首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Song J  Li L  Liu Z  Li Q  Ran P 《Molecular biology reports》2009,36(2):315-321
Shellfish can cause severe anaphylactic reactions. Tropomyosin has been assumed partly responsible for the cross-reactivity among shellfish and other invertebrates. In this study, cDNA of Sinonovacula constricta was amplified by RT-PCR and 3′-RACE from total RNA. The obtained tropomyosin cDNA included an open reading frame coding for 284 amino acids. The deduced amino acid sequence of the corresponding protein shared high identity with other allergenic tropomyosins. Expression of the recombinant tropomyosin was carried out in Escherichia coli BL21(DE3) using vector PET28a and the purification of the recombinant protein was performed via affinity chromatography. IgE reactivity of recombinant tropomyosin was investigated by immunoblot and the sensized precentage was 36% which indicated that tropomyosin was the minor allergens in S. constricta. Moreover, the character of the purified protein was analyzed by MALDI-TOF-MS. Juanjuan Song and Li Li contributed equally to this work.  相似文献   

2.
Tropomyosin represents a major allergen of decapod crustaceans such as shrimps and crabs, and its highly conserved amino acid sequence (>90% identity) is a molecular basis of the immunoglobulin E (IgE) cross-reactivity among decapods. At present, however, little information is available about allergens in edible crustaceans other than decapods. In this study, the major allergen in two species of edible crustaceans, Antarctic krill Euphausia superba and mantis shrimp Oratosquilla oratoria that are taxonomically distinct from decapods, was demonstrated to be tropomyosin by IgE-immunoblotting using patient sera. The cross-reactivity of the tropomyosins from both species with decapod tropomyosins was also confirmed by inhibition IgE immunoblotting. Sequences of the tropomyosins from both species were determined by complementary deoxyribonucleic acid cloning. The mantis shrimp tropomyosin has high sequence identity (>90% identity) with decapod tropomyosins, especially with fast-type tropomyosins. On the other hand, the Antarctic krill tropomyosin is characterized by diverse alterations in region 13–42, the amino acid sequence of which is highly conserved for decapod tropomyosins, and hence, it shares somewhat lower sequence identity (82.4–89.8% identity) with decapod tropomyosins than the mantis shrimp tropomyosin. Quantification by enzyme-linked immunosorbent assay revealed that Antarctic krill contains tropomyosin at almost the same level as decapods, suggesting that its allergenicity is equivalent to decapods. However, mantis shrimp was assumed to be substantially not allergenic because of the extremely low content of tropomyosin.  相似文献   

3.
虾夷扇贝过敏原tropomyosin的克隆表达、纯化及免疫学鉴定   总被引:4,自引:0,他引:4  
从虾夷扇贝(Patinopecten yessoensis)肌肉中提取总RNA,RT-PCR克隆虾夷扇贝中变应原原肌球蛋白的全长基因,根据序列设计带有酶切位点的特异性引物,扩增扇贝tropomyosin的完整开放阅读框,与pET-28a载体连接并转化大肠杆菌Escherichia.coli BL21(DE3),诱导表达后,Ni2+亲和层析柱纯化重组蛋白,Western-blot检测其免疫学活性。经序列测定,该基因含有长度为855bp的开放阅读框,编码284个氨基酸,其在GenBank数据库中的登录号为EU839640。SDS-PAGE检测该重组变应原在大肠杆菌中高效表达36kD的目的蛋白,且重组变应原具有良好的IgE结合活性。研究获得了具有变应原活性的重组虾夷扇贝tropomyosin,为扇贝过敏性疾病的诊断和治疗奠定了基础。    相似文献   

4.
Tropomyosins derived from invertebrates are well-known pan allergens. However, the allergenicities of recombinant tropomyosins are variable. Here, we undertook to compare the IgE-binding reactivities of native and recombinant German cockroach tropomyosins. Native tropomyosin was purified by ammonium sulfate fractionation, hydroxyapatite column chromatography, and electroelution, and recombinant tropomyosin was expressed in Pichia pastoris. The allergenicities of the native and recombinant tropomyosins were compared by ELISA inhibition analysis. Native German cockroach tropomyosin showed 18% IgE-binding reactivity to German cockroach sensitized sera. Recombinant tropomyosin was produced without fusion protein and its N-terminus was blocked like that of the native counterpart. The IgE-binding reactivity of the recombinant was found to be comparable to that of native tropomyosin over the concentration range 1-1000 ng/ml by ELISA inhibition testing. Recombinant German cockroach tropomyosin expressed in Pichia pastoris showed better allergenicity than that expressed in Escherichia coli. Other factors in addition to the structural differences of native and recombinant proteins may also influence the IgE reactivities of tropomyosins.  相似文献   

5.
Akazara scallop striated muscle tropomyosin mutants without a fused amino acid (nf-Tm), and with Ala- (A-Tm) or Asp-Ala- (DA-Tm) fused at the N-terminus were expressed in Escherichia coli cells. Among them, nf-Tm alone has an initial methionine. The native Akazara scallop tropomyosin and DA-Tm showed similar alpha-helix contents and intrinsic viscosity, but nf-Tm and A-Tm exhibited lower values than those of the native tropomyosin. According to the relative viscosity, all the expressed tropomyosins appear to have lost head-to-tail polymerization ability. Though nf-Tm has extremely low actin-binding ability, the ability was almost completely recovered with a two amino acid fusion but incompletely with a one amino acid fusion. On the other hand, an amino acid fusion, irrespective of the number, seemed to inhibit the Mg-ATPase activity of actomyosin. However, the bacterially expressed tropomyosins together with Akazara scallop troponin do not confer the full Ca(2+)-regulation ability of Mg-ATPase activity of actomyosin. These results support that N-terminal blocking probably by an acetyl group of Akazara scallop tropomyosin plays an important role not only in head-to-tail polymerization and actin-binding, as known for vertebrate tropomyosin, but also in maintaining the secondary or higher structure and Ca(2+)-regulation together with troponin.  相似文献   

6.
The major shrimp allergen, tropomyosin, is an excellent model allergen for studying the influence of mutations within the primary structure on the allergenic potency of an allergen; Pen a 1 allows systematic evaluation and comparison of Ab-binding epitopes, because amino acid sequences of both allergenic and nonallergenic tropomyosins are known. Individually recognized IgE Ab-binding epitopes, amino acid positions, and substitutions critical for IgE Ab binding were identified by combinatorial substitution analysis, and 12 positions deemed critical were mutated in the eight major epitopes. The mutant VR9-1 was characterized with regard to allergenic potency by mediator release assays using sera from shrimp-allergic subjects and sera from BALB/c, C57BL/6J, C3H/HeJ, and CBA/J mice sensitized with shrimp extract using alum, cholera toxin, and Bordetella pertussis, as adjuvants. The secondary structure of VR9-1 was not altered; however, the allergenic potency was reduced by 90-98% measuring allergen-specific mediator release from humanized rat basophilic leukemia (RBL) cells, RBL 30/25. Reduced mediator release of RBL-2H3 cells sensitized with sera from mice that were immunized with shrimp extract indicated that mice produced IgE Abs to Pen a 1 and to the same epitopes as humans did. In conclusion, data obtained by mapping sequential epitopes were used to generate a Pen a 1 mutant with significantly reduced allergenic potency. Epitopes that are relevant for human IgE Ab binding are also major binding sites for murine IgE Abs. These results indicate that the murine model might be used to optimize the Pen a 1 mutant for future therapeutic use.  相似文献   

7.
Tropomyosin, a myofibrillar protein of 35-38 kDa, represents a major and cross-reactive allergen in decapod crustaceans. This study was initiated to clarify whether decapod-allergic patients also recognize tropomyosins of barnacles, crustaceans phylogenetically remote from decapods, which are locally consumed as a delicacy. On SDS-PAGE, a 37 kDa protein was observed in all the heated extracts prepared from two species of decapods (American lobster Homarus americanus and black tiger prawn Penaeus monodon) and two species of barnacles (acorn barnacle Balanus rostratus and goose barnacle Capitulum mitella). In immunoblotting, the 37 kDa protein was found to react with monoclonal antibodies against American lobster tropomyosin and hence identified as tropomyosin. The patient sera reacted to tropomyosins from both decapods and barnacles and the reactivity was abolished by preincubation with American lobster tropomyosin, demonstrating that barnacle tropomyosins are allergens cross-reactive with decapod tropomyosins. However, the amino acid sequence of acorn barnacle tropomyosin, deduced by cDNA cloning experiments, shares higher sequence identity with abalone tropomyosins than with decapod tropomyosins. In accordance with this, the phylogenetic tree made for tropomyosins from various animals showed that the acorn barnacle tropomyosin is evolutionally classified not into the decapod tropomyosin family but into the molluscan tropomyosin family.  相似文献   

8.
Inhalation of allergens produced by the American cockroach (Periplaneta americana) induces IgE Ab production and the development of asthma in genetically predisposed individuals. The cloning and expression in Escherichia coli of P. americana tropomyosin allergen have been achieved. The protein shares high homology with other arthropod tropomyosins (80% identity) but less homology with vertebrate ones (50% identity). The recombinant allergen was produced in E. coli as a nonfusion protein with a yield of 9 mg/l of bacterial culture. Both natural and recombinant tropomyosins were purified by isoelectric precipitation. P. americana allergen 1 (Per a 1) and Per a 7 (tropomyosin) are to date the only cross-reacting allergens found in cockroaches. ELISA and Western blot inhibition experiments, using natural and recombinant purified tropomyosins from shrimp and cockroach, showed that tropomyosin induced cross-reactivity of IgE from patients allergic to these allergens, suggesting that this molecule could be a common allergen among invertebrates.  相似文献   

9.
Seafood Allergy and Allergens: A Review   总被引:11,自引:0,他引:11  
Seafoods are composed of diverse sea organisms and humans are allergic to many of them. Tropomyosin is a major allergen in many shellfish, especially crustacea and mollusks. Interestingly, tropomyosin has also been identified as an important allergen in other invertebrates including dust mites and cockroaches, and it has been proposed by some to be an invertebrate pan allergen. Different regions of shrimp tropomyosin bind IgE; 5 major IgE-binding regions have been identified in shrimp tropomyosin containing 8 epitopes. Mutations of these shrimp allergenic epitopes can reduce seafood allergenicity; methods utilizing such mutations will provide safer vaccines for more effective treatment of seafood-allergic patients, and in the future less-allergenic seafood products for consumption. Current address: (R. Ayuso) St. John's Episcopal Hospital, South Shore 327 Beach 19th St., Far Rockaway, NY 11691, U.S.A. Current address: (G. Reese) Paul-Ehrlich-Institut, Department of Allergology, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany  相似文献   

10.
《Insect Biochemistry》1990,20(2):173-184
Several different clones which contain sequences complementary to the mRNA encoding tropomyosin were isolated from cDNA libraries prepared from locust RNA. Based on the sequence analysis of available clones, the complete primary structure of the locust tropomyosin was explored. The deduced protein sequence showed a repeating pattern of amino acid residues characteristic of a coiled-coil structure. The amino acid sequence of locust tropomyosin contains domains of complete homology but also regions of pronounced variability when compared with tropomyosins of other species. Northern blot as well as Western blot analysis revealed that different forms of tropomyosins are expressed in locust muscles.  相似文献   

11.
Allergenic tropomyosins and their cross-reactivities   总被引:1,自引:0,他引:1  
The ingestion or inhalation of some proteins may lead to adverse immune reactions. Allergens may trigger allergic reactions in genetically predisposed individuals when they are absorbed through the skin or make contact with mucous membranes. An allergic disease often deteriorates the quality of life and may sometimes be life-threatening due to anaphylactic shock. A number of allergens have been characterized from various multicellular organisms to date. It is thought to be reasonable to pay a special attention to the substance which is highly cross-reactive and which causes adverse responses in the molecules that are not sensitized but similar to the sensitized allergen. Tropomyosin has been described as an important food allergen in shrimp, lobster, crab, oysters, squid, and other invertebrates. Allergic reactions to shellfish and mollusks are often cross-reactive, which may be explained by the highly conserved amino acid sequences of tropomyosins among invertebrates, but vertebrate tropomyosins are not known to be allergenic. Several tropomyosins from domestic arthropods have been reported to be allergenic. Recently, it was suggested that an infection of helminthic parasites might lead to sensitization to tropomyosin and elicit allergic reactions to other invertebrates. Much effort has been made to characterize these allergenic tropomyosins from various sources. We will discuss the physicochemical characteristics and the potential application of tropomyosin for the diagnosis and therapeutics of allergic disorders.  相似文献   

12.
Heterogeneity and tissue specificity of tropomyosin isoforms obtained from four species of bivalves (Scapharca broughtonii (ark shell), Mytilus galloprovincialis (mussel), Atrina pectinata (surf clam) and Crassostrea gigas (Pacific oyster)), were examined. Tropomyosins were extracted from translucent and opaque portions of posterior adductor muscle, respectively, and cardiac muscle of each bivalve. There were two tropomyosin isoforms in the ark shell, the surf clam and the Pacific oyster. They were designated as TMa and TMb. In the ark shell, TMa was the common isoform and TMb was specific for the opaque portion of the adductor muscle. In the surf clam, TMb was the common isoform present in all tissues. TMa was found only in the translucent portion of muscle. In the Pacific oyster, TMb was the major component in both portions of adductor muscle and TMa was the major component in cardiac muscle, although both tropomyosins were included in all tissues. The mussel had only one tropomyosin.  相似文献   

13.
Storage mites have been recognized as a cause of asthma and rhinitis. Studies from several countries have shown that the IgE-mediated allergy to storage mites is of considerable importance, especially in rural populations. This study aimed to identify and characterize new allergens from Tyrophagus putrescentiae. A partial cDNA sequence encoding tropomyosin was isolated from the cDNA library by immunoscreening using anti-mouse IgG1 sera raised against T. putrescentiae whole body extract. The deduced amino acid sequence shares 64-94% identity with previously known allergenic tropomyosins. Its recombinant protein was produced by using a pET 28b expression system and purified by affinity chromatography using Ni-NTA agarose. The IgE reactivities of tropomyosins from T. putrescentiae and Dermatophagoides farinae were compared by enzyme linked immunosorbent assay (ELISA). Recombinant Tyr p 10 showed 12.5% (5/40) IgE-binding reactivity, whereas recombinant Der f 10 showed 25% (10/40) IgE-binding reactivity against the same sera from storage mite-sensitized and house dust mite-sensitized subjects. Both recombinant Tyr p 10 and Der f 10 showed little inhibition of IgE binding to T. putrescentiae crude extract by ELISA. Tropomyosin seems to contribute only a small portion of the cross-reactivity with house dust mites.  相似文献   

14.
A cDNA expression library of approximately 80,000 members was prepared from rat embryonic fibroblast mRNA using the plasmid expression vectors pUC8 and pUC9. Using an immunological screening procedure and 32P-labeled cDNA probes, clones encoding rat embryonic fibroblast tropomyosin 1 (TM-1) were identified and isolated. DNA sequence analysis was carried out to determine the amino acid sequence of the protein. Rat embryonic fibroblast TM-1 was found to contain 284 amino acids and is most homologous to smooth muscle alpha-tropomyosin compared with skeletal muscle alpha- and beta-tropomyosins and platelet beta-tropomyosin. Among the various tropomyosins, two regions where the greatest sequence divergence is evident are between amino acids 185 and 216 and amino acids 258 and 284. Rat embryonic fibroblast TM-1 and chicken smooth muscle alpha-tropomyosin are most closely related from amino acids 185 and 216 compared with skeletal muscle and platelet tropomyosins. In contrast, rat embryonic fibroblast TM-1, smooth muscle alpha-tropomyosin, and platelet tropomyosin are most homologous from amino acids 258 and 284 compared with skeletal muscle tropomyosins. These differences in sequences at the carboxyl-terminal region of the various tropomyosins are discussed in relation to differences in their binding to skeletal muscle troponin and its T1 fragment.  相似文献   

15.
We have isolated tropomyosin cDNAs from human skeletal muscle and nonmuscle cDNA libraries and constructed gene-specific DNA probes for each of the four functional tropomyosin genes. These DNA probes were used to define the regulation of the corresponding mRNAs during the process of myogenesis. Tropomyosin regulation was compared with that of beta- and gamma-actin. No two striated muscle-specific tropomyosin mRNAs are coordinately accumulated during myogenesis nor in adult striated muscles. Similarly, no two nonmuscle tropomyosins are coordinately repressed during myogenesis. However, mRNAs encoding the 248 amino acid nonmuscle tropomyosins and beta- and gamma-actin are more persistent in adult skeletal muscle than those encoding the 284 amino acid nonmuscle tropomyosins. In particular, the nonmuscle tropomyosin Tm4 is expressed at similar levels in adult rat nonmuscle and striated muscle tissues. We conclude that each tropomyosin mRNA has its own unique determinants of accumulation and that the 248 amino acid nonmuscle tropomyosins may have a role in the architecture of the adult myofiber. The variable regulation of nonmuscle isoforms during myogenesis suggests that the different isoforms compete for inclusion into cellular structures and that compensating autoregulation of mRNA levels bring gene expression into alignment with the competitiveness of each individual gene product. Such an isoform competition-autoregulatory compensation mechanism would readily explain the unique regulation of each gene.  相似文献   

16.
The inhalation of Chenopodium album (C. album) pollen has been reported as an important cause of allergic respiratory symptoms. The aim of this study was to produce the recombinant profilin of C. album (rChe a 2) pollen and to investigate its cross-reactivity with other plant-derived profilins based on potential conformational epitopes and IgE reactivity analysis. Che a 2-coding sequence was cloned, expressed, and purified using one step metal affinity chromatography to recover high-purity target protein. We assessed cross-reactivity and predicted IgE potential epitopes among rChe a 2 and other plant-derived profilins. Immunodetection and inhibition assays using sixteen individual sera from C. album allergic patients demonstrated that purified rChe a 2 could be the same as that in the crude extract. The results of inhibition assays among rChe a 2 and other plant-derived profilins were in accordance with those of the homology of predicted conserved conformational regions. In this study, amino acid sequence homology analysis showed that a high degree of IgE cross-reactivity among plant-derived profilins may depend on predicted potential IgE epitopes.  相似文献   

17.
A chemical comparison of tropomyosins from muscle and non-muscle tissues.   总被引:17,自引:0,他引:17  
Tropomyosins from six different calf tissues: aorta (smooth muscle), skeletal muscle, heart, brain, pancreas and platelets have been isolated, as well as a tropomyosin from mouse fibroblasts. The three muscle tropomyosins have identical polypeptide molecular weights (35,000), paracrystal periodicity and fine structure, and very similar peptide maps. The four non-muscle tropomyosins also have identical polypeptide molecular weights (30,000), paracrystal periodicity and fine structure, and very similar peptide maps. All tropomyosins examined have the same C-terminal amino acid, isoleucine and a blocked N terminal. These findings indicate that muscle and non-muscle tropomyosins are grouped into two similar but non-identical classes of protein. The two classes have at least ten peptide differences out of 31 total peptides, each group having several peptides not found in the other group. This suggests that the two classes of tropomyosins are coded for by different gene classes. It is likely that both gene classes evolved from an ancestral gene by a process involving gene duplication.Peptide maps of skeletal muscle tropomyosins from rabbit, calf and chick, and of non-muscle tropomyosins from rabbit, mouse and calf show few species differences. This suggests that tropomyosin is a highly conserved molecule.  相似文献   

18.
The complete complementary DNA sequences of genes presumably coding for opine dehydrogenases from Arabella iricolor (sandworm), Haliotis discus hannai (abalone), and Patinopecten yessoensis (scallop) were determined, and partial cDNA sequences were derived for Meretrix lusoria (Japanese hard clam) and Spisula sachalinensis (Sakhalin surf clam). The primers ODH-9F and ODH-11R proved useful for amplifying the sequences for opine dehydrogenases from the 4 mollusk species investigated in this study. The sequence of the sandworm was obtained using primers constructed from the amino acid sequence of tauropine dehydrogenase, the main opine dehydrogenase in A. iricolor. The complete cDNA sequence of A. iricolor, H. discus hannai, and P. yessoensis encode 397, 400, and 405 amino acids, respectively. All sequences were aligned and compared with published databank sequences of Loligo opalescens, Loligo vulgaris (squid), Sepia officinalis (cuttlefish), and Pecten maximus (scallop). As expected, a high level of homology was observed for the cDNA from closely related species, such as for cephalopods or scallops, whereas cDNA from the other species showed lower-level homologies. A similar trend was observed when the deduced amino acid sequences were compared. Furthermore, alignment of these sequences revealed some structural motifs that are possibly related to the binding sites of the substrates. The phylogenetic trees derived from the nucleotide and amino acid sequences were consistent with the classification of species resulting from classical taxonomic analyses.  相似文献   

19.
Thirteen cDNA clones encoding IgE-binding proteins were isolated from expression libraries of anthers of Brassica rapa L. and B. napus L. using serum IgE from a patient who was specifically allergic to Brassica pollen. These clones were divided into two groups, I and II, based on the sequence similarity. All the group I cDNAs predicted the same protein of 79 amino acids, while the group II predicted a protein of 83 amino acids with microheterogeneity. Both of the deduced amino acid sequences contained two regions with sequence similarity to Ca2+-binding sites of Ca2+-binding proteins such as calmodulin. However flanking sequences were distinct from that of calmodulin or other Ca2+-binding proteins. RNA-gel blot analysis showed the genes of group I and II were preferentially expressed in anthers at the later developmental stage and in mature pollen. The recombinant proteins produced in Escherichia coli was recognized in immunoblot analysis by the IgE of a Brassica pollen allergic patient, but not by the IgE of a non-allergic patient. The cDNA clones reported here, therefore, represent pollen allergens of Brassica species.  相似文献   

20.
We have constructed a cDNA-expression library of approximately 100,000 members from embryonic chicken smooth-muscle mRNA using the plasmid-expression vectors pUC8 and pUC9. Using an immunological screening procedure and 32P-labeled cDNA probes, we have identified and isolated clones encoding smooth-muscle tropomyosin. Plasmid pSMT-10 (approximately 1100 base pairs) was found to hybrid-select mRNA for smooth-muscle alpha-tropomyosin. DNA-sequence analysis revealed that pSMT-10 contained the entire coding region for alpha-tropomyosin and portions of the 5'- and 3'-untranslated regions. Comparison of the derived amino acid sequence of smooth-muscle alpha-tropomyosin with known skeletal-muscle (rabbit and chicken) and platelet (equine) sequences revealed extensive homology between the various proteins. The smooth-muscle tropomyosin shows the greatest sequence divergence from the skeletal-muscle tropomyosins at the COOH-terminal region. In contrast, the smooth-muscle tropomyosin is most homologous to the platelet tropomyosin at the COOH-terminal end. The relationship of the various tropomyosin sequences to function (e.g. interactions with troponin) are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号