共查询到20条相似文献,搜索用时 15 毫秒
1.
Li Y Kim HJ Zheng C Chow WH Lim J Keenan B Pan X Lemieux B Kong H 《Nucleic acids research》2008,36(13):e79
In vitro DNA amplification methods, such as polymerase chain reaction (PCR), rely on synthetic oligonucleotide primers for initiation of the reaction. In vivo, primers are synthesized on-template by DNA primase. The bacteriophage T7 gene 4 protein (gp4) has both primase and helicase activities. In this study, we report the development of a primase-based Whole Genome Amplification (pWGA) method, which utilizes gp4 primase to synthesize primers, eliminating the requirement of adding synthetic primers. Typical yield of pWGA from 1 ng to 10 ng of human genomic DNA input is in the microgram range, reaching over a thousand-fold amplification after 1 h of incubation at 37 degrees C. The amplification bias on human genomic DNA is 6.3-fold among 20 loci on different chromosomes. In addition to amplifying total genomic DNA, pWGA can also be used for detection and quantification of contaminant DNA in a sample when combined with a fluorescent reporter dye. When circular DNA is used as template in pWGA, 10(8)-fold of amplification is observed from as low as 100 copies of input. The high efficiency of pWGA in amplifying circular DNA makes it a potential tool in diagnosis and genotyping of circular human DNA viruses such as human papillomavirus (HPV). 相似文献
2.
不同单细胞全基因组扩增方法的比较及MALBAC在辅助生殖中的应用 总被引:1,自引:0,他引:1
单细胞全基因组扩增(whole genome amplification, WGA)是指在单细胞水平对全基因组进行扩增的新技术,其原理是将分离的单个细胞的微量全基因组DNA进行扩增,获得高覆盖率的完整的基因组后进行高通量测序,用于揭示细胞异质性。目前,WGA方法主要包括引物延伸预扩增(primer extension preamplification PCR, PEP-PCR)、简并寡核苷酸引物PCR (degenerate oligonucleotide primed PCR, DOP-PCR)、多重置换扩增(multiple displacement amplification, MDA)、多次退火环状循环扩增(multiple annealing and looping-based amplification cycles, MALBAC)等。本文对不同的单细胞WGA方法的原理及应用情况分别进行了阐述,并对其扩增效率进行评价和比较,包括基因组覆盖度、均一性、重现性、SNV (single-nucleotide variants)和CNV (copy number variants)检测力等。综合对比不同单细胞WGA方法后发现,MALBAC的扩增均一性最高、等位基因脱扣率最低、重现性最好,且对于CNV和SNV的检测效果最好。本文还阐述了MALBAC技术在人类单精子减数重组、非整倍体分析以及人类卵细胞基因组研究中的应用。 相似文献
3.
A comprehensive genomic analysis of single cells is instrumental for numerous applications in tumor genetics, clinical diagnostics and forensic analyses. Here, we provide a protocol for single-cell isolation and whole genome amplification, which includes the following stages: preparation of single-cell suspensions from blood or bone marrow samples and cancer cell lines; their characterization on the basis of morphology, interphase fluorescent in situ hybridization pattern and antibody staining; isolation of single cells by either laser microdissection or micromanipulation; and unbiased amplification of single-cell genomes by either linker-adaptor PCR or GenomePlex library technology. This protocol provides a suitable template to screen for chromosomal copy number changes by conventional comparative genomic hybridization (CGH) or array CGH. Expected results include the generation of several micrograms of DNA from single cells, which can be used for CGH or other analyses, such as sequencing. Using linker-adaptor PCR or GenomePlex library technology, the protocol takes 72 or 30 h, respectively. 相似文献
4.
Garcia-Chapa M Batlle A Rekab D Rosquete MR Firrao G 《Journal of microbiological methods》2004,56(2):231-242
A method was developed for genome analysis of phytoplasmas, bacterial plant pathogens that cannot be cultivated in vitro in cell-free media. The procedure includes a CsCl-bisbenzimide gradient buoyant centrifugation followed by polymerase chain reaction (PCR)-mediated whole genome amplification. The latter step involves digestion of the DNA by a restriction enzyme with an A/T-rich recognition sequence. Due to the different A/T content in the DNA of the pathogen and its plant host, the fragments originating from phytoplasma are shorter and are preferentially amplified in the PCR reaction. Products obtained were cloned and screened by dot-blot hybridization. Results showed that about 90% of recombinant clones appeared to harbor phytoplasma specific DNA inserts. Sequencing of randomly selected clones was carried out and comparison with the NCBI database confirmed the bacterial origin for the sequences, which have been assigned a putative function. The origin of the recombinant clones was further confirmed by the generation of specific amplicons from the phytoplasma-infected plant and not from the healthy control, using PCR primers devised from the sequences of the recombinant clones. This method could be used for genome-wide comparisons between phytoplasmas. 相似文献
5.
Quantification of trace amounts of DNA is a challenge in analytical applications where the concentration of a target DNA is very low or only limited amounts of samples are available for analysis. PCR-based methods including real-time PCR are highly sensitive and widely used for quantification of low-level DNA samples. However, ordinary PCR methods require at least one copy of a specific gene sequence for amplification and may not work for a sub-genomic amount of DNA. We suggest a real-time whole genome amplification method adopting the degenerate oligonucleotide primed PCR (DOP-PCR) for quantification of sub-genomic amounts of DNA. This approach enabled quantification of sub-picogram amounts of DNA independently of their sequences. When the method was applied to the human placental DNA of which amount was accurately determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES), an accurate and stable quantification capability for DNA samples ranging from 80 fg to 8 ng was obtained. In blind tests of laboratory-prepared DNA samples, measurement accuracies of 7.4%, -2.1%, and -13.9% with analytical precisions around 15% were achieved for 400-pg, 4-pg, and 400-fg DNA samples, respectively. A similar quantification capability was also observed for other DNA species from calf, E. coli, and lambda phage. Therefore, when provided with an appropriate standard DNA, the suggested real-time DOP-PCR method can be used as a universal method for quantification of trace amounts of DNA. 相似文献
6.
7.
Genetic characterization of field isolates and clinical specimens of filarial nematodes is often limited by a shortage of DNA; therefore, we evaluated a multiple displacement amplification (MDA) based whole genome amplification method. The quality of amplified DNA was examined by conventional PCR, real-time PCR, and DNA hybridization. MDA of 5.0 ng of adult Brugia malayi DNA and one-fifteenth of the DNA isolated from a single microfilaria resulted in 6.3 and 4.2 μg of amplified DNA, respectively. Amplified DNA was equivalent to native genomic DNA for hybridization to B. malayi BAC library clones or to an oligonucleotide microarray with approximately 18,000 filarial DNA sequences. MDA is useful for whole genome amplification of filarial DNA from very small amounts of starting material. This technology will permit detailed studies of genetic diversity that were not previously feasible. 相似文献
8.
Identification of small gains and losses in single cells after whole genome amplification on tiling oligo arrays 下载免费PDF全文
Jochen B. Geigl Anna C. Obenauf Julie Waldispuehl-Geigl Eva M. Hoffmann Martina Auer Martina H?rmann Maria Fischer Zlatko Trajanoski Michael A. Schenk Lars O. Baumbusch Michael R. Speicher 《Nucleic acids research》2009,37(15):e105
Clinical DNA is often available in limited quantities requiring whole-genome amplification for subsequent genome-wide assessment of copy-number variation (CNV) by array-CGH. In pre-implantation diagnosis and analysis of micrometastases, even merely single cells are available for analysis. However, procedures allowing high-resolution analyses of CNVs from single cells well below resolution limits of conventional cytogenetics are lacking. Here, we applied amplification products of single cells and of cell pools (5 or 10 cells) from patients with developmental delay, cancer cell lines and polar bodies to various oligo tiling array platforms with a median probe spacing as high as 65 bp. Our high-resolution analyses reveal that the low amounts of template DNA do not result in a completely unbiased whole genome amplification but that stochastic amplification artifacts, which become more obvious on array platforms with tiling path resolution, cause significant noise. We implemented a new evaluation algorithm specifically for the identification of small gains and losses in such very noisy ratio profiles. Our data suggest that when assessed with sufficiently sensitive methods high-resolution oligo-arrays allow a reliable identification of CNVs as small as 500 kb in cell pools (5 or 10 cells), and of 2.6–3.0 Mb in single cells. 相似文献
9.
Detailed chromosomal and molecular genetic analysis of single cells by whole genome amplification and comparative genomic hybridisation. 总被引:26,自引:0,他引:26
Molecular genetic analysis of isolated single cells and other minute DNA samples is limited because there is insufficient DNA to perform more than one independent PCR amplification. One solution to this problem is to first amplify the entire genome, thus providing enough DNA for numerous subsequent PCRs. In this study we have investigated four different methods of whole genome amplification performed on single cells, and have identified a protocol that generates sufficient quantities of DNA for comparative genomic hybridisation (CGH) as well as more than 90 independent amplification reactions. Thus, numerous specific loci and the copy number of every chromosome can be assessed in a single cell. We report here the first reliable application of CGH to single cells from human preimplantation embryos (blastomeres) and to single fibroblasts, buccal cells and amniocytes. 相似文献
10.
Whole genome amplification strategy for forensic genetic analysis using single or few cell equivalents of genomic DNA 总被引:6,自引:0,他引:6
Evidentiary items sometimes contain an insufficient quantity of DNA for routine forensic genetic analysis. These so-called low copy number DNA samples (< 100 pg of genomic DNA) often fall below the sensitivity limitations of routine DNA analysis methods. Theoretically, one way of making such intractable samples amenable to analysis would be to increase the number of starting genomes available for subsequent STR (short tandem repeat) analysis by a whole genome amplification strategy (WGA). Although numerous studies employing WGA have focused primarily on clinical applications, few in-depth studies have been conducted to evaluate the potential usefulness of these methods in forensic casework. After an initial evaluation of existing methods, a modified WGA strategy was developed that appears to have utility for low copy number forensic casework specimens. The method employs a slight, but important, modification of the "improved primer extension preamplification PCR" method (I-PEP-PCR), which we term mIPEP (modified-I-PEP-PCR). Complete autosomal STR and Y-STR (Y chromosome short tandem repeat) profiles were routinely obtained with 5 pg of template DNA, which is equivalent to 1-2 diploid cells. Remarkably, partial Y- and autosomal STR profiles were obtained from mIPEP-treated DNA recovered from bloodstains exposed to the outside environment for 1 year whereas non-mIPEP-treated samples did not produce profiles. STR profiles were obtained from contact DNA from single dermal ridge fingerprints when the DNA was subjected to prior mIPEP amplification but not when the mIPEP step was omitted. 相似文献
11.
Pugh TJ Delaney AD Farnoud N Flibotte S Griffith M Li HI Qian H Farinha P Gascoyne RD Marra MA 《Nucleic acids research》2008,36(13):e80
Large-scale copy number variants (CNVs) have recently been recognized to play a role in human genome variation and disease. Approaches for analysis of CNVs in small samples such as microdissected tissues can be confounded by limited amounts of material. To facilitate analyses of such samples, whole genome amplification (WGA) techniques were developed. In this study, we explored the impact of Phi29 multiple-strand displacement amplification on detection of CNVs using oligonucleotide arrays. We extracted DNA from fresh frozen lymph node samples and used this for amplification and analysis on the Affymetrix Mapping 500k SNP array platform. We demonstrated that the WGA procedure introduces hundreds of potentially confounding CNV artifacts that can obscure detection of bona fide variants. Our analysis indicates that many artifacts are reproducible, and may correlate with proximity to chromosome ends and GC content. Pair-wise comparison of amplified products considerably reduced the number of apparent artifacts and partially restored the ability to detect real CNVs. Our results suggest WGA material may be appropriate for copy number analysis when amplified samples are compared to similarly amplified samples and that only the CNVs with the greatest significance values detected by such comparisons are likely to be representative of the unamplified samples. 相似文献
12.
Lu Y Gioia-Patricola L Gomez JV Plummer M Franceschi S Kato I Canzian F 《BioTechniques》2005,39(4):511-515
While DNA of good quality and sufficient amount can be obtained easily from whole blood, buccal swabs, surgical specimens, or cell lines, these DNA-rich sources are not always available. This is particularly the case in studies for which biological specimens were collected when genotyping assays were not widely available. In those studies, serum or plasma is often the only source of DNA. Newly developed whole genome amplification (WGA) methods, based on phi29 polymerase, may play a significant role in recovering DNA in such instances. We tested a total of 528 plasma samples kept in storage at -40 degrees C for approximately 10 years for 8 single nucleotide polymorphisms (SNPs) using the 5' exonuclease (TaqMan) assay. These specimens yielded undetectable levels of DNA following extraction with an affinity column but produced an average 52.7 microg (standard deviation of 31.2 microg) of DNA when column-extracted DNA was used as a template for WGA. This increased the genotyping success rate from 54% to 93%. There were only 3 disagreements out of 364 paired genotyping results for pre- and post-WGA DNAs, indicating an error rate of 0.82%. These results are encouraging for expanding the use of poor DNA resources in genotyping studies. 相似文献
13.
Saccharomyces cerevisiae was transformed for higher ethanol tolerance by error-prone whole genome amplification. The resulting PCR products were transformed
back to the parental strain for homologous recombination to create a library of mutants with the perturbed genomic networks.
A few rounds of transformation led to the isolation of mutants that grew in 9% (v/v) ethanol and 100 g glucose l−1 compared to untransformed yeast which grew only at 6% (v/v) ethanol and 100 g glucose l−1. 相似文献
14.
The availability of large amounts of genomic DNA is of critical importance for many of the molecular biology assays used in the analysis of human disease. However, since the amount of patient tissue available is often limited and as particular foci of interest may consist of only a few hundred cells, the yield of DNA is often insufficient for extensive analysis. To address this problem, several whole genome amplification (WGA) methodologies have been developed. Initial WGA approaches were based on the polymerase chain reaction (PCR). However, recent reports have described the use of non-PCR-based linear amplification protocols for WGA. Using these methods, it is possible to generate microgram quantities of DNA starting with as little as 1mg of genomic DNA. This review will provide an overview of WGA approaches and summarize some of the uses for amplified DNA in various high-throughput genetic applications. 相似文献
15.
Genetic analysis of arbuscular mycorrhizal (AM) fungi relies on analysis of single spores. The low DNA content makes it difficult to perform large scale molecular analysis. We present the application of Phi29 DNA polymerase mediated strand displacement amplification (SDA) to genomic DNA extracted from single spores of Glomus and Gigaspora species to address this problem. The genome coverage of the SDA process was evaluated by PCR amplification of the beta-tubulin1 gene and part of the rDNA cluster present in AM fungi. The fidelity of SDA was evaluated further by sequencing the Glomus intraradices ITS1 variants to detect the four ITS1 variants previously identified for this fungus. 相似文献
16.
Jennifer Frenck Holbrook Deborah Stabley Katia Sol-Church 《Journal of biomolecular techniques》2005,16(2):125-133
The whole genome amplification (WGA) protocol evaluated during this study, GenomiPhi DNA amplification kit, is a novel method that is not based on polymerase chain reaction but rather relies on the highly processive and high fidelity Phi29 DNA polymerase to replicate linear genomic DNA by multiple strand displacement amplification. As little as 1 ng of genomic DNA template is sufficient to produce microgram quantities of high molecular weight DNA. The question explored during this study is whether such a WGA method is appropriate to reliably replenish and even recover depleted DNA samples that can be used for downstream genetic analysis. A series of human DNA samples was tested in our laboratory and validated using such analytical methods as gene-specific polymerase chain reaction, direct sequencing, microsatellite marker analysis, and single nucleotide polymorphism allelic discrimination using TaqMan and Pyrosequencing chemistries. Although degraded genomic DNA is not a good template for Phi29 WGA, this method is a powerful tool to replenish depleted DNA stocks and to increase the amount of sample for which biological tissue availability is scarce. The testing performed during the validation phase of the study indicates no discernable difference between WGA samples and the original DNA templates. Thus, GenomiPhi WGA can be used to increase precious or depleted DNA stocks, thereby extending the life of a family-based linkage analysis project and increasing statistical power. 相似文献
17.
Brandi L. Cantarel Yunping Lei Daniel Weaver Huiping Zhu Andrew Farrell Graeme Benstead-Hume Justin Reese Richard H. Finnell 《BMC genomics》2015,16(1)
Background
Deidentified newborn screening bloodspot samples (NBS) represent a valuable potential resource for genomic research if impediments to whole exome sequencing of NBS deoxyribonucleic acid (DNA), including the small amount of genomic DNA in NBS material, can be overcome. For instance, genomic analysis of NBS could be used to define allele frequencies of disease-associated variants in local populations, or to conduct prospective or retrospective studies relating genomic variation to disease emergence in pediatric populations over time. In this study, we compared the recovery of variant calls from exome sequences of amplified NBS genomic DNA to variant calls from exome sequencing of non-amplified NBS DNA from the same individuals.Results
Using a standard alignment-based Genome Analysis Toolkit (GATK), we find 62,000–76,000 additional variants in amplified samples. After application of a unique kmer enumeration and variant detection method (RUFUS), only 38,000–47,000 additional variants are observed in amplified gDNA. This result suggests that roughly half of the amplification-introduced variants identified using GATK may be the result of mapping errors and read misalignment.Conclusions
Our results show that it is possible to obtain informative, high-quality data from exome analysis of whole genome amplified NBS with the important caveat that different data generation and analysis methods can affect variant detection accuracy, and the concordance of variant calls in whole-genome amplified and non-amplified exomes.Electronic supplementary material
The online version of this article (doi:10.1186/s12864-015-1747-2) contains supplementary material, which is available to authorized users. 相似文献18.
Uchigasaki Seisaku Tie Jian Sobashima Erina Shimada Naomi 《Molecular biology reports》2018,45(5):925-929
Molecular Biology Reports - Analysis of DNA polymorphisms are the primary technique used for personal identification in forensic cases. However, DNA samples collected as evidence from crime scenes... 相似文献
19.
Background
Whole genome amplification (WGA) promises to eliminate practical molecular genetic analysis limitations associated with genomic DNA (gDNA) quantity. We evaluated the performance of multiple displacement amplification (MDA) WGA using gDNA extracted from lymphoblastoid cell lines (N = 27) with a range of starting gDNA input of 1–200 ng into the WGA reaction. Yield and composition analysis of whole genome amplified DNA (wgaDNA) was performed using three DNA quantification methods (OD, PicoGreen® and RT-PCR). Two panels of N = 15 STR (using the AmpFlSTR® Identifiler® panel) and N = 49 SNP (TaqMan®) genotyping assays were performed on each gDNA and wgaDNA sample in duplicate. gDNA and wgaDNA masses of 1, 4 and 20 ng were used in the SNP assays to evaluate the effects of DNA mass on SNP genotyping assay performance. A total of N = 6,880 STR and N = 56,448 SNP genotype attempts provided adequate power to detect differences in STR and SNP genotyping performance between gDNA and wgaDNA, and among wgaDNA produced from a range of gDNA templates inputs.Results
The proportion of double-stranded wgaDNA and human-specific PCR amplifiable wgaDNA increased with increased gDNA input into the WGA reaction. Increased amounts of gDNA input into the WGA reaction improved wgaDNA genotyping performance. Genotype completion or genotype concordance rates of wgaDNA produced from all gDNA input levels were observed to be reduced compared to gDNA, although the reduction was not always statistically significant. Reduced wgaDNA genotyping performance was primarily due to the increased variance of allelic amplification, resulting in loss of heterozygosity or increased undetermined genotypes. MDA WGA produces wgaDNA from no template control samples; such samples exhibited substantial false-positive genotyping rates.Conclusion
The amount of gDNA input into the MDA WGA reaction is a critical determinant of genotyping performance of wgaDNA. At least 10 ng of lymphoblastoid gDNA input into MDA WGA is required to obtain wgaDNA TaqMan® SNP assay genotyping performance equivalent to that of gDNA. Over 100 ng of lymphoblastoid gDNA input into MDA WGA is required to obtain optimal STR genotyping performance using the AmpFlSTR® Identifiler® panel from wgaDNA equivalent to that of gDNA.20.
GenoFrag: software to design primers optimized for whole genome scanning by long-range PCR amplification 总被引:2,自引:0,他引:2
Ben Zakour N Gautier M Andonov R Lavenier D Cochet MF Veber P Sorokin A Le Loir Y 《Nucleic acids research》2004,32(1):17-24
Genome sequence data can be used to analyze genome plasticity by whole genome PCR scanning. Small sized chromosomes can indeed be fully amplified by long-range PCR with a set of primers designed using a reference strain and applied to several other strains. Analysis of the resulting patterns can reveal the genome plasticity. To facilitate such analysis, we have developed GenoFrag, a software package for the design of primers optimized for whole genome scanning by long-range PCR. GenoFrag was developed for the analysis of Staphylococcus aureus genome plasticity by whole genome amplification in ~10 kb-long fragments. A set of primers was generated from the genome sequence of S.aureus N315, employed here as a reference strain. Two subsets of primers were successfully used to amplify two portions of the N315 chromosome. This experimental validation demonstrates that GenoFrag is a robust and reliable tool for primer design and that whole genome PCR scanning can be envisaged for the analysis of genome diversity in S.aureus, one of the major public health concerns worldwide. 相似文献