首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Disorders of sex development (DSD), ranging in severity from mild genital abnormalities to complete sex reversal, represent a major concern for patients and their families. DSD are often due to disruption of the genetic programs that regulate gonad development. Although some genes have been identified in these developmental pathways, the causative mutations have not been identified in more than 50% 46,XY DSD cases. We used the Affymetrix Genome-Wide Human SNP Array 6.0 to analyse copy number variation in 23 individuals with unexplained 46,XY DSD due to gonadal dysgenesis (GD). Here we describe three discrete changes in copy number that are the likely cause of the GD. Firstly, we identified a large duplication on the X chromosome that included DAX1 (NR0B1). Secondly, we identified a rearrangement that appears to affect a novel gonad-specific regulatory region in a known testis gene, SOX9. Surprisingly this patient lacked any signs of campomelic dysplasia, suggesting that the deletion affected expression of SOX9 only in the gonad. Functional analysis of potential SRY binding sites within this deleted region identified five putative enhancers, suggesting that sequences additional to the known SRY-binding TES enhancer influence human testis-specific SOX9 expression. Thirdly, we identified a small deletion immediately downstream of GATA4, supporting a role for GATA4 in gonad development in humans. These CNV analyses give new insights into the pathways involved in human gonad development and dysfunction, and suggest that rearrangements of non-coding sequences disturbing gene regulation may account for significant proportion of DSD cases.  相似文献   

3.

BACKGROUND:

Determination of sex is the result of cascade of molecular events that cause undifferentiated bipotential gonad to develop as a testis or an ovary. A series of genes such as SRY, steroidogenic factor-1 (SF1), AR, SRD5 α, Desert hedgehog (DHH) etc., have been reported to have a significant role in development of sex in the fetus and secondary sexual characteristics at the time of puberty. Recently, mitogen activated protein kinase kinase kinase 1 (MAP3K1) gene was found to be associated with 46, XY disorders of sex development (DSD).

AIM:

The present study is focused to identify mutations in MAP3K1 gene in the cohort of 10 Indian patients with 46,XY DSD including one family with two affected sisters. These patients were already screened for SRY, SF1 and DHH gene, but no mutation was observed in any of these genes.

MATERIALS AND METHODS:

The entire coding regions of MAP3K1 were amplified and sequenced using the gene specific primers.

RESULTS AND DISCUSSIONS:

Sequence analysis of MAP3K1 gene has revealed four variants including one missense, two silent and one deletion mutation. The missense mutation p.D806N was observed in four patients with hypospadias. Two patients showed the presence of silent mutation p.Q1028Q present in exon 14. Another silent mutation p.T428T was observed in a patient with gonadal dysgenesis. We have also observed one deletion mutation p. 942insT present in two patients. The pathogenicity of the missense mutation p.D806N was carried out using in-silico approach. Sequence homology analysis has revealed that the aspartate at 806 was found to be well-conserved across species, indicated the importance of this residue. The score for polyphen analysis of this mutation was found to be 0.999 indicating to be pathogenic mutation. Since, p.D806N mutation was found to be important residue; it might contribute to sexual development. We have reported the presence of mutations/polymorphism in MAP3K1 gene. All the mutations were found to be polymorphism upon comparing to single nucleotide polymorphism database. However, in-silico analysis of the missense mutation revealed to be a pathogenic mutation.  相似文献   

4.
5.
6.
7.
8.
9.
More than 50% of children with severe 46,XY disorders of sex development (DSD) do not have a definitive etiological diagnosis. Besides gonadal dysgenesis, defects in androgen biosynthesis, and abnormalities in androgen sensitivity, the Mastermind-like domain containing 1 (MAMLD1) gene, which was identified as critical for the development of male genitalia, may be implicated. The present study investigated whether MAMLD1 is implicated in cases of severe 46,XY DSD and whether routine sequencing of MAMLD1 should be performed in these patients.Seventy children with severe non-syndromic 46,XY DSD of unknown etiology were studied. One hundred and fifty healthy individuals were included as controls. Direct sequencing of the MAMLD1, AR, SRD5A2 and NR5A1 genes was performed. The transactivation function of the variant MAMLD1 proteins was quantified by the luciferase method.TWO NEW MUTATIONS WERE IDENTIFIED: p.S143X (c.428C>A) in a patient with scrotal hypospadias with microphallus and p.P384L (c.1151C>T) in a patient with penile hypospadias with microphallus. The in vitro functional study confirmed no residual transactivating function of the p.S143X mutant and a significantly reduced transactivation function of the p.P384L protein (p = 0.0032). The p.P359S, p.N662S and p.H347Q variants are also reported with particularly high frequency of the p.359T- p.662G haplotype in the DSD patients.Severe undervirilization in XY newborns can reveal mutations of MAMLD1. MAMLD1 should be routinely sequenced in these patients with otherwise normal AR, SRD5A2 and NR5A1genes.  相似文献   

10.
11.
12.
Despite the identification of an increasing number of genes involved in sex determination and differentiation, no cause can be attributed to most cases of 46, XY gonadal dysgenesis, approximately 20% of 46, XX males and the majority of subjects with 46, XX true hermaphroditism. Perhaps the most interesting candidate for involvement in sexual development is SOX3, which belongs to the same family of proteins (SOX) as SRY and SOX9, both of which are involved in testis differentiation. As SOX3 is the most likely evolutionary precursor to SRY, it has been proposed that it has retained a role in testis differentiation. Therefore, we screened the coding region and the 5 and 3 flanking region of the SOX3 gene for mutations by means of single-stranded conformation polymorphism and heteroduplex analysis in eight subjects with 46, XX sex reversal (SRY negative) and 25 subjects with 46, XY gonadal dysgenesis. Although no mutations were identified, a nucleotide polymorphism (1056C/T) and a unique synonymous nucleotide change (1182A/C) were detected in a subject with 46, XY gonadal dysgenesis. The single nucleotide polymorphism had a heterozygosity rate of 5.1% (in a control population) and may prove useful for future X-inactivation studies. The absence of SOX3 mutations in these patients suggests that SOX3 is not a cause of abnormal male sexual development and might not be involved in testis differentiation.An erratum to this article can be found at  相似文献   

13.
Both otoacoustic emissions (OAEs) and auditory evoked potentials (AEPs) are sexually dimorphic, and both are believed to be influenced by prenatal androgen exposure. OAEs and AEPs were collected from people affected by 1 of 3 categories of disorders of sex development (DSD) — (1) women with complete androgen insensitivity syndrome (CAIS); (2) women with congenital adrenal hyperplasia (CAH); and (3) individuals with 46,XY DSD including prenatal androgen exposure who developed a male gender despite initial rearing as females (men with DSD). Gender identity (GI) and role (GR) were measured both retrospectively and at the time of study participation, using standardized questionnaires. The main objective of this study was to determine if patterns of OAEs and AEPs correlate with gender in people affected by DSD and in controls. A second objective was to assess if OAE and AEP patterns differed according to degrees of prenatal androgen exposure across groups. Control males, men with DSD, and women with CAH produced fewer spontaneous OAEs (SOAEs) – the male-typical pattern – than control females and women with CAIS. Additionally, the number of SOAEs produced correlated with gender development across all groups tested. Although some sex differences in AEPs were observed between control males and females, AEP measures did not correlate with gender development, nor did they vary according to degrees of prenatal androgen exposure, among people with DSD. Thus, OAEs, but not AEPs, may prove useful as bioassays for assessing early brain exposure to androgens and predicting gender development in people with DSD.  相似文献   

14.
Patients with Disorders of Sex Development (DSD), especially those with gonadal dysgenesis and hypovirilization are at risk of developing malignant type II germ cell tumors/cancer (GCC) (seminoma/dysgerminoma and nonseminoma), with either carcinoma in situ (CIS) or gonadoblastoma (GB) as precursor lesion. In 10-15% of 46,XY gonadal dysgenesis cases (i.e., Swyer syndrome), SRY mutations, residing in the HMG (High Mobility Group) domain, are found to affect nuclear transport or binding to and bending of DNA. Frasier syndrome (FS) is characterized by gonadal dysgenesis with a high risk for development of GB as well as chronic renal failure in early adulthood, and is known to arise from a splice site mutation in intron 9 of the Wilms' tumor 1 gene (WT1). Mutations in SRY as well as WT1 can lead to diminished expression and function of SRY, resulting in sub-optimal SOX9 expression, Sertoli cell formation and subsequent lack of proper testicular development. Embryonic germ cells residing in this unfavourable micro-environment have an increased risk for malignant transformation. Here a unique case of a phenotypically normal female (age 22 years) is reported, presenting with primary amenorrhoea, later diagnosed as hypergonadotropic hypogonadism on the basis of 46,XY gonadal dygenesis with a novel missense mutation in SRY. Functional in vitro studies showed no convincing protein malfunctioning. Laparoscopic examination revealed streak ovaries and a normal, but small, uterus. Pathological examination demonstrated bilateral GB and dysgerminoma, confirmed by immunohistochemistry. Occurrence of a delayed progressive kidney failure (focal segmental glomerular sclerosis) triggered analysis of WT1, revealing a pathogenic splice-site mutation in intron 9. Analysis of the SRY gene in an additional five FS cases did not reveal any mutations. The case presented shows the importance of multi-gene based diagnosis of DSD patients, allowing early diagnosis and treatment, thus preventing putative development of an invasive cancer.  相似文献   

15.
Investigations of humans with disorders of sex development (DSDs) resulted in the discovery of many of the now-known mammalian sex-determining genes, including SRY, RSPO1, SOX9, NR5A1, WT1, NR0B1, and WNT4. Here, the locus for an autosomal sex-determining gene was mapped via linkage analysis in two families with 46,XY DSD to the long arm of chromosome 5 with a combined, multipoint parametric LOD score of 6.21. A splice-acceptor mutation (c.634-8T>A) in MAP3K1 segregated with the phenotype in the first family and disrupted RNA splicing. Mutations were demonstrated in the second family (p.Gly616Arg) and in two of 11 sporadic cases (p.Leu189Pro, p.Leu189Arg)-18% prevalence in this cohort of sporadic cases. In cultured primary lymphoblastoid cells from family 1 and the two sporadic cases, these mutations altered the phosphorylation of the downstream targets, p38 and ERK1/2, and enhanced binding of RHOA to the MAP3K1 complex. Map3k1 within the syntenic region was expressed in the embryonic mouse gonad prior to, and after, sex determination. Thus, mutations in MAP3K1 that result in 46,XY DSD with partial or complete gonadal dysgenesis implicate this pathway in normal human sex determination.  相似文献   

16.
Children exhibit gender-typical preferences in play, toys, activities and interests, and playmates. Several studies suggest that high concentrations of pre- and postnatal androgens contribute to male-typical behavior development, whereas female-typical behavior develops in the absence of high androgens levels. This study aims to explore the consequences of hypoandrogenization on gender-typical behavior in children who have an XY karyotype and disorder of sex development (DSD). Participants included 33 children (ages 2-12 years) with an XY karyotype and DSD; 21 reared as girls and 12 reared as boys. Children's preferred activities and interests and playmate preferences were assessed with parent report questionnaires, a structured free-play task, and choice of a toy to keep as a gift. Participant's responses were compared to those of children recruited in a pre-school and elementary school survey (N=166). In this study, the degree of hypoandrogenization as indicated by genital stage and diagnosis showed a significant relationship to nearly all of the gender-related behaviors assessed, supporting the hypothesis that masculinization of gender role behavior is a function of prenatal androgen exposure. Despite the fact that children with partial androgen effects reared as girls showed increased "boyish" behaviors, they did not show increased signs of gender identity confusion or instability on a group level. We conclude that androgen exposure plays a decisive role in the development of gender-typical behavior in children with XY karyotype and DSD conditions.  相似文献   

17.
18.
19.
Summary This is the first report in the literature of siblings affected with Down syndrome; one sibling had a nondisjunction of chromosome 21 and the other a (21q;21q) translocation.  相似文献   

20.

Background

Congenital adrenal hyperplasia due to 21-hydroxylase deficiency is the most common presentation of a disorder of sex development (DSD) in genetic females. A report of prenatal growth retardation in cases of 46,XY DSD, coupled with observations of below-optimal final height in both males and females with congenital adrenal hyperplasia due to 21-hydroxylase deficiency, prompted us to investigate prenatal growth in the latter group. Additionally, because girls with congenital adrenal hyperplasia are exposed to increased levels of androgens in the absence of a male sex-chromosome complement, the presence or absence of typical sex differences in growth of newborns would support or refute a hormonal explanation for these differences.

Methods

In total, 105 newborns with congenital adrenal hyperplasia were identified in our database. Gestational age (weeks), birth weight (kg), birth length (cm) and parental heights (cm) were obtained. Mid-parental height was considered in the analyses.

Results

Mean birth weight percentile for congenital adrenal hyperplasia was 49.26%, indicating no evidence of a difference in birth weight from the expected standard population median of 50th percentile (P > 0.05). The expected sex difference in favor of heavier males was not seen (P > 0.05). Of the 105 subjects, 44 (27%; 34 females, 10 males) had birth length and gestational age recorded in their medical chart. Mean birth length for this subgroup was 50.90 cm (63rd percentile), which differed from the expected standard population median of 50th percentile (P = 0.0082). The expected sex difference in favor of longer males was also not seen (P > 0.05).

Conclusion

The prenatal growth retardation patterns reported in cases of 46,XY disorders of sex development do not generalize to people with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Sex differences in body weight and length typically seen in young infants were not seen in the subjects who participated in this study. We speculate that these differences were ameliorated in this study because of increased levels of prenatal androgens experienced by the females infants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号