首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evidence for species diversity effects on ecosystem functions is mainly based on studies not explicitly addressing local or regional processes regulating coexistence or the importance of community structure in terms of species evenness. In experimental communities of marine benthic microalgae, we altered the successional stages and thus the strength of local species interactions by manipulating rates of dispersal and disturbance. The treatments altered realized species richness, evenness and community biomass. For species richness, dispersal mattered only at high disturbance rates; when opening new space, dispersal led to maximized richness at intermediate dispersal rates. Evenness, in contrast, decreased with dispersal at low or no disturbance, i.e. at late successional stages. Community biomass showed a non-linear hump-shaped response to increasing dispersal at all disturbance levels. We found a positive correlation between richness and biomass at early succession, and a strong negative correlation between evenness and biomass at late succession. In early succession both community biomass and richness depend directly on dispersal from the regional pool, whereas the late successional pattern shows that if interactions allow the most productive species to become dominant, diverting resources from this species (i.e. higher evenness) reduces production. Our study emphasizes the difference in biodiversity–function relationships over time, as different mechanisms contribute to the regulation of richness and evenness in early and late successional stages.  相似文献   

2.
Plant interactions with soil biota could have a significant impact on plant successional trajectory by benefiting plants in a particular successional stage over others. The influence of soil mutualists such as mycorrhizal fungi is thought to be an important feedback component, yet they have shown benefits to both early and late successional plants that could either retard or accelerate succession. Here we first determine if arbuscular mycorrhizal (AM) fungi differ among three stages of primary sand dune succession and then if they alter growth of plants from particular successional stages. We isolated AM fungal inoculum from early, intermediate or late stages of a primary dune succession and compared them using cloning and sequencing. We then grew eight plant species that dominate within each of these successional stages with each AM fungal inoculum. We measured fungal growth to assess potential AM functional differences and plant growth to determine if AM fungi positively or negatively affect plants. AM fungi isolated from early succession were more phylogenetically diverse relative to intermediate and late succession while late successional fungi consistently produced more soil hyphae and arbuscules. Despite these differences, inocula from different successional stages had similar effects on the growth of all plant species. Host plant biomass was not affected by mycorrhizal inoculation relative to un‐inoculated controls. Although mycorrhizal communities differ among primary dune successional stages and formed different fungal structures, these differences did not directly affect the growth of plants from different dune successional stages in our experiment and therefore may be less likely to directly contribute to plant succession in sand dunes.  相似文献   

3.
While ecological dogma holds that rates of community change decrease over the course of succession, this idea has yet to be tested systematically across a wide variety of successional sequences. Here, I review and define several measures of community change rates for species presence-absence data and test for temporal patterns therein using data acquired from 16 studies comprising 62 successional sequences. Community types include plant secondary and primary succession as well as succession of arthropods on defaunated mangrove islands and carcasses. Rates of species gain generally decline through time, whereas rates of species loss display no systematic temporal trends. As a result, percent community turnover generally declines while species richness increases--both in a decelerating manner. Although communities with relatively minor abiotic and dispersal limitations (e.g., plant secondary successional communities) exhibit rapidly declining rates of change, limitations arising from harsh abiotic conditions or spatial isolation of the community appear to substantially alter temporal patterns in rates of successional change.  相似文献   

4.
Question: Are changes in plant species composition, functional group composition and rates of species turnover consistent among early successional wetlands, and what is the role of landscape context in determining the rate of succession? Location: Twenty‐four restored wetlands in Illinois, USA. Methods: We use 4 years of vegetation sampling data from each site to describe successional trends and rates of species turnover in wetlands. We quantify: (1) the rate at which composition changes from early‐successional to late‐successional species and functional groups, as indicated by site movement in ordination space over time, and (2) the rate of change in the colonization and local extinction of individual species. We correlate the pace of succession to site area, isolation and surrounding land cover. Results: Some commonalities in successional trends were evident among sites. Annual species were replaced by clonal perennials, and colonization rates declined over time. However, differences among sites outweighed site age in determining species composition, and the pace of succession was influenced by a site's landscape setting. Rates of species turnover were higher in smaller wetlands. In addition, wetlands in agricultural landscapes underwent succession more rapidly, as indicated by a rapid increase in dominance by late‐successional plants. Conclusions: Although the outcome of plant community succession in restored wetlands was somewhat predictable, species composition and the pace of succession varied among sites. The ability of restoration practitioners to accelerate succession through active manipulation may be contingent upon landscape context.  相似文献   

5.
Secondary succession is well‐understood, to the point of being predictable for plant communities, but the successional changes in plant‐herbivore interactions remains poorly explored. This is particularly true for tropical forests despite the increasing importance of early successional stages in tropical landscapes. Deriving expectations from successional theory, we examine properties of plant‐herbivore interaction networks while accounting for host phylogenetic structure along a succession chronosequence in montane rainforest in Papua New Guinea. We present one of the most comprehensive successional investigations of interaction networks, equating to > 40 person years of field sampling, and one of the few focused on montane tropical forests. We use a series of nine 0.2 ha forest plots across young secondary, mature secondary and primary montane forest, sampled almost completely for woody plants and larval leaf chewers (Lepidoptera) using forest felling. These networks comprised of 12 357 plant‐herbivore interactions and were analysed using quantitative network metrics, a phylogenetically controlled host‐use index and a qualitative network beta diversity measure. Network structural changes were low and specialisation metrics surprisingly similar throughout succession, despite high network beta diversity. Herbivore abundance was greatest in the earliest stages, and hosts here had more species‐rich herbivore assemblages, presumably reflecting higher palatability due to lower defensive investment. All herbivore communities were highly specialised, using a phylogenetically narrow set of hosts, while host phylogenetic diversity itself decreased throughout the chronosequence. Relatively high phylogenetic diversity, and thus high diversity of plant defenses, in early succession forest may result in herbivores feeding on fewer hosts than expected. Successional theory, derived primarily from temperate systems, is limited in predicting tropical host‐herbivore interactions. All succession stages harbour diverse and unique interaction networks, which together with largely similar network structures and consistent host use patterns, suggests general rules of assembly may apply to these systems.  相似文献   

6.
Glacier chronosequences are important sites for primary succession studies and have yielded well‐defined primary succession models for plants that identify environmental resistance as an important determinant of the successional trajectory. Whether plant‐associated fungal communities follow those same successional trajectories and also respond to environmental resistance is an open question. In this study, 454 amplicon pyrosequencing was used to compare the root‐associated fungal communities of the ectomycorrhizal (ECM) herb Bistorta vivipara along two primary succession gradients with different environmental resistance (alpine versus arctic) and different successional trajectories in the vascular plant communities (directional replacement versus directional non‐replacement). At both sites, the root‐associated fungal communities were dominated by ECM basidiomycetes and community composition shifted with increasing time since deglaciation. However, the fungal community's successional trajectory mirrored the pattern observed in the surrounding plant community at both sites: the alpine site displayed a directional‐replacement successional trajectory, and the arctic site displayed a directional‐non‐replacement successional trajectory. This suggests that, like in plant communities, environmental resistance is key in determining succession patterns in root‐associated fungi. The need for further replicated study, including in other host species, is emphasized.  相似文献   

7.
Theory on plant succession predicts a temporal increase in the complexity of spatial community structure and of competitive interactions: initially random occurrences of early colonising species shift towards spatially and competitively structured plant associations in later successional stages. Here we use long‐term data on early plant succession in a German post mining area to disentangle the importance of random colonisation, habitat filtering, and competition on the temporal and spatial development of plant community structure. We used species co‐occurrence analysis and a recently developed method for assessing competitive strength and hierarchies (transitive versus intransitive competitive orders) in multispecies communities. We found that species turnover decreased through time within interaction neighbourhoods, but increased through time outside interaction neighbourhoods. Successional change did not lead to modular community structure. After accounting for species richness effects, the strength of competitive interactions and the proportion of transitive competitive hierarchies increased through time. Although effects of habitat filtering were weak, random colonization and subsequent competitive interactions had strong effects on community structure. Because competitive strength and transitivity were poorly correlated with soil characteristics, there was little evidence for context dependent competitive strength associated with intransitive competitive hierarchies.  相似文献   

8.
Fridley JD  Wright JP 《Oecologia》2012,168(4):1069-1077
Climate change is widely expected to induce large shifts in the geographic distribution of plant communities, but early successional ecosystems may be less sensitive to broad-scale climatic trends because they are driven by interactions between species that are only indirectly related to temperature and rainfall. Building on a biogeographic analysis of secondary succession rates across the Eastern Deciduous Forest (EDF) of North America, we describe an experimental study designed to quantify the relative extent to which climate, soil properties, and geographic species pools drive variation in woody colonization rates of old fields across the EDF. Using a network of five sites of varying soil fertility spanning a latitudinal gradient from central New York to northern Florida, we added seeds of nine woody pioneer species to recently tilled old fields and monitored first-year growth and survivorship. Results suggest seedlings of southern woody pioneer species are better able to quickly establish in fields after abandonment, regardless of climate regime. Sites of lower soil fertility also exhibited faster rates of seedling growth, likely due to the slower development of the successional herbaceous community. We suggest that climate plays a relatively minor role in community dynamics at the onset of secondary succession, and that site edaphic conditions are a stronger determinant of the rate at which ecosystems develop to a woody-dominated state. More experimental research is necessary to determine the nature of the herbaceous–woody competitive interface and its sensitivity to environmental conditions.  相似文献   

9.
The loss of a species from an ecological community can trigger a cascade of secondary extinctions. The probability of secondary extinction to take place and the number of secondary extinctions are likely to depend on the characteristics of the species that is lost--the strength of its interactions with other species--as well as on the distribution of interaction strengths in the whole community. Analysing the effects of species loss in model communities we found that removal of the following species categories triggered, on average, the largest number of secondary extinctions: (a) rare species interacting strongly with many consumers, (b) abundant basal species interacting weakly with their consumers and (c) abundant intermediate species interacting strongly with many resources. We also found that the keystone status of a species with given characteristics was context dependent, that is, dependent on the structure of the community where it was embedded. Species vulnerable to secondary extinctions were mainly species interacting weakly with their resources and species interacting strongly with their consumers.  相似文献   

10.
The effects of temporal variation of rainfall on secondary succession of tropical dry ecosystems are poorly understood. We studied effects of inter-seasonal and inter-year rainfall variation on the dynamics of regenerative successional communities of a tropical dry forest in Mexico. We emphasized the effects caused by the severe El Niño Southern Oscillation (ENSO) occurred in 2005. We established permanent plots in sites representing a chronosequence of Pasture (abandoned pastures, 0–1 years fallow age), Early (3–5), Intermediate (8–12), and Old-Growth Forest categories (n = 3 per category). In total, 8210 shrubs and trees 10 to 100-cm height were identified, measured, and monitored over four years. Rates of plant recruitment, growth and mortality, and gain and loss of species were quantified per season (dry vs. rainy), year, and successional category, considering whole communities and separating seedlings from sprouts and shrubs from trees. Community rates changed with rainfall variation without almost any effect of successional stage. Mortality and species loss rates peaked during the ENSO year and the following year; however, after two rainy years mortality peaked in the rainy season. Such changes could result from the severe drought in the ENSO year, and of the outbreak of biotic agents during the following rainy years. Growth, recruitment and species gain rates were higher in the rainy season but they were significantly reduced after the ENSO year. Seedlings exhibited higher recruitment and mortality rate than sprouts, and shrubs showed higher recruitment than trees. ENSO strongly impacted both the dynamics and trajectory of succession, creating transient fluctuations in the abundance and species richness of the communities. Overall, there was a net decline in plant and species density in most successional stages along the years. Therefore, strong drought events have critical consequences for regeneration dynamics, delaying the successional process and modifying the resilience of these systems.  相似文献   

11.
The hypothesis that positive links exist among plant taxonomic diversity, belowground microbial taxonomic and metabolic diversities was tested for four secondary vegetation successional stages (tussock (T), shrub (S), secondary forest (SF) and primary forest (PF)) in Huanjiang county, SW China. Soil bacterial communities were characterized by DNA fingerprinting and metabolic profiling. Along the succession, Shannon diversity indices followed the order SF>PF>S>T for plant taxonomic diversity, T>SF>PF>S for bacterial operational taxonomic diversity, SF>T>S>PF for fungal operational taxonomic diversity, and SF>PF>S>T for bacterial metabolic diversity. Significant positive correlations were found between bacterial and fungal taxonomic diversities. However, there was no significant correlation between soil microbial taxonomic diversity and bacterial metabolic diversity. Two-way ANOVA revealed that vegetation and season, as well as their interaction, had significant effects on soil microbial (fungal and bacterial) taxonomic diversities, but that there were no seasonal effects on metabolic diversity. However, PCA and MANOVA revealed highly significant differences among the bacterial community-level physiological profiles, reflecting the successional sequence. The findings from this survey support the notion that there are strong interactions between aboveground and belowground communities and suggest that bacterial metabolic and plant taxonomic diversities, but not microbial taxonomic and metabolic diversities, can be correlated.  相似文献   

12.
Forest succession can influence herbivore communities through changes in host availability, plant quality, microclimate, canopy structure complexity and predator abundance. It is not well known, however, if such influence is constant across years. Caterpillars have been reported to be particularly susceptible to changes in plant community composition across forest succession, as most species are specialists and rely on the presence of their hosts. Nevertheless, in the case of tropical dry forests, plant species have less defined successional boundaries than tropical wet forests, and hence herbivore communities should be able to persist across different successional stages. To test this prediction, caterpillar communities were surveyed during eight consecutive years in a tropical dry forest in four replicated successional stages in Chamela, Jalisco and Mexico. Lepidopteran species richness and diversity were equivalent in mature forests and early successional stages, but a distinctive caterpillar community was found for the recently abandoned pastures. Species composition tended to converge among all four successional stages during the span of eight years. Overall, our results highlight the importance of both primary and secondary forest for the conservation of caterpillar biodiversity at a landscape level. We also highlight the relevance of long‐term studies when assessing the influence of forest succession to account for across year variation in species interactions and climatic factors. Abstract in French is available with online material.  相似文献   

13.
Both local- and landscape-scale processes drive succession of secondary forests in human-modified tropical landscapes. Nonetheless, until recently successional changes in composition and diversity have been predominantly studied at the patch level. Here, we used a unique dataset with 45 randomly selected sites across a mixed-use tropical landscape in central Panama to study forest succession simultaneously on local and landscape scales and across both life stages (seedling, sapling, juvenile and adult trees) and life forms (shrubs, trees, lianas, and palms). To understand the potential of these secondary forests to conserve tree species diversity, we also evaluated the diversity of species that can persist as viable metapopulations in a dynamic patchwork of short-lived successional forests, using different assumptions about the average relative size at reproductive maturity. We found a deterministic shift in the diversity and composition of the local plant communities as well as the metacommunity, driven by variation in the rate at which species recruited into and disappeared from the secondary forests across the landscape. Our results indicate that dispersal limitation and the successional niche operate simultaneously and shape successional dynamics of the metacommunity of these early secondary forests. A high diversity of plant species across the metacommunity of early secondary forests shows a potential for restoration of diverse forests through natural succession, when trees and fragments of older forests are maintained in the agricultural matrix and land is abandoned or set aside for a long period of time. On the other hand, during the first 32 years the number of species with mature-sized individuals was a relatively small and strongly biased sub-sample of the total species pool. This implies that ephemeral secondary forests have a limited role in the long-term conservation of tree species diversity in human-modified tropical landscapes.  相似文献   

14.
Plant sexual systems appear to play an important role in community assembly: Dioecious species are found to tend to have a higher propensity to colonize communities in early successional stages. Here, we test two demographic hypotheses to explain this pattern in temperate forests. First, we test demographic differences between hermaphrodite and dioecious species in stressful younger successional stages: Previous theory predicts that hermaphrodite seed production is more harmed in stressful environments than that of dioecious populations leading to an advantage for females of dioecious species. Second, in primary forest, we hypothesized that dioecious species would show demographic advantage over monomorphic ones. We used data from two temperate forest plots in Northeast China surveyed over 10 years to compare the rates of growth and mortality of tree species with contrasting breeding systems in both secondary and primary forests. We assessed the effect of breeding system on the growth‐mortality trade‐off, while controlling for other traits usually considered as correlates of growth and mortality rates. We show that in the secondary forest, dioecious species showed weak advantage in demographic rates compared with monomorphic species; dioecious species showed considerably both lower relative growth and mortality rates compared to the hermaphrodites in the primary forest over 10 years, consistent with a priori predictions. Hermaphrodites showed strong growth‐mortality trade‐offs across forest stages, even when possibly confounding factors had been accounted for. These results suggest that sexual system influences community succession and assembly by acting on the rates of growth and mortality, and the trade‐off between them. As vegetation develops, the demographic differences between breeding systems are much larger. Our results demonstrate the association between breeding system, succession, and community assembly and that this relationship is succession‐stage dependent. Our findings support the suggestion that the demographic advantage of dioecious species facilitates the coexistence of sexual systems in primary forest.  相似文献   

15.
Soil factors and host plant identity can both affect the growth and functioning of mycorrhizal fungi. Both components change during primary succession, but it is unknown if their relative importance to mycorrhizas also changes. This research tested how soil type and host plant differences among primary successional stages determine the growth and plant effects of arbuscular mycorrhizal (AM) fungal communities. Mycorrhizal fungal community, plant identity, and soil conditions were manipulated among three stages of a lacustrine sand dune successional series in a fully factorial greenhouse experiment. Late succession AM fungi produced more arbuscules and soil hyphae when grown in late succession soils, although the community was from the same narrow phylogenetic group as those in intermediate succession. AM fungal growth did not differ between host species, and plant growth was similarly unaffected by different AM fungal communities. These results indicate that though ecological filtering and/or adaptation of AM fungi occurs during this primary dune succession, it more strongly reflects matching between fungi and soils, rather than interactions between fungi and host plants. Thus, AM fungal performance during this succession may not depend directly on the sequence of plant community succession.  相似文献   

16.
Insight into potential mechanisms of succession following disturbance to an ecological community can be gained by considering processes that contribute to the rise (colonization, interactions with established species) and demise (differential mortality) of specific stages within the successional sequence. Most successional theories focus on the rise to dominance, assuming demise is the result of competition, but other factors can cause differential mortality among species, including physical disturbance, senescence, and consumers. In rocky intertidal communities on the coast of Washington state, USA, gaps in mussel beds exhibit a succession from predator-susceptible to predator-resistant species following disturbance, suggesting that differential consumption by mobile species may play an important role in the demise of early succession species and the eventual dominance of the mussel Mytilus californianus. Experimental manipulation of a dominant species earlier in succession, the blue mussel Mytilus trossulus, demonstrated that this species inhibits the invasion of M. californianus in the absence of predators. Experimental manipulation of predatory snails (Nucella emarginata and Nucella canaliculata), which feed heavily on M. trossulus but not M. californianus, greatly increased the rate at which M. californianus invaded gaps. These results and those of other studies indicate that consumers frequently have important effects on the dynamics of succession in benthic marine systems, and might also play a role in other settings.  相似文献   

17.
Interactions among neighbors influence the structure of communities of sessile organisms. Closely related species tend to share habitat and resource requirements and to interact with the same mutualists and natural enemies so that the strength of interspecific interactions tends to decrease with evolutionary divergence time. Nevertheless, the degree to which such phylogenetically related ecological interactions structure plant communities remains unclear. Using data from five large mapped forest plots combined with a DNA barcode mega‐phylogeny, we employed an individual‐based approach to assess the collective effects of focal tree size on neighborhood phylogenetic relatedness. Abundance‐weighted average divergence time for all neighbors (ADT_all) and for heterospecific neighbors only (ADT_hetero) were calculated for each individual of canopy tree species. Within local neighborhoods, we found phylogenetic composition changed with focal tree size. Specifically, significant increases in ADT_all with focal tree size were evident at all sites. In contrast, there was no significant change in ADT_hetero with tree size in four of the five sites for both sapling‐sized and all neighbors, even at the smallest neighbourhood scale (0–5 m), suggesting a limited role for phylogeny‐dependent interactions. However, there were inverse relationships between focal tree size and the proportion of heterospecific neighbors belonging to closely related species at some sites, providing evidence for negative phylogenetic density dependence. Overall, our results indicate that negative interaction with conspecifics had a much greater impact on neighborhood assemblages than interactions among closely related species and could contribute to community structure and diversity maintenance in different forest communities.  相似文献   

18.
Metacommunity theory suggests a potentially important role for dispersal in diversity maintenance at local, as well as regional, scales. In addition, propagule addition experiments have shown that dispersal often limits local diversity. However, actual dispersal rates into local communities and the contribution of immigrants to observed local diversity are poorly known. We present a new approach that partitions the diversity of a target community into dispersal-maintained and dispersal-independent components. Specifically, we quantify distances through space and time to the nearest potential seed source for naturally occurring recruits in target communities by using hierarchical data on species pools (local, site, region, and seed bank). Using this "recruit tag" approach, we found that dispersal contributed 29%-57% of the seedling diversity in perennial grasslands with different successional histories. However, both dispersal and seedling mortality remained remarkably constant, in absolute terms, over succession. The considerable loss of diversity over secondary succession (66%), therefore, could be understood only by considering how these processes interact with the decreasing disturbance rate (i.e., frequency of gaps) in later-successional sites. We conclude that a metacommunity perspective is relevant and necessary to understand the diversity and community assembly of this study system.  相似文献   

19.
Few studies have examined the succession of plant communities in the alpine zone. Studying the succession of plant communities is helpful to understand how species diversity is formed and maintained. In this study, we used species inventories, a molecular phylogeny, and trait data to detect patterns of phylogenetic and functional community structure in successional plant communities growing on the mounds of Himalayan marmots (Marmota himalayana) on the southeast edge of the Qinghai-Tibet Plateau. We found that phylogenetic and functional diversities of plant communities on marmot mounds tended to cluster during the early to medium stages of succession, then trended toward overdispersion from medium to late stages. Alpine species in early and late stages of succession were phylogenetically and functionally overdispersed, suggesting that such communities were assembled mainly through species interactions, especially competition. At the medium and late stages of succession, alpine communities growing on marmot mounds were phylogenetically and functionally clustered, implying that the communities were primarily structured by environmental filtering. During the medium and late stages of succession the phylogenetic and functional structures of plant communities on marmot mounds differed significantly from those on neighboring sites. Our results indicate that environmental filtering and species interactions can change plant community composition at different successional stages. Assembly of plant communities on marmot mounds was promoted by a combination of traits that may provide advantages for survival and adaptation during periods of environmental change.  相似文献   

20.
Understanding the processes that underpin the community assembly of bacteria is a key challenge in microbial ecology. We studied soil bacterial communities across a large-scale successional gradient of managed and abandoned grasslands paired with mature forest sites to disentangle drivers of community turnover and assembly. Diversity partitioning and phylogenetic null-modelling showed that bacterial communities in grasslands remain compositionally stable following abandonment and secondary succession but they differ markedly from fully afforested sites. Zeta diversity analyses revealed the persistence of core microbial taxa that both reflected and differed from whole-scale community turnover patterns. Differences in soil pH and C:N were the main drivers of community turnover between paired grassland and forest sites and the variability of pH within successional stages was a key factor related to the relative dominance of deterministic assembly processes. Our results indicate that grassland microbiomes could be compositionally resilient to abandonment and secondary succession and that the major changes in microbial communities between grasslands and forests occur fairly late in the succession when trees have established as the dominant vegetation. We also show that core taxa may show contrasting responses to management and abandonment in grasslands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号