首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drosophila imaginal disc cells have the ability to undergo transdetermination, a process whereby determined disc cells change fate to that of another disc identity. For example, leg disc cells can transdetermine to develop as wing cells. Such events can occur after mechanical disc fragmentation and subsequent regeneration. A subset of transdetermination events can be induced in situ by misexpression of the signaling gene wingless. Both fragmentation and wingless induce transdetermination by altering the expression of selector genes, which drive disc-specific developmental programs. An important future goal is to address how signaling pathways interact with chromatin structure to regulate and maintain the proper expression of selector genes.  相似文献   

2.
Regeneration is a vital process to maintain and repair tissues. Despite the importance of regeneration, the genes responsible for regenerative growth remain largely unknown. In Drosophila, imaginal disc regeneration can be induced either by fragmentation and in vivo culture or in situ by ubiquitous expression of wingless (wg/wnt1). Imaginal discs, like appendages in lower vertebrates, initiate regeneration by wound healing and proliferation at the wound site, forming a regeneration blastema. Most blastema cells maintain their disc-specific identity during regeneration; a few cells however, exhibit stem-cell like properties and switch to a different fate, in a phenomenon known as transdetermination. We identified three genes, regeneration (rgn), augmenter of liver regeneration (alr) and Matrix metalloproteinase-1 (Mmp1) expressed specifically in blastema cells during disc regeneration. Mutations in these genes affect both fragmentation- and wg-induced regeneration by either delaying, reducing or positioning the regeneration blastema. In addition to the modifications of blastema homeostasis, mutations in the three genes alter the rate of regeneration-induced transdetermination. We propose that these genes function in regenerative proliferation, growth and regulate cellular plasticity.  相似文献   

3.
Sustar A  Schubiger G 《Cell》2005,120(3):383-393
When Drosophila imaginal discs regenerate, specific groups of cells can switch disc identity so that, for example, cells determined for leg identity switch to wing. Such switches in cell determination are known as transdetermination. We have developed a system by which individual cells are marked and monitored in vivo as they transdetermine so that their proliferation, cell sizes, and differentiation are accurately traced. Here, we document that when cells transdetermine, they do not convert to a younger cell cycle. Instead, cell cycle changes precede transdetermination and are different from those observed at any time in normal development. We propose that it is not a younger but a unique cell cycle progression and a big cell size that conditions the cells for developmental plasticity.  相似文献   

4.
5.
6.
7.
The heat-sensitive mutation of Drosophila melanogaster l(3)c4(3)hs1, causes mutant larvae raised at a restrictive temperature to have abnormally large wing discs. The large size of these discs is a disc-autonomous property and results from an increase in the number rather than the size of wing disc cells. We have used wing discs from this mutant to further investigate properties of transdetermination which had previously been investigated with nonmutant discs. Transdetermination can occur in nonmutant discs when the proliferative phase of imaginal disc development is extended by wounding discs and culturing them in vivo. The results indicate that additional proliferation in the absence of wounding does not lead to transdetermination. There is a correlation between the extent of growth of a cultured disc and the probability that it will undergo transdetermination. The results suggest that this correlation does not depend on a differential rate of cell division. Finally, the results indicate that the cells which give rise to transdetermination are at an equivalent developmental stage no later than that characteristic of eye-antenna disc cells before the third larval instar.  相似文献   

8.
The effects of homeotic mutations on transdetermination in eye-antenna imaginal discs of Drosophila melanogaster were studied. After 12 days of culture in vivo, antenna discs transformed to ventral mesothorax by AntpNs or AntpZ, transdetermined to notum and wing structures four to five times more frequently than the corresponding wild-type antenna discs. Likewise, eye discs transformed to dorsal mesothorax by eyopt transdetermined to leg structures, also extremely frequently (90%). It seems that, during culture, homeotic antenna as well as homeotic eye discs tend to complete the structural inventory of the mesothoracic segment. Transdetermination in the homeotic disc parts is interpreted as a regeneration process which reestablishes an entire segment, i.e., the ventral mesothoracic portion (leg) in the antenna disc regenerates dorsal mesothoracic parts, and the dorsal mesothoracic portion in the eye disc (wing) regenerates ventral mesothoracic parts, respectively. This implies that antenna and leg discs (ventral qualities) as well as eye and wing discs (dorsal qualities) are serially homologous. The transdetermination frequency of the untransformed eye disc to notum and wing structures is enhanced by Antp to the same extent as is the transdetermination frequency of the antenna disc. The first allotypic wing disc structure formed by the eye disc is notum, followed by structures of the anterior wing compartment and finally by posterior wing structures. No evidence for such a sequence was found in the transdetermination pattern of the antenna disc.  相似文献   

9.
Following irradiation (IR), the DNA damage response (DDR) activates p53, which triggers death of cells in which repair cannot be completed. Lost tissue is then replaced and re-patterned through regeneration. We have examined the role of p53 in co-regulation of the DDR and tissue regeneration following IR damage in Drosophila. We find that after IR, p53 is required for imaginal disc cells to repair DNA, and in its absence the damage marker, γ-H2AX is persistently expressed. p53 is also required for the compensatory proliferation and re-patterning of the damaged discs, and our results indicate that cell death is not required to trigger these processes. We identify an IR-induced delay in developmental patterning in wing discs that accompanies an animal-wide delay of the juvenile-adult transition, and demonstrate that both of these delays require p53. In p53 mutants, the lack of developmental delays and of damage resolution leads to anueploidy and tissue defects, and ultimately to morphological abnormalities and adult inviability. We propose that p53 maintains plasticity of imaginal discs by co-regulating the maintenance of genome integrity and disc regeneration, and coordinating these processes with the physiology of the animal. These findings place p53 in a role as master coordinator of DNA and tissue repair following IR.  相似文献   

10.
Cell proliferation is required for tissue regeneration, yet the dynamics of proliferation during regeneration are not well understood. Here we investigated the proliferation of eye and leg regeneration in fragments of Drosophila imaginal discs. Using twin spot clones, we followed the proliferation and fates of sister cells arising from the same mother cell in the regeneration blastema. We show that the mother cell gives rise to two sisters that participate equally in regeneration. However, when cells switch disc identity and transdetermine to another fate, they fail to turn off the cell cycle and continue dividing long after regeneration is complete. We further demonstrate that the regeneration blastema moves as a sweep of proliferation, in which cells are displaced. Our results suggest that regenerating cells stop dividing once the missing parts are formed, but if they undergo a switch in cell fate, the proliferation clock is reset.  相似文献   

11.
The imaginal discs of Drosophila are the larval primordia for the adult cuticular structures of the adult fly. Fate maps of different discs have been generated that show the localization of prospective adult structures. Even though the three legs differ in their morphology, only the fate map for the T1 (prothoracic) leg disc has been generated. Here we present fate maps for the T2 (meso-) and T3 (metathoracic) leg discs. We show that there are many similarities to the map of the T1 leg disc. However, there are also significant differences in the contributions of each disc to the thorax, in the morphology of joints connecting the legs to the thorax, in bristle patterns, and in the positioning of some sensory organs. We also tested the developmental potential of disc fragments and observed that T2 and T3 leg discs have more limited plasticity and are unable to transdetermine. The differences in the cuticle patterns between legs are robust and conserved in many species of dipterans. While most previous analyses of imaginal disc development have not distinguished between the different leg discs, we believe that the underlying differences of the three leg discs demonstrated here cannot be ignored when studying leg disc development.  相似文献   

12.
Drosophila imaginal disc cells can switch fates by transdetermining from one determined state to another. We analyzed the expression profiles of cells induced by ectopic Wingless expression to transdetermine from leg to wing by dissecting transdetermined cells and hybridizing probes generated by linear RNA amplification to DNA microarrays. Changes in expression levels implicated a number of genes: lamina ancestor, CG12534 (a gene orthologous to mouse augmenter of liver regeneration), Notch pathway members, and the Polycomb and trithorax groups of chromatin regulators. Functional tests revealed that transdetermination was significantly affected in mutants for lama and seven different PcG and trxG genes. These results validate our methods for expression profiling as a way to analyze developmental programs, and show that modifications to chromatin structure are key to changes in cell fate. Our findings are likely to be relevant to the mechanisms that lead to disease when homologs of Wingless are expressed at abnormal levels and to the manifestation of pluripotency of stem cells.  相似文献   

13.
Fragments of imaginal discs of the fruitfly Drosophila undergo growth and pattern regulation when cultured in vivo in adult female hosts for several days prior to metamorphosis in host larvae. Pattern regulation results in either regeneration of excised pattern elements or duplication of elements whose fate map positions lay within the fragment. Initial wound healing along the cut edge of a fragment is thought to be a crucial first step in the process of pattern regulation. We have examined the capacity for wound healing and pattern regulation of fragments (distal halves) of the wing disc cultured in vitro, using the culture system recently reported to support extensive growth and transdetermination of slightly wounded whole imaginal discs in vitro. Our results suggest that disc fragments and whole discs apparently respond differently in the culture system. With disc fragments, wound healing did not occur in vitro. When fragments were first cultured overnight in adult female hosts to allow initial wound healing prior to explantation in vitro, then some volume increase and regeneration of excised portions occurred during 2–3 weeks of culture in vitro. The extent of apparent growth was much less than that reported for whole discs, and the frequency of regeneration in vitro (19%), while highly significant relative to controls not cultured in vitro (0%), was much less than that observed for fragments cultured in vivo (84%). Furthermore the extent of regeneration which occurred in vitro was considerably smaller than that which occurs during regeneration in vivo.  相似文献   

14.
The ectopic expression of the master ey gene by the GAL4-UAS system can induce ectopic eye formation in different organs. The formation of ectopic eyes takes place in certain regions of imaginal discs, which partially overlap with the regions responsible for the transdetermination of differentiated cells (essentially meaning the alteration of the cell fate). In this way, ectopic eye induction could be considered as a model for cellular plasticity studies. In the present work, we performed a search for transgenes, the ectopic coexpression of which with the master ey gene induced morphologic changes in the ectopic eyes on the wing compared to the sole ey expression. Most of the transgenes found to affect the size of ectopic eyes belonged to the class of vesicular trafficking genes capable of affecting different signaling pathways. The ectopic expression of the revealed transgenes in the wing and eye discs altered the morphology of both normal wings and normal eyes. We argue that the effect of these genes may be that they change the size of the region responsible for cell fate transdetermination.  相似文献   

15.
Summary The regulative behavior of fragments of the imaginal discs of the wing and first leg was studied when these fragments were combined with fragments of other thoracic imaginal discs. A fragment of the wing disc which does not normally regenerate when cultured could be stimulated to regenerate by combination with certain fragments of the haltere disc. When combined with a haltere disc fragment thought to be homologous by the criteria of morphology and the pattern of homoeotic transformation, such stimulated intercalary regeneration was not observed. Combinations of first and second leg disc fragments showed that a lateral first leg fragment could be stimulated to regenerate medial structures when combined with a medial second leg disc fragment but not when combined with a lateral second leg disc fragment. Combinations of wing and second leg disc fragments showed that one fragment of the second leg disc is capable of stimulating regeneration from a wing disc fragment while another second leg disc fragment fails to stimulate such regeneration. It is suggested that absence of intercalary regeneration in combinations of fragments of different thoracic imaginal discs is a result of homology or identity of the positional information residing in the cells of the fragments. The pattern of correspondence of positional information revealed by this analysis is consistant with the pattern of homology determined by morphological observation and by analysis of the positional specificity of homoeotic transformation among serially homologous appendages. The implications of the existence of homologous positional information in wing and second leg discs which share a common cell lineage early in development are discussed.  相似文献   

16.
Transections and grafting experiments performed in Lineus ruber rostral ends allowed us to generate ribbonworms with a duplication of the postocellar region combined with a deletion of the ocellar region. In such homeotically reconstructed animals, the syngeneic postocellar region transdifferentiated into an ocellar region with functional eyes while the allogeneic postocellar region underwent no transformation. In this case, transdifferentiation is a morphogenetic process leading to the restoration of the normal antero-posterior (A-P) axis pattern in adult worms. This regulative conversion of one adult body region into another, which so far has not been described in any bilaterian animal, is comparable with transdetermination of larval imaginal discs in Drosophila. Under certain conditions, Drosophila, wing imaginal disc cells express the eyeless master control gene and give rise to eyes. Here, we show in Lineus that the transposition of postocellar tissue into the ocellar location causes expression of the eyeless ortholog LsPax-6 and results in eye development. Our results in Lineus clearly suggest that transdifferentiation of adult body regions moved to a different position along the A-P axis is similar to transdetermination of the larval imaginal disc cells which are determined, but not yet differentiated.  相似文献   

17.
18.
Many diverse animal species regenerate parts of an organ or tissue after injury. However, the molecules responsible for the regenerative growth remain largely unknown. The screen reported here aimed to identify genes that function in regeneration and the transdetermination events closely associated with imaginal disc regeneration using Drosophila melanogaster. We screened a collection of 97 recessive lethal P-lacZ enhancer trap lines for two primary criteria: first, the ability to dominantly modify wg-induced leg-to-wing transdetermination and second, for the activation or repression of the lacZ reporter gene in the blastema during disc regeneration. Of the 97 P-lacZ lines, we identified six genes (Krüppel-homolog-1, rpd3, jing, combgap, Aly and S6 kinase) that met both criteria. Five of these genes suppress, while one enhances, leg-to-wing transdetermination and therefore affects disc regeneration. Two of the genes, jing and rpd3, function in concert with chromatin remodeling proteins of the Polycomb Group (PcG) and trithorax Group (trxG) genes during Drosophila development, thus linking chromatin remodeling with the process of regeneration.  相似文献   

19.
Summary These experiments examined whether inDrosophila immature imaginal disc tissue and tissues from embryonic stages can influence pattern regulation in a disc fragment in the same way as can mature imaginal discs. Immature imaginal discs, or the cells of whole embryos, were mixed with a test fragment (presumptive notum) from a mature wing disc. The immature tissues in each mixture were genetically marked and had been heavily irradiated (25 Kr gamma) prior to mixing to prevent growth and maturation during subsequent culture in vivo. Alteration of the regulative behavior of the test fragment (that is, regeneration of wing) thus provided an assay for the communication of positional information by the immature tissues. The results suggest that this capacity arises well before competence to metamorphose, as early as the 16th hour of embryonic development, whereas prior to 16 h, essentially no stimulation of regeneration occurred. It is suggested that the imaginal disc (or presumptive disc) cells of the embryo may have been responsible for this early stimulatory capacity.  相似文献   

20.
Most tissues contain cells capable of the self-renewal and differentiation necessary to maintain tissue and organ integrity. These somatic stem cells are generally thought to have limited developmental potential. The mechanisms that restrict cell fate decisions in somatic stem cells are only now being understood. This understanding will be important in the clinical exploitation of adult stem cells in tissue repair and replacement. Experiments performed over fifty years ago in Drosophila showed that developmental restriction could be relaxed in the proliferating larval cells that are destined to form the adult fly integument. This phenomenon, called transdetermination, can serve as a model for mechanisms of stem-cell commitment. A recent publication (1) sheds new light on the mechanism of transdetermination by demonstrating that loss of homeotic gene silencing leads to increased frequency of transdetermination. In addition, the authors link a specific signaling pathway induced by tissue regeneration to the relaxation of homeotic gene silencing. The data identify key mechanisms that control developmental homeostasis and cell fate restriction that could be manipulated to make somatic stem-cell engineering possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号