutant parasites were observed. Mice challenged with virulent parasites a year after the original infection with the mutant parasites still displayed a significant control over the secondary infection.

Conclusion

This study indicates that it is possible to generate genetically attenuated T. cruzi parasites able to confer protection against further T. cruzi infections.  相似文献   

12.

Background

The factors contributing to chronic Chagas'' heart disease remain unknown. High nitric oxide (NO) levels have been shown to be associated with cardiomyopathy severity in patients. Further, NO produced via inducible nitric oxide synthase (iNOS/NOS2) is proposed to play a role in Trypanosoma cruzi control. However, the participation of iNOS/NOS2 and NO in T. cruzi control and heart injury has been questioned. Here, using chronically infected rhesus monkeys and iNOS/NOS2-deficient (Nos2 −/−) mice we explored the participation of iNOS/NOS2-derived NO in heart injury in T. cruzi infection.

Methodology

Rhesus monkeys and C57BL/6 and Nos2 −/− mice were infected with the Colombian T. cruzi strain. Parasite DNA was detected by polymerase chain reaction, T. cruzi antigens and iNOS/NOS2+ cells were immunohistochemically detected in heart sections and NO levels in serum were determined by Griess reagent. Heart injury was assessed by electrocardiogram (ECG), echocardiogram (ECHO), creatine kinase heart isoenzyme (CK-MB) activity levels in serum and connexin 43 (Cx43) expression in the cardiac tissue.

Results

Chronically infected monkeys presented conduction abnormalities, cardiac inflammation and fibrosis, which resembled the spectrum of human chronic chagasic cardiomyopathy (CCC). Importantly, chronic myocarditis was associated with parasite persistence. Moreover, Cx43 loss and increased CK-MB activity levels were primarily correlated with iNOS/NOS2+ cells infiltrating the cardiac tissue and NO levels in serum. Studies in Nos2 −/− mice reinforced that the iNOS/NOS2-NO pathway plays a pivotal role in T. cruzi-elicited cardiomyocyte injury and in conduction abnormalities that were associated with Cx43 loss in the cardiac tissue.

Conclusion

T. cruzi-infected rhesus monkeys reproduce features of CCC. Moreover, our data support that in T. cruzi infection persistent parasite-triggered iNOS/NOS2 in the cardiac tissue and NO overproduction might contribute to CCC severity, mainly disturbing of the molecular pathway involved in electrical synchrony. These findings open a new avenue for therapeutic tools in Chagas'' heart disease.  相似文献   

13.

Rationale

Cardiomyocytes express neurotrophin receptor TrkA that promotes survival following nerve growth factor (NGF) ligation. Whether TrkA also resides in cardiac fibroblasts (CFs) and underlies cardioprotection is unknown.

Objective

To test whether CFs express TrkA that conveys paracrine signals to neighbor cardiomyocytes using, as probe, the Chagas disease parasite Trypanosoma cruzi, which expresses a TrkA-binding neurotrophin mimetic, named PDNF. T cruzi targets the heart, causing chronic debilitating cardiomyopathy in ∼30% patients.

Methods and Results

Basal levels of TrkA and TrkC in primary CFs are comparable to those in cardiomyocytes. However, in the myocardium, TrkA expression is significantly lower in fibroblasts than myocytes, and vice versa for TrkC. Yet T cruzi recognition of TrkA on fibroblasts, preferentially over cardiomyocytes, triggers a sharp and sustained increase in NGF, including in the heart of infected mice or of mice administered PDNF intravenously, as early as 3-h post-administration. Further, NGF-containing T cruzi- or PDNF-induced fibroblast-conditioned medium averts cardiomyocyte damage by H2O2, in agreement with the previously recognized cardioprotective role of NGF.

Conclusions

TrkA residing in CFs induces an exuberant NGF production in response to T cruzi infection, enabling, in a paracrine fashion, myocytes to resist oxidative stress, a leading Chagas cardiomyopathy trigger. Thus, PDNF-TrkA interaction on CFs may be a mechanism orchestrated by T cruzi to protect its heart habitat, in concert with the long-term (decades) asymptomatic heart parasitism that characterizes Chagas disease. Moreover, as a potent booster of cardioprotective NGF in vivo, PDNF may offer a novel therapeutic opportunity against cardiomyopathies.  相似文献   

14.

Background

According to the Chagas congenital transmission guides, the diagnosis of infants, born to Trypanosoma cruzi infected mothers, relies on the detection of parasites by INP micromethod, and/or the persistence of T. cruzi specific antibody titers at 10–12 months of age.

Methodology and Principal Findings

Parasitemia levels were quantified by PCR in T. cruzi-infected children, grouped according to the results of one-year follow-up diagnosis: A) Neonates that were diagnosed in the first month after delivery by microscopic blood examination (INP micromethod) (n = 19) had a median parasitemia of 1,700 Pe/mL (equivalent amounts of parasite DNA per mL); B) Infants that required a second parasitological diagnosis at six months of age (n = 10) showed a median parasitemia of around 20 Pe/mL and 500 Pe/mL at 1 and 6 months old, respectively, and C) babies with undetectable parasitemia by three blood microscopic observations but diagnosed by specific anti - T. cruzi serology at around 1 year old, (n = 22), exhibited a parasitemia of around 5 Pe/mL, 800 Pe/mL and 20 Pe/mL 1, 6 and 12 month after delivery, respectively. T. cruzi parasites were isolated by hemoculture from 19 congenitally infected children, 18 of which were genotypified as DTU TcV, (former lineage TcIId) and only one as TcI.

Significance

This report is the first to quantify parasitemia levels in more than 50 children congenitally infected with T. cruzi, at three different diagnostic controls during one-year follow-up after delivery. Our results show that the parasite burden in some children (22 out of 51) is below the detection limit of the INP micromethod. As the current trypanocidal treatment proved to be very effective to cure T. cruzi - infected children, more sensitive parasitological methods should be developed to assure an early T. cruzi congenital diagnosis.  相似文献   

15.

Background

CD8+ T cells have been shown to play a crucial role in Trypanosoma cruzi infection. Memory CD8+ T cells can be categorised based on their distinct differentiation stages and functional activities as follows: stem cell memory (TSCM), central memory (TCM), transitional memory (TTM), effector memory (TEM) and terminal effector (TTE) cells. Currently, the immune mechanisms that control T. cruzi in the chronic phase of the infection are unknown.

Methodology/Principal Findings

To characterise the CD8+ T cell subsets that could be participating in the control of T. cruzi infection, in this study, we compared total and T. cruzi-specific circulating CD8+ T cells with distinctive phenotypic and functional features in chronic chagasic patients (CCPs) with different degrees of cardiac dysfunction. We observed a decreased frequency of total TSCM along with an increased frequency of TTE in CCPs with severe disease. Antigen-specific TSCM cells were not detectable in CCPs with severe forms of the disease. A functional profile of CD8+ T cell subsets among CCPs revealed a high frequency of monofunctional CD8+ T cells in the most severe patients with IFN-γ+- or TNF-α+-producing cells.

Conclusions/Significance

These findings suggest that CD8+ TSCM cells may be associated with the immune response to T. cruzi and outcome of Chagas disease, given that these cells may be involved in repopulating the T cell pool that controls infection.  相似文献   

16.

Background

Chagas disease is a major health problem in Latin America, and an emerging infectious disease in the US. Previously, we have screened the Trypanosoma cruzi sequence database by a computational/bioinformatics approach, and identified antigens that exhibited the characteristics of vaccine candidates.

Methodology

We investigated the protective efficacy of a multi-component DNA-prime/protein-boost vaccine (TcVac2) constituted of the selected candidates and cytokine (IL-12 and GM-CSF) expression plasmids in a murine model. C57BL/6 mice were immunized with antigen-encoding plasmids plus cytokine adjuvants, followed by recombinant proteins; and two-weeks later, challenged with T. cruzi trypomastigotes. ELISA and flow cytometry were employed to measure humoral (antibody isotypes) and cellular (lymphocyte proliferation, CD4+ and CD8+ T cell phenotype and cytokines) responses. Myocardial pathology was evaluated by H&E and Masson''s trichrome staining.

Principal Findings

TcVac2 induced a strong antigen-specific antibody response (IgG2b>IgG1) and a moderate level of lymphocyte proliferation in mice. Upon challenge infection, TcVac2-vaccinated mice expanded the IgG2b/IgG1 antibodies and elicited a substantial CD8+ T cell response associated with type 1 cytokines (IFN-γ and TNF-α) that resulted in control of acute parasite burden. During chronic phase, antibody response persisted, splenic activation of CD8+ T cells and IFN-γ/TNF-α cytokines subsided, and IL-4/IL-10 cytokines became dominant in vaccinated mice. The tissue parasitism, inflammation, and fibrosis in heart and skeletal muscle of TcVac2-vaccinated chronic mice were undetectable by histological techniques. In comparison, mice injected with vector or cytokines only responded to T. cruzi by elicitation of a mixed (type 1/type 2) antibody, T cell and cytokine response, and exhibited persistent parasite burden and immunopathology in the myocardium.

Conclusion

TcVac2-induced activation of type 1 antibody and lymphocyte responses provided resistance to acute T. cruzi infection, and consequently, prevented the evolution of chronic immunopathology associated with parasite persistence in chagasic hearts.  相似文献   

17.

Background

The administration of anti-trypanosome nitroderivatives curtails Trypanosoma cruzi infection in Chagas disease patients, but does not prevent destructive lesions in the heart. This observation suggests that an effective treatment for the disease requires understanding its pathogenesis.

Methodology/Principal Findings

To understand the origin of clinical manifestations of the heart disease we used a chicken model system in which infection can be initiated in the egg, but parasite persistence is precluded. T. cruzi inoculation into the air chamber of embryonated chicken eggs generated chicks that retained only the parasite mitochondrial kinetoplast DNA minicircle in their genome after eight days of gestation. Crossbreeding showed that minicircles were transferred vertically via the germ line to chicken progeny. Minicircle integration in coding regions was shown by targeted-primer thermal asymmetric interlaced PCR, and detected by direct genomic analysis. The kDNA-mutated chickens died with arrhythmias, shortness of breath, cyanosis and heart failure. These chickens with cardiomyopathy had rupture of the dystrophin and other genes that regulate cell growth and differentiation. Tissue pathology revealed inflammatory dilated cardiomegaly whereby immune system mononuclear cells lyse parasite-free target heart fibers. The heart cell destruction implicated a thymus-dependent, autoimmune; self-tissue rejection carried out by CD45+, CD8γδ+, and CD8α lymphocytes.

Conclusions/Significance

These results suggest that genetic alterations resulting from kDNA integration in the host genome lead to autoimmune-mediated destruction of heart tissue in the absence of T. cruzi parasites.  相似文献   

18.

Background

Trypanosoma cruzi, the etiologic agent of Chagas Disease, is a major vector borne health problem in Latin America and an emerging infectious disease in the United States.

Methods

We tested the efficacy of a multi-component DNA-prime/DNA-boost vaccine (TcVac1) against experimental T. cruzi infection in a canine model. Dogs were immunized with antigen-encoding plasmids and cytokine adjuvants, and two weeks after the last immunization, challenged with T. cruzi trypomastigotes. We measured antibody responses by ELISA and haemagglutination assay, parasitemia and infectivity to triatomines by xenodiagnosis, and performed electrocardiography and histology to assess myocardial damage and tissue pathology.

Results

Vaccination with TcVac1 elicited parasite-and antigen-specific IgM and IgG (IgG2>IgG1) responses. Upon challenge infection, TcVac1-vaccinated dogs, as compared to non-vaccinated controls dogs, responded to T. cruzi with a rapid expansion of antibody response, moderately enhanced CD8+ T cell proliferation and IFN-γ production, and suppression of phagocytes’ activity evidenced by decreased myeloperoxidase and nitrite levels. Subsequently, vaccinated dogs controlled the acute parasitemia by day 37 pi (44 dpi in non-vaccinated dogs), and exhibited a moderate decline in infectivity to triatomines. TcVac1-immunized dogs did not control the myocardial parasite burden and electrocardiographic and histopatholgic cardiac alterations that are the hallmarks of acute Chagas disease. During the chronic stage, TcVac1-vaccinated dogs exhibited a moderate decline in cardiac alterations determined by EKG and anatomo-/histo-pathological analysis while chronically-infected/non-vaccinated dogs continued to exhibit severe EKG alterations.

Conclusions

Overall, these results demonstrated that TcVac1 provided a partial resistance to T. cruzi infection and Chagas disease, and provide an impetus to improve the vaccination strategy against Chagas disease.  相似文献   

19.

Background

Diversity of T. cruzi strains is a central problem in Chagas disease research because of its correlation with the wide range of clinical manifestations and the biogeographical parasite distribution. The role played by parasite microdiversity in Chagas disease epidemiology is still debatable. Also awaits clarification whether such diversity is associated with the outcome of oral T. cruzi infection, responsible for frequent outbreaks of acute Chagas disease.

Methods and Findings

We addressed the impact of microdiversity in oral T. cruzi infection, by comparative analysis of two strains, Y30 and Y82, both derived from Y strain, a widely used experimental model. Network genealogies of four nuclear genes (SSU rDNA, actin, DHFR-TS, EF1α) revealed that Y30 is closely related to Discrete Typing Unit TcII while Y82 is more closely related to TcVI, a group containing hybrid strains. Nevertheless, excepting one A-G transition at position 1463, Y30 and Y82 SSU rDNAs were identical. Y82 strain, expressing the surface molecule gp82, infected mice orally more efficiently than Y30, which expresses a related gp30 molecule. Both molecules are involved in lysosome exocytosis-dependent host cell invasion, but exhibit differential gastric mucin-binding capacity, a property critical for parasite migration toward the gastric mucosal epithelium. Upon oral infection of mice, the number of Y30 and Y82 parasites in gastric epithelial cells differed widely.

Conclusions

We conclude that metacyclic forms of gp82-expressing Y82 strain, closely related to TcVI, are better adapted than Y30 strain (TcII) to traverse the stomach mucous layer and establish oral route infection. The efficiency to infect target cell is the same because gp82 and gp30 strains have similar invasion-promoting properties. Unknown is whether differences in Y30 and Y82 are natural parasite adaptations or a product of lab-induced evolution by differential selection along the 60 years elapsed since the Y strain isolation.  相似文献   

20.

Background

The Trypanosoma cruzi infection is associated with severe T cell unresponsiveness to antigens and mitogens characterized by decreased IL-2 synthesis. Trypanosoma cruzi mucin (Tc Muc) has been implicated in this phenomenom. These molecules contain a unique type of glycosylation consisting of several sialylated O-glycans linked to the protein backbone via N-acetylglucosamine residues.

Methodology/Principal Findings

In this study, we evaluated the ability of Tc Muc to modulate the activation of CD4+ T cells. Our data show that cross-linking of CD3 on naïve CD4+ T cells in the presence of Tc Muc resulted in the inhibition of both cytokine secretion and proliferation. We further show that the sialylated O-Linked Glycan residues from tc mucin potentiate the suppression of T cell response by inducing G1-phase cell cycle arrest associated with upregulation of mitogen inhibitor p27kip1. These inhibitory effects cannot be reversed by the addition of exogenous IL-2, rendering CD4+ T cells anergic when activated by TCR triggering. Additionally, in vivo administration of Tc Muc during T. cruzi infection enhanced parasitemia and aggravated heart damage. Analysis of recall responses during infection showed lower frequencies of IFN-γ producing CD4+ T cells in the spleen of Tc Muc treated mice, compared to untreated controls.

Conclusions/Significance

Our results indicate that Tc Muc mediates inhibitory efects on CD4+ T expansion and cytokine production, by blocking cell cycle progression in the G1 phase. We propose that the sialyl motif of Tc Muc is able to interact with sialic acid-binding Ig-like lectins (Siglecs) on CD4+ T cells, which may allow the parasite to modulate the immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号