首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Smad proteins are intracellular mediators of transforming growth factor-beta (TGF-beta) and related cytokines. Although ligand-induced nuclear translocation of Smad proteins is clearly established, the pathway mediating this import is yet to be determined. We previously identified a nuclear localization signal (NLS) in the N-terminal region of Smad 3, the major Smad protein involved in TGF-beta signal transduction. This basic motif (Lys(40-)Lys-Leu-Lys-Lys(44)), conserved among all the pathway-specific Smad proteins, is required for Smad 3 nuclear import in response to ligand. Here we studied the nuclear import pathway of Smad 3 mediated by this NLS. We demonstrate that the isolated Smad 3 MH1 domain displays significant specific binding to importin beta, which is diminished or eliminated by mutations in the NLS. Full-size Smad 3 exhibits weak but specific binding to importin beta, which is enhanced after phosphorylation by the type I TGF-beta receptor. In contrast, no interaction was observed between importin alpha and Smad 3 or its MH1 domain, indicating that nuclear translocation of Smad proteins may occur through direct binding to importin beta. We propose that activation of all of the pathway-specific Smad proteins (Smads 1, 2, 3, 5, 8, and 9) exposes the conserved NLS motif, which then binds directly to importin beta and triggers nuclear translocation.  相似文献   

3.
Replication of the RNAs of influenza virus occurs in the nucleus of infected cells. The nucleoprotein (NP) has been shown to be important for the import of the viral RNA into the nucleus and has been proposed to contain at least three different nuclear localization signals (NLSs). Here, an import assay in digitonin-permeabilized cells was used to further define the contribution of these NLSs. Mutation of the unconventional NLS impaired the nuclear import of the NP. A peptide bearing the unconventional NLS could inhibit the nuclear import of the NP in this import assay and prevent the NP-karyopherin alpha interaction in a binding assay confirming the crucial role of this signal. Interestingly, a peptide containing the SV40 T antigen NLS was unable to inhibit the nuclear import of NP or the NP-karyopherin alpha interaction, suggesting that the NP and the SV40 T antigen do not share a common binding site on karyopherin alpha. We also investigated the question of which NLS(s) is/are necessary for the viral ribonucleoprotein complex to enter the nucleus. We found that the peptide containing the unconventional NLS efficiently inhibited the nuclear import of the ribonucleoprotein complexes. This finding suggests that the unconventional NLS is the major signal necessary not only for the nuclear transport of free NP but also for the import of the ribonucleoprotein complexes. Finally, viral replication could be specifically inhibited by a membrane-permeable peptide containing the unconventional NLS, confirming the crucial role of this signal during the replicative cycle of the virus.  相似文献   

4.
Nucleo-cytoplasmic transport of proteins is mostly mediated by specific interaction between transport receptors of the importin beta family and signal sequences present in their cargo. While several signal sequences, in particular the classical nuclear localization signal (NLS) recognized by the heterodimeric importin alpha/beta complex are well known, the signals recognized by other importin beta-like transport receptors remain to be characterized in detail. Here we present the systematic analysis of the nuclear import of Saccharomyces cerevisiae Asr1p, a nonessential alcohol-responsive Ring/PHD finger protein that shuttles between nucleus and cytoplasm but accumulates in the nucleus upon alcohol stress. Nuclear import of Asr1p is constitutive and mediated by its C-terminal domain. A short sequence comprising residues 243-280 is sufficient and necessary for active targeting to the nucleus. Moreover, the nuclear import signal is conserved from yeast to mammals. In vitro, the nuclear localization signal of Asr1p directly interacts with the importins Kap114p, Kap95p, Pse1p, Kap123p, or Kap104p, interactions that are sensitive to the presence of RanGTP. In vivo, these importins cooperate in nuclear import. Interestingly, the same importins mediate nuclear transport of histone H2A. Based on mutational analysis and sequence comparison with a region mediating nuclear import of histone H2A, we identified a novel type of NLS with the consensus sequence R/KxxL(x)(n)V/YxxV/IxK/RxxxK/R that is recognized by five yeast importins and connects them into a highly efficient network for nuclear import of proteins.  相似文献   

5.
Nuclear import of proteins containing a classical nuclear localization signal (NLS) is an energy-dependent process that requires the heterodimer importin alpha/beta. Three to six basic contiguous arginine/lysine residues characterize a classical NLS and are thought to form a basic patch on the surface of the import cargo. In this study, we have characterized the NLS of phospholipid scramblase 1 (PLSCR1), a lipid-binding protein that enters the nucleus via the nonclassical NLS (257)GKISKHWTGI(266). This import sequence lacks a contiguous stretch of positively charged residues, and it is enriched in hydrophobic residues. We have determined the 2.2 A crystal structure of a complex between the PLSCR1 NLS and the armadillo repeat core of vertebrate importin alpha. Our crystallographic analysis reveals that PLSCR1 NLS binds to armadillo repeats 1-4 of importin alpha, but its interaction partially overlaps the classical NLS binding site. Two PLSCR1 lysines occupy the canonical positions indicated as P2 and P5. Moreover, we present in vivo evidence that the critical lysine at position P2, which is essential in other known NLS sequences, is dispensable in PLSCR1 NLS. Taken together, these data provide insight into a novel nuclear localization signal that presents a distinct motif for binding to importin alpha.  相似文献   

6.
The interaction of the human immunodeficiency virus type 1 (HIV-1) nucleoprotein complex with the cell nuclear import machinery is necessary for viral replication in macrophages and for the establishment of infection in quiescent T lymphocytes. The karyophilic properties of two viral proteins, matrix (MA) and Vpr, are keys to this process. Here, we show that an early step of HIV-1 nuclear import is the recognition of the MA nuclear localization signal (NLS) by Rch1, a member of the karyopherin-alpha family. Furthermore, we demonstrate that an N-terminally truncated form of Rch1 which binds MA but fails to localize to the nucleus efficiently blocks MA- but not Vpr-mediated HIV-1 nuclear import. Correspondingly, NLS peptide inhibits the nuclear migration of MA but not that of Vpr and prevents the infection of terminally differentiated macrophages by vpr-defective virus but not wild-type virus. These results are consistent with a model in which Rch1 or another member of the karyopherin-alpha family, through the recognition of the MA NLS, participates in docking the HIV-1 nucleoprotein complex at the nuclear pore. In addition, our data suggest that Vpr governs HIV-1 nuclear import through a distinct pathway.  相似文献   

7.
Protein transport into the nucleus is generally considered to involve specific nuclear localization signals (NLS) though it is becoming increasingly evident that efficient and well controlled import of proteins which lack a canonical NLS also occurs in cells. Vpx, a 112 amino acid protein from human immunodeficiency virus type 2 (HIV-2) and the closely related simian immunodeficiency virus (SIV) is one such protein, which does not have an identifiable canonical NLS and is yet efficiently imported to the nuclear compartment. Here we report that Vpx protein is imported to the nucleus independently of virus-encoded cofactors. When fusions of truncated versions of Vpx with full-length beta-galactosidase (beta-Gal) were tested, the region from Vpx 61 to 80 was found to be sufficient to mediate the import of the heterologous cytoplasmic protein to the nucleus. Inactivation of Vpx NLS precluded nuclear import of Vpx and reduced virus replication in non-dividing macrophage cultures, even when functional integrase and Gag matrix proteins implicated in viral nuclear import were present. Importantly, we identified and characterized a novel type of 20 amino acid transferable nuclear import signal in Vpx that is distinct from other import signals described. In addition, we show that the minimal nuclear targeting domain identified here overlaps with helical domain III (amino acid (aa) 64-82) and the structural integrity of this helical motif is critical for the nuclear import of Vpx. Taken together, these data suggest that Vpx is imported to the nucleus via a novel import pathway that is dependent on its 20 amino acid unique nuclear targeting signal, and that the nuclear import property of Vpx is critical for the optimal virus replication in non-dividing cells such as macrophages.  相似文献   

8.
The human Tap protein mediates the sequence-specific nuclear export of RNAs containing the constitutive transport element and is likely also critical for general mRNA export. Here, we demonstrate that a previously defined arginine-rich nuclear localization signal (NLS) present in Tap acts exclusively via the transportin import factor. Previously, transportin has been shown to mediate the nuclear import of several heterogeneous nuclear ribonucleoproteins, including heterogeneous nuclear ribonucleoprotein (hnRNP) A1, by binding to a sequence element termed M9. Although the Tap NLS and the hnRNP A1 M9 element are shown to compete for transportin binding, they show no sequence homology, and the Tap NLS does not conform to the recently defined M9 consensus. The Tap NLS also differs from M9 in that only the latter is able to act as a nuclear export signal. The Tap NLS is therefore the first member of a novel class of transportin-specific NLSs that lack nuclear export signal function.  相似文献   

9.
The erythroid membrane cytoskeletal protein 4.1 is the prototypical member of a genetically and topologically complex family that is generated by combinatorial alternative splicing pathways and is localized at diverse intracellular sites including the nucleus. To explore the molecular determinants for nuclear localization, we transfected COS-7 cells with epitope-tagged versions of natural red cell protein 4.1 (4.1R) isoforms as well as mutagenized and truncated derivatives. Two distant topological sorting signals were required for efficient nuclear import of the 4.1R80 isoform: a basic peptide, KKKRER, encoded by alternative exon 16 and acting as a weak core nuclear localization signal (4.1R NLS), and an acidic peptide, EED, encoded by alternative exon 5. 4.1R80 isoforms lacking either of these two exons showed decreased nuclear import. Fusion of various 4.1R80 constructs to the cytoplasmic reporter protein pyruvate kinase confirmed a requirement for both motifs for full NLS function. 4.1R80 was efficiently imported in the nuclei of digitonin-permeabilized COS-7 cells in the presence of recombinant Rch1 (human importin alpha2), importin beta, and GTPase Ran. Quantitative analysis of protein-protein interactions using a resonant mirror detection technique showed that 4.1R80 bound to Rch1 in vitro with high affinity (KD = 30 nM). The affinity decreased at least 7- and 20-fold, respectively, if the EED motif in exon 5 or if 4.1R NLS in exon 16 was lacking or mutated, confirming that both motifs were required for efficient importin-mediated nuclear import of 4.1R80.  相似文献   

10.
11.
ORF73 latency-associated nuclear antigen (LANA) of the Kaposi's sarcoma-associated herpesvirus (KSHV) is targeted to the nucleus of infected cells where it binds to chromatin and mediates viral episome persistence, interacts with cellular proteins and plays a role in latency and tumorigenesis. A structurally related LANA homolog has been identified in the retroperitoneal fibromatosis herpesvirus (RFHV), the macaque homolog of KSHV. Here, we report the evolutionary and functional conservation of a novel bi-functional nuclear localization signal (NLS) in KSHV and RFHV LANA. N-terminal peptides from both proteins were fused to EGFP or double EGFP fusions to examine their ability to induce nuclear transport of a heterologous protein. In addition, GST-pull down experiments were used to analyze the ability of LANA peptides to interact with members of the karyopherin family of nuclear transport receptors. Our studies revealed that both LANA proteins contain an N-terminal arginine/glycine (RG)-rich domain spanning a conserved chromatin-binding motif, which binds directly to importin β1 in a RanGTP-sensitive manner and serves as an NLS in the importin β1-mediated non-classical nuclear import pathway. Embedded within this domain is a conserved lysine/arginine-(KR)-rich bipartite motif that binds directly to multiple members of the importin α family of nuclear import adaptors in a RanGTP-insensitive manner and serves as an NLS in the classical importin α/β-mediated nuclear import pathway. The positioning of a classical bipartite kr-NLS embedded within a non-classical rg-NLS is a unique arrangement in these viral proteins, whose nuclear localization is critical to their functionality and to the virus life cycle. The ability to interact with multiple import receptors provides alternate pathways for nuclear localization of LANA. Since different import receptors can import cargo to distinct subnuclear compartments, a multifunctional NLS may provide LANA with an increased ability to interact with different nuclear components in its multifunctional role to maintain viral latency.  相似文献   

12.
Aminoacyl-tRNA synthetases, essential components of the cytoplasmic translation apparatus, also have nuclear functions that continue to be elucidated. However, little is known about how the distribution between cytoplasmic and nuclear compartments is controlled. Using a combination of methods, here we showed that human tyrosyl-tRNA synthetase (TyrRS) distributes to the nucleus and that the nuclear import of human TyrRS is regulated by its cognate tRNA(Tyr). We identified a hexapeptide motif in the anticodon recognition domain that is critical for nuclear import of the synthetase. Remarkably, this nuclear localization signal (NLS) sequence motif is also important for interacting with tRNA(Tyr). As a consequence, mutational alteration of the hexapeptide simultaneously attenuated aminoacylation and nuclear localization. Because the NLS is sterically blocked when the cognate tRNA is bound to TyrRS, we hypothesized that the nuclear distribution of TyrRS is regulated by tRNA(Tyr). This expectation was confirmed by RNAi knockdown of tRNA(Tyr) expression, which led to robust nuclear import of TyrRS. Further bioinformatics analysis showed that to have nuclear import of TyrRS directly controlled by tRNA(Tyr) in higher organisms, the NLS of lower eukaryotes was abandoned, whereas the new NLS was evolved from an anticodon-binding hexapeptide motif. Thus, higher organisms developed a strategy to make tRNA a regulator of the nuclear trafficking of its cognate synthetase. The design in principle should coordinate nuclear import of a tRNA synthetase with the demands of protein synthesis in the cytoplasm.  相似文献   

13.
14.
Axo-glial interactions regulate the localization of axonal paranodal proteins   总被引:10,自引:0,他引:10  
The SR proteins, a group of abundant arginine/serine (RS)-rich proteins, are essential pre-mRNA splicing factors that are localized in the nucleus. The RS domain of these proteins serves as a nuclear localization signal. We found that RS domain-bearing proteins do not utilize any of the known nuclear import receptors and identified a novel nuclear import receptor specific for SR proteins. The SR protein import receptor, termed transportin-SR (TRN-SR), binds specifically and directly to the RS domains of ASF/SF2 and SC35 as well as several other SR proteins. The nuclear transport regulator RanGTP abolishes this interaction. Recombinant TRN-SR mediates nuclear import of RS domain- bearing proteins in vitro. TRN-SR has amino acid sequence similarity to several members of the importin beta/transportin family. These findings strongly suggest that TRN-SR is a nuclear import receptor for the SR protein family.  相似文献   

15.
Mammalian serine and arginine-rich (SR) proteins play important roles in both constitutive and regulated splicing, and SR protein-specific kinases (SRPKs) are conserved from humans to yeast. Here, we demonstrate a novel function of the single conserved SR protein kinase Sky1p in nuclear import in budding yeast. The yeast SR-like protein Npl3p is known to enter the nucleus through a composite nuclear localization signal (NLS) consisting of a repetitive arginine- glycine-glycine (RGG) motif and a nonrepetitive sequence. We found that the latter is the site for phosphorylation by Sky1p and that this phosphorylation regulates nuclear import of Npl3p by modulating the interaction of the RGG motif with its nuclear import receptor Mtr10p. The RGG motif is also methylated on arginine residues, but methylation does not affect the Npl3p-Mtr10p interaction in vitro. Remarkably, arginine methylation interferes with Sky1p-mediated phosphorylation, thereby indirectly influencing the Npl3p-Mtr10p interaction in vivo and negatively regulating nuclear import of Npl3p. These results suggest that nuclear import of Npl3p is coordinately influenced by methylation and phosphorylation in budding yeast, which may represent conserved components in the dynamic regulation of RNA processing in higher eukaryotic cells.  相似文献   

16.
17.
18.
19.
The interaction of the nuclear protein import factor p97 with the nuclear localization sequence (NLS) receptor, the nuclear pore complex, and Ran/TC4 is important for coordinating the events of protein import to the nucleus. We have mapped the binding domains on p97 for the NLS receptor and the nuclear pore. The NLS receptor-binding domain of p97 maps to the C-terminal 60% of the protein between residues 356 and 876. The pore complex-binding domain of p97 maps to residues 152-352. The pore complex-binding domain overlaps the Ran-GTP- and Ran-GDP-binding domains on p97, but only Ran-GTP competes for docking in permeabilized cells. The N-ethylmaleimide sensitivity of the p97 for docking was investigated and found to be due to inhibition of p97 binding to the pore complex and to the NLS receptor. Site-directed mutagenesis of conserved cysteine residues in the pore- and receptor-binding domains identified two cysteines, C223 and C228, that were required for p97 to bind the nuclear pore. Inhibition studies on docking and accumulation of a NLS protein provided additional evidence that the domains identified biochemically are the functional domains involved in protein import. Together, these results suggest that Ran-GTP dissociates the receptor complex and prevents p97 binding to the pore by inducing a conformational change in the structure of p97 rather than simple competition for binding sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号