首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The ingestion of a valine (Val)-deficient diet results in a significant reduction of food intake and body weight within 24 h, and this phenomenon continues throughout the period over which such a diet is supplied. Both microarray and real-time PCR analyses revealed that the expression of somatostatin mRNA was increased in the hypothalamus in anorectic mice that received a Val-deficient diet. On the other hand, when somatostatin was administered intracerebroventricularly to intact animals that were fed a control diet, their 24-h food intake decreased significantly. In addition, Val-deficient but not pair-fed mice or those fasted for 24 h showed a less than 0.5-fold decrease in the hypothalamic mRNA expression levels of Crym, Foxg1, Itpka and two unknown EST clone genes and a more than twofold increase in those of Slc6a3, Bdh1, Ptgr2 and one unknown EST clone gene. These results suggest that hypothalamic somatostatin and genes responsive to Val deficiency may be involved in the central mechanism of anorexia induced by a Val-deficient diet.  相似文献   

4.
The dorsomedial hypothalamic nucleus harbors leptin sensitive neurons and is intrinsically connected to hypothalamic nuclei involved in feeding behavior. However, it also receives ascending input from the visceroceptive neurons of the brainstem. We have identified a unique glucagon-like-peptide-2 containing neuronal pathway connecting the nucleus of the solitary tract with the dorsomedial hypothalamic nucleus. A glucagon-like-peptide-2 fiber plexus targets neurons expressing its receptor within the dorsomedial hypothalamic nucleus. Pharmacological and behavioral studies confirmed that glucagon-like-peptide-2 signaling is a specific transmitter inhibiting rodent feeding behavior and with potential long-term effects on body weight homeostasis. The glucagon-like-peptide-1 receptor antagonist, Exendin (9-39) is also a functional antagonist of centrally applied glucagon-like-peptide-2.  相似文献   

5.
The peptide transporter PEPT2 is a polytopic transmembrane protein that mediates the cellular uptake of di- and tripeptides and a variety of peptidomimetics. It is widely expressed in mammalian tissues, including kidney, lung, mammary gland, choroid plexus, and glia cells. In renal tubular cells, PEPT2 is exclusively found at the apical membrane. The molecular mechanisms underlying this polarized expression and targeting to the brush-border membrane are not known. We have explored the role of the 36 COOH-terminal amino acid residues in PEPT2 trafficking and apical expression. EGFP-tagged PEPT2 wild-type transporter and various truncated and mutant proteins were expressed in the polarized proximal tubule cell lines SKPT and OK, and the cellular distribution of the fusion proteins was assessed using confocal microscopy. Whereas deletion of the last seven amino acids (delC7) did not alter PEPT2 surface expression, deletion of the next residue (delC8) or up to 30 terminal amino acids resulted in impaired apical expression and distinct accumulation of mutant proteins in endosomal and lysosomal vesicles. Truncation of more amino acids (delC36) containing tyrosine-based motifs led to a rather diffuse intracellular distribution pattern. Mutations introduced at isoleucine-720 (I720A) and leucine-722 (I722A) also caused an impaired surface appearance. Internalization assays revealed a higher endocytotic rate of the PEPT2 mutants I720A, L722A, and delC36. Our data suggest that a three-amino acid stretch (INL) and tyrosine-based motifs within the COOH tail of PEPT2 are involved in PEPT2's apical membrane localization and membrane steady-state level. di- and tripeptide transport; polarized epithelial cells; lysosomes  相似文献   

6.
7.
8.
9.
The molecular mechanisms involved in the phytosterol-induced decrease in intestinal cholesterol absorption remain unclear. Further, other biological properties such as immunomodulatory activity and protection against cancer have also been ascribed to these plant compounds. To gain insight into the mechanisms underlying phytosterol actions, we conducted a proteomic study in the intestinal mucosa of phytosterol-fed apolipoprotein E-deficient hypercholesterolemic (apoE-/-) mice. With respect to control-fed apoE-/- mice, nine differentially expressed proteins were identified in whole-enterocyte homogenates using 2-D DIGE and MALDI-TOF MS. These proteins are involved in plasma membrane stabilization, cytoskeleton assembly network, and cholesterol metabolism. Four of these proteins were selected for further study since they showed the highest abundance change or had a potential functional relationship with known effects of phytosterols. Annexin A2 (ANXA2) and beta-actin decrease and annexin A4 (ANXA4) and annexin A5 (ANXA5) increase were confirmed by Western blot analysis. Intestinal gene expression of ANXA2 and A5 and beta-actin was reduced, whereas that of ANXA4 was unchanged. The main results were retested in normocholesterolemic C57BL/6J mice. ANXA4 and ANXA5 protein upregulation and ANXA2 and beta-actin downregulation were reproduced in these animals. However, no changes in gene expression were found in C57BL/6J mice in either of the four proteins selected. ANXA2, A4, and A5 and beta-actin are proteins of special interest given their pleiotropic functions that include cholesterol-ester transport from caveolae, apoptosis, and anti-inflammatory properties. Therefore, the protein expression changes identified in this study might be involved in the biological effects of phytosterols.  相似文献   

10.
11.
12.
The adaptation of the capacity of the intestinal peptide transporter PEPT1 to varying substrate concentrations may be important with respect to its role in providing bulk quantities of amino acids for growth, development, and other nutritional needs. In the present study, we describe a novel phenomenon of the regulation of PEPT1 in the Xenopus oocyte system. Using electrophysiological and immunofluorescence methods, we demonstrate that a prolonged substrate exposure of rabbit PEPT1 (rPEPT1) caused a retrieval of transporters from the membrane. Capacitance as a measure of membrane surface area was increased in parallel with the increase in rPEPT1-mediated transport currents with a slope of approximately 5% of basal surface per 100 nA. Exposure of oocytes to the model peptide Gly-l-Gln for 2 h resulted in a decrease in maximal transport currents with no change of membrane capacitance. However, exposure to substrate for 5 h decreased transport currents but also, in parallel, surface area by endocytotic removal of transporter proteins from the surface. The reduction of the surface expression of rPEPT1 was confirmed by presteady-state current measurements and immunofluorescent labeling of rPEPT1. A similar simultaneous decrease of current and surface area was also observed when endocytosis was stimulated by the activation of PKC. Cytochalasin D inhibited all changes evoked by either dipeptide or PKC stimulation, whereas the PKC-selective inhibitor bisindolylmaleimide only affected PKC-stimulated endocytotic processes but not substrate-dependent retrieval of rPEPT1. Coexpression experiments with human Na(+)-glucose transporter 1 (hSGLT1) revealed that substrate exposure selectively affected PEPT1 but not the activity of hSGLT1.  相似文献   

13.
We determined the effects of (+)pentazocine, a selective sigma(1) ligand, on the uptake of glycylsarcosine (Gly-Sar) in the human intestinal cell line Caco-2 which expresses the low affinity/high capacity peptide transporter PEPT1. Confluent Caco-2 cells were treated with various concentrations of (+)pentazocine for desired time (mostly 24 hr). The activity of PEPT1 was assessed by measuring the uptake of [(14)C]Gly-Sar in the presence of a H(+) gradient. (+)Pentazocine increased the uptake of [(14)C]Gly-Sar mediated by PEPT1 in a concentration- and time-dependent manner. Kinetic analyses have indicated that (+)pentazocine increased the maximal velocity (V(max)) for Gly-Sar uptake in Caco-2 cells without affecting the Michaelis-Menten constant (K(t)). In addition, semi-quantitative RT-PCR revealed that treatment of (+)pentazocine increased PEPT1 mRNA in Caco-2 cells in a concentration-dependent manner. These data suggest that sigma(1) receptor ligand (+)pentazocine up-regulates PEPT1 in Caco-2 cells at the level of increased mRNA, causing an increase in the density of the transporter protein in the cell membrane.  相似文献   

14.
The ydgR gene of Escherichia coli encodes a protein of the proton-dependent oligopeptide transporter (POT) family. We cloned YdgR and overexpressed the His-tagged fusion protein in E. coli BL21 cells. Bacterial growth inhibition in the presence of the toxic phosphonopeptide alafosfalin established YgdR functionality. Transport was abolished in the presence of the proton ionophore carbonyl cyanide p-chlorophenylhydrazone, suggesting a proton-coupled transport mechanism. YdgR transports selectively only di- and tripeptides and structurally related peptidomimetics (such as aminocephalosporins) with a substrate recognition pattern almost identical to the mammalian peptide transporter PEPT1. The YdgR protein was purified to homogeneity from E. coli membranes. Blue native-polyacrylamide gel electrophoresis and transmission electron microscopy of detergent-solubilized YdgR suggest that it exists in monomeric form. Transmission electron microscopy revealed a crown-like structure with a diameter of approximately 8 nm and a central density. These are the first structural data obtained from a proton-dependent peptide transporter, and the YgdR protein seems an excellent model for studies on substrate and inhibitor interactions as well as on the molecular architecture of cell membrane peptide transporters.  相似文献   

15.
Protein feeding is known to decrease hunger and subsequent food intake in animals and humans. It has also been suggested that glucose appearance into portal vein, as occurring during meal assimilation, may induce comparable effects. Here, we connect these previous observations by reporting that intestinal gluconeogenesis (i.e., de novo synthesis of glucose) is induced during the postabsorptive time (following food digestion) in rats specifically fed on protein-enriched diet. This results in glucose release into portal blood, counterbalancing the lowering of glycemia resulting from intestinal glucose utilization. Comparable infusions into the portal vein of control postabsorptive rats (fed on starch-enriched diet) decrease food consumption and activate the hypothalamic nuclei regulating food intake. Similar hypothalamic activation occurs on protein feeding. All these effects are absent after denervation of the portal vein. Thus, portal sensing of intestinal gluconeogenesis may be a novel mechanism connecting the macronutrient composition of diet to food intake.  相似文献   

16.
Spermatogenesis is generally viewed as being resistant to reduced food intake in inbred strains of adult mammals. This consensus stems from studies that have failed to place testicular responses within the context of a species' reproductive characteristics. We exposed two species of wild rodents, house mice and deer mice, to a mild but sustained food restriction (30% reduction of ad libitum consumption for 5 weeks). Reproductive adjustments made by each species to inanition were strikingly different. Food restriction failed to modify spermatogenesis in house mice, but evoked a continuum of testicular responses in deer mice ranging from normal spermatogenesis to azoospermia. These findings have several novel implications: 1) modest food restriction evokes species-specific adjustments in testicular function, and 2) intraspecific variation in spermatogenesis suggests robust individual differences in sensitivity to alterations in food intake. Taken together, our findings underscore the importance of considering the effects of food intake on male reproduction within the framework of a species' physiological and evolutionary background.  相似文献   

17.
Consumption of a high-fat (HF) diet results in insulin resistance and glucose intolerance. Weight loss is often recommended to reverse these metabolic alterations and the use of a high-protein (HP), low-carbohydrate diet is encouraged. In lean rats, consumption of a HP diet improves glycemic control. However, it is unknown whether this diet has a similar effectiveness in rodents with impaired glucose tolerance. Rats were fed a HF or a chow (CH) diet for 6 weeks and then switched to a HP diet or a CH or pair-fed (PF) to the amount of kcals consumed per day by the HP group. Following the diet switch, body weight gain was attenuated as compared to HF rats, and similar between HP, CH, and PF rats. Despite similar weight progression, HP and PF rats had a significant decrease in body fat after 2 weeks, as compared to HF rats. In contrast, CH rats did not show this effect. Glucose tolerance was attenuated more quickly in HP rats than in CH or PF rats. These results indicate that a HP diet may be more effective than a balanced diet for improving glycemic control in overweight individuals.  相似文献   

18.
While diet-induced obesity has been exclusively attributed to increased caloric intake from fat, animals fed a high-fat diet (HFD) ad libitum (ad lib) eat frequently throughout day and night, disrupting the normal feeding cycle. To test whether obesity and metabolic diseases result from HFD or disruption of metabolic cycles, we subjected mice to either ad lib or time-restricted feeding (tRF) of a HFD for 8 hr per day. Mice under tRF consume equivalent calories from HFD as those with ad lib access yet are protected against obesity, hyperinsulinemia, hepatic steatosis, and inflammation and have improved motor coordination. The tRF regimen improved CREB, mTOR, and AMPK pathway function and oscillations of the circadian clock and their target genes' expression. These changes in catabolic and anabolic pathways altered liver metabolome and improved nutrient utilization and energy expenditure. We demonstrate in mice that tRF regimen is a nonpharmacological strategy against obesity and associated diseases.  相似文献   

19.
20.
The hallmark of NAFLD is steatosis of unknown etiology. We tested the effect of a high-protein (HP)2 diet on diet-induced steatosis in male C57BL/6 mice with and without pre-existing fatty liver. Mice were fed all combinations of semisynthetic low-fat (LF) or high-fat (HF) and low-protein (LP) or HP diets for 3 weeks. To control for reduced energy intake by HF/HP-fed mice, a pair-fed HF/LP group was included. Reversibility of pre-existing steatosis was investigated by sequentially feeding HF/LP and HF/HP diets. HP-containing diets decreased hepatic lipids to ~ 40% of corresponding LP-containing diets, were more efficient in this respect than reducing energy intake to 80%, and reversed pre-existing diet-induced steatosis. Compared to LP-containing diets, mice fed HP-containing diets showed increased mitochondrial oxidative capacity (elevated Pgc1α, mAco, and Cpt1 mRNAs, complex-V protein, and decreased plasma free and short-chain acyl-carnitines, and [C0]/[C16 + C18] carnitine ratio); increased gluconeogenesis and pyruvate cycling (increased PCK1 protein and fed plasma–glucose concentration without increased G6pase mRNA); reduced fatty-acid desaturation (decreased Scd1 expression and [C16:1n ? 7]/[C16:0] ratio) and increased long-chain PUFA elongation; a selective increase in plasma branched-chain amino acids; a decrease in cell stress (reduced phosphorylated eIF2α, and Fgf21 and Chop expression); and a trend toward less inflammation (lower Mcp1 and Cd11b expression and less phosphorylated NFκB). Conclusion: HP diets prevent and reverse steatosis independently of fat and carbohydrate intake more efficiently than a 20% reduction in energy intake. The effect appears to result from fuel-generated, highly distributed small, synergistic increases in lipid and BCAA catabolism, and a decrease in cell stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号