首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary DNA preparations obtained from 122 species of fishes, 5 species of amphibians, and 13 species of reptiles were investigated in their compositional properties by analytical equilibrium centrifugation in CsCl density gradients. These species represented 21 orders of Osteichthyes, 3 orders of Chondrichthyes, 2 orders of amphibians, and 3 orders of reptiles. Modal buoyant densities of fish DNAs ranged from 1.696 to 1.707 g/cm3, the vast majority of values falling, however, between 1.699 and 1.704 g/cm3, which is the range covered by the DNAs of amphibians and reptiles. In all cases, DNA bands in CsCl were only weakly asymmetrical and only very rarely were accompanied by separate satellite bands (mostly on the GC-rich side). Intermolecular compositional heterogeneities were low in the vast majority of cases, and, like CsCl band asymmetries, at least partially due to cryptic or poorly resolved satellites. The present findings indicate, therefore, that DNAs from cold-blooded vertebrates are characterized by a number of common properties, namely a very wide spectrum of modal buoyant densities, low intermolecular compositional heterogeneities, low CsCl band asymmetries, and, in most cases, small amounts of satellite DNAs. In the case of fish DNAs a negative correlation was found between the GC level and the haploid size (c value) of the genome. If polyploidization is neglected, this phenomenon appears to be mainly due to the fact that increases and decreases in GC are associated with contraction and expansion phenomena, respectively, of intergenic noncoding sequences, which are GC poor relative to coding sequences.  相似文献   

2.
Summary The compositional properties of DNAs from 122 species of fishes and from 18 other coldblooded vertebrates (amphibians and reptiles) were compared with those from 10 warm-blooded vertebrates (mammals and birds) and found to be substantially different. Indeed, DNAs from cold-blooded vertebrates are characterized by much lower intermolecular compositional heterogeneities and CsCl band asymmetries, by a much wider spectrum of modal buoyant densities in CsCl, by generally lower amounts of satellites, as well as by the fact that in no case do buoyant densities reach the high values found in the GC-richest components of DNAs from warm-blooded vertebrates.In the case of fish genomes, which were more extensively studied, different orders were generally characterized by modal buoyant densities that were different in average values as well as in their ranges. In contrast, different families within any given order were more often characterized by narrow ranges of modal buoyant densities, and no difference in modal buoyant density was found within any single genus (except for the genusAphyosemion, which should be split into several genera).The compositional differences that were found among species belonging to different orders and to different families within the same order are indicative of compositional transitions, which were shown to be essentially due to directional base substitutions. These transitions were found to be independent of geological time. Moreover, the rates of directional base substitutions were found to be very variable and to reach, in some cases, extremely high values, that were even higher than those of silent substitutions in primates. The taxonomic and evolutionary implications of these findings are discussed.  相似文献   

3.
The compositional distributions of high molecular weight DNA fragments from 20 species belonging to 9 out of the 17 eutherian orders were investigated by analytical CsCl density gradient centrifugation and by preparative fractionation in Cs2SO4/BAMD density gradients followed by analysis of the fractions in CsCl. These compositional distributions reflect those of the isochores making up the corresponding genomes. A “general distribution” was found in species belonging to eight mammalian orders. A “myomorph distribution” was found in Myomorpha, but not in the other rodent infraorders Sciuromorpha and Histricomorpha, which share the general distribution. Two other distributions were found in a megachiropteran (but not in microchiropteran, which, again, shares the general distribution) and in pangolin (a species from the only genus of the order Pholidota), respectively. The main difference between the general distribution and all other distributions is that the former contains sizable amounts (6–10%) of GC-rich isochores (detected as DNA fragments equal to, or higher than, 1.710 g/cm3 in modal buoyant density), which are scarce, or absent, in the other distributions. This difference is remarkable because gene concentrations in mammalian genomes are paralleled by GC levels, the highest gene concentrations being present in the GC-richest isochores. The compositional distributions of mammalian genomes reported here shed light on mammalian phylogeny. Indeed, all orders investigated, with the exception of Pholidota, seem to share a common ancestor. The compositional patterns of the megachiropteran and of Myomorpha may be derived from the general pattern or have independent origins.  相似文献   

4.
Hughes S  Clay O  Bernardi G 《Gene》2002,295(2):323-329
Sauropsids form a complex group of vertebrates including squamates (lizards and snakes), turtles, crocodiles, sphenodon and birds (which are often considered as a separate class). Although avian genomes have been relatively well studied, the genomes of the other groups have remained only sparsely characterized. Moreover, the nuclear sequences available in databanks are still very limited. In the present study, we have analysed the compositional patterns, i.e. the GC (molar fraction of guanine and cytosine in DNA) distributions, of 31 reptilian (particularly snake) genomes by analytical ultracentrifugation of DNAs in CsCl gradients. The profiles were characterized by their modal buoyant density rho(o), mean buoyant density < rho>, asymmetry < rho>- rho(o), and heterogeneity H. The modal buoyant density distribution of reptilian DNAs clearly distinguishes two groups. The snakes fall in the same range of modal densities as most mammals, whereas crocodiles, turtles and lizards show higher values (>1.700 g/cm(3)). As far as the more important compositional properties of asymmetry and heterogeneity are concerned, previous studies showed that amphibians and fishes share relatively low values, whereas birds and mammals are characterized by highly heterogeneous and asymmetric patterns (with the exception of Muridae, which have a lower heterogeneity). The present results show that the snake genomes cover a broad range of asymmetry and heterogeneity values, whereas the genomes of crocodiles and turtles cover a narrow range that is intermediate between those of fishes/amphibians and those of mammals/birds.  相似文献   

5.
Buoyant densities of DNA of mammals   总被引:9,自引:0,他引:9  
One characteristic of DNA, CsCl buoyant density peak values, was determined for DNA samples isolated from 93 species belonging to 11 orders of mammals. The CsCl buoyant density values varied over a very narrow range, 1.696–1.701 g/cm3. Satellite DNAs were found in a number of species. The function and origin of these satellite DNAs are not known.This work was supported by grant DRG-269 from the Damon Runyon Memorial Fund for Cancer Research, Inc., and GB-6657 from the National Science Foundation.  相似文献   

6.
Isochore patterns and gene distributions in fish genomes   总被引:2,自引:0,他引:2  
The compositional approach developed in our laboratory many years ago revealed a large-scale compositional heterogeneity in vertebrate genomes, in which GC-rich and GC-poor regions, the isochores, were found to be characterized by high and low gene densities, respectively. Here we mapped isochores on fish chromosomes and assessed gene densities in isochore families. Because of the availability of sequence data, we have concentrated our investigations on four species, zebrafish (Brachydanio rerio), medaka (Oryzias latipes), stickleback (Gasterosteus aculeatus), and pufferfish (Tetraodon nigroviridis), which belong to four distant orders and cover almost the entire GC range of fish genomes. These investigations produced isochore maps that were drastically different not only from those of mammals (in that only two major isochore families were essentially present in each genome vs five in the human genome) but also from each other (in that different isochore families were represented in different genomes). Gene density distributions for these fish genomes were also obtained and shown to follow the expected increase with increasing isochore GC. Finally, we discovered a remarkable conservation of the average size of the isochores (which match replicon clusters in the case of human chromosomes) and of the average GC levels of isochore families in both fish and human genomes. Moreover, in each genome the GC-poorest isochore families comprised a group of "long isochores" (2-20 Mb in size), which were the lowest in GC and varied in size distribution and relative amount from one genome to the other.  相似文献   

7.
Buoyant density profiles of high-molecular-weight DNAs sedimented in CsCl gradients, i.e., compositional distributions of 50- to 100-kb genomic fragments, have revealed a clear difference between the murids so far studied and most other mammals, including other rodents. Sequence analyses have revealed other, related, compositional differences between murids and nonmurids. In the present study, we obtained CsCl profiles of 17 rodent species representing 13 families. The modal buoyant densities obtained for rodents span the full range of values observed in other eutherians. More remarkably, the skewness (asymmetry, mean - modal buoyant density) of the rodent profiles extends to values well below those of other eutherians. Scatterplots of these and related CsCl profile parameters show groups of rodent families that agree largely with established rodent taxonomy, in particular with the monophyly of the Geomyoidea superfamily and the position of the Dipodidae family within the Myomorpha. In contrast, while confirming and extending previously reported differences between the profiles of Myomorpha and those of other rodents, the CsCl data question a traditional hypothesis positing Gliridae within Myomorpha, as does the recently sequenced mitochondrial genome of dormouse. Analysis of CsCl profiles is presented here as a rapid, robust method for exploring rodent and other vertebrate systematics.  相似文献   

8.
Clay O  Carels N  Douady C  Macaya G  Bernardi G 《Gene》2001,276(1-2):15-24
GC level distributions of a species' nuclear genome, or of its compositional fractions, encode key information on structural and functional properties of the genome and on its evolution. They can be calculated either from absorbance profiles of the DNA in CsCl density gradients at sedimentation equilibrium, or by scanning long contigs of largely sequenced genomes. In the present study, we address the quantitative characterization of the compositional heterogeneity of genomes, as measured by the GC distributions of fixed-length fragments. Special attention is given to mammalian genomes, since their compartmentalization into isochores implies two levels of heterogeneity, intra-isochore (local) and inter-isochore (global). This partitioning is a natural one, since large-scale compositional properties vary much more among isochores than within them. Intra-isochore GC distributions become roughly Gaussian for long fragments, and their standard deviations decrease only slowly with increasing fragment length, unlike random sequences. This effect can be explained by 'long-range' correlations, often overlooked, that are present along isochores.  相似文献   

9.
Although much attention has recently been directed to analytical ultracentrifugation (AUC), the revival of interest has hardly addressed the applications of this technology in genome analysis, and the extent to which AUC studies can quickly and effectively complement modern sequence-based analyses of genomes, e.g. by anticipating, extending or checking results that can be obtained by cloning and sequencing. In particular, AUC yields a quick overview of the base compositional structure of a species' genome even if no DNA sequences are available and the species is unlikely to be sequenced in the near future. The link between AUC and DNA sequences dates back to 1959, when a precise linear relation was discovered between the GC (guanine+cytosine) level of DNA fragments and their buoyant density in CsCl as measured at sedimentation equilibrium. A 24-hour AUC run of a high molecular weight sample of a species' total DNA already yields the GC distribution of its genome. AUC methods based on this principle remain sensitive tools in the age of genomics, and can now be fine-tuned by comparing CsCl absorbance profiles with the corresponding sequence histograms. The CsCl profiles of vertebrates allow insight into structural and functional properties that correlate with base composition, and their changes during vertebrate evolution can be monitored by comparing CsCl profiles of different taxa. Such comparisons also allow consistency checks of phylogenetic hypotheses at different taxonomic levels. We here discuss some of the information that can be deduced from CsCl profiles, with emphasis on mammalian DNAs.  相似文献   

10.
Aqueous RbTCA is generally suitable as a buoyant solvent for both native and denatured DNA at neutral pH and room temperature. Native PM-2 DNA II, for example, is buoyant at 3.29 M salt, 25 degrees C; whereas the denatured strands band together at 4.52 M. Two properties of the solvent make this system uniquely useful for separations based upon the extent of secondary structure. First, the melting transition temperature for chemically unaltered DNA is depressed to room temperature or below. Second, the buoyant density increase accompanying denaturation is extraordinarily large, 174 mg/ml for PM-2 DNA II. This value is three times that found in aqueous NaI and ten times that for CsCl. The properties of the RbTCA buoyant solvent presented here include the compositional and buoyant density gradients and the buoyant density dependence upon base composition. The DNA remains chemically unaltered after exposure to RbTCA as shown by the absence of strand scissions for closed circular DNA and by the unimpaired biological activity in transformation assays. Intact virion DNA may be isolated by direct banding of whole virions in RbTCA gradients without prior phenol extraction. Strongly complexed or covalently bound proteins may be detected by their association with the buoyant polymer in the denaturing density gradient.  相似文献   

11.
The buoyant density titrations of five ionizable copolypeptides in concentrated CsCl solutions have been determined. The results are used to formulate models for predicting the buoyant density titration behavior of copolypeptides and proteins using the previously reported homopolypeptide buoyant density titration curves. It was determined for these copolypeptides that the best predictive model must include not only the buoyant densities of the constituent amino acid residues and the relative composition, but also hydration and salt binding. Hydrations determined for the homopolypeptides are used in the copolypeptide predictive model. The hydrations of the neutral homopolypeptides were readily calculable since their buoyant densities are thermodynamically defined in terms of their partial specific volumes and hydrations. For the case of a charged macromolecule, an expression for the buoyant density as a function of the number and nature of the bound ions, its partial specific volume, and its relative hydration has also been available for some time. This heretofore intuitive relationship is now derived from thermodynamic principles and allows calculations of hydrations to charged macromolecules which bind either cations, anions, or both. The potentiometric titrations of three of the five copolypeptides in concentrated CsCl solutions were determined in order to study the effect of residue interaction and solvation effects on their ionization behavior. The potentiometric results are also combined directly with the buoyant density titration results to determine the correlation of the buoyant density with the degree of ionization. As in the cases of poly(Glu) and poly(His), the buoyant density of the copolypeptides changed linearily with the degree of ionization. The buoyant density titrations of two nonionizable homopolypeptides, poly(Gly) and poly(Ala), were determined in concentrated CsCl solutions. The buoyant density was found to increase with increasing pH, despite the fact that side chains do not contain ionizable groups. This is the first evidence from homopolypeptide or copolypeptide data that buoyant density changes can be observed from effects other than side-chain ionizations.  相似文献   

12.
Barley and wheat DNAs have been characterized by studying their kinetics of reassociation, melting properties and sedimentation behaviour in neutral CsCl gradients as well as in Cs2SO4 gradients containing Ag+ or Hg2+. In both species, reassociation kinetics have revealed the presence of approx. 76% redundant nucleotide sequences which have been grouped into very rapidly reassociating (Cot 0-0.01), rapidly reassociating (Cot 0.01-1.0) and slowly reassociating (Cot 1-100) fractions. The barley Cot 0-0.01 and Cot 0.01-1.0 fractions as well as the wheat Cot 0.01-1.0 fraction form narrow bands upon centrifugation in CsCl gradients. Under similar experimental conditions both Cot 0.01 and Cot 1.0-100 wheat fractions and the barley Cot 1.0-100 fraction form broad bands each having several shoulders. Thermal denaturation studies of most of the above reassociated fractions have shown a considerable degree of order in their duplexes with an average hyperchromicity of 21.5%. When native, high molecular weight barley DNA is centrifuged in Ag+/CS2SO4 density gradients (RF = 0.2), two satellites appear on the heavier side of the main band, as against one in the case of wheat. The two minor peaks, designated as satellites I and II, have buoyant densities of 1.702 and 1.698 g/cm3, respectively, in neutral CsCl gradients and together represent about 8-9% of total barley DNA. Upon centrifugation in Hg2+/CS2SO4 density gradients, one satellite is observed in both barley and wheat and it accounts for 1-2% of their genomes.  相似文献   

13.
The buoyant density of nuclear and mitochondrial deoxyribonucleic acid (DNA) from 14 species of fungi was determined by CsCl density gradient equilibrium centrifugation. The buoyant density of both types of DNA was the same for all three Mucorales analyzed. The buoyant density of mitochondrial DNA was significantly lower than that of the nuclear DNA for nine species of Ascomycetes and two species of Basidiomycetes. No simple correlation could be obtained from the comparison of the two types of DNA. Mitochondrial DNA represented a very small proportion of total DNA. Heat-denatured mitochondrial DNA renatured more readily than nuclear DNA.  相似文献   

14.
The replication of DNA in synchronous cultures of mouse lymphoma cells was investigated by use of CsCl density gradient centrifugation. We found that the buoyant density of newly replicated DNA depended upon the particular stage of S phase in which synthesis occurred. In early S phase, newly replicated DNA exhibited buoyant densities which were slightly higher, on the average, than that of pre-existing DNA. As S phase progressed, newly replicated DNA shifted to lower buoyant densities, until, near the end of S phase, densities less than pre-existing DNA were observed. These observations are discussed in terms of their possible relevance to base compositional differences between nucleotide sequences made in early as opposed to middle or late S phase.  相似文献   

15.
Teleosts are a highly diverse group of animals occupying all kind of aquatic environment. Data on routine mass specific metabolic rate were re-examined correcting them for the Boltzmann's factor. Teleostean fish were grouped in five broad groups, corresponding to major environmental classifications: polar, temperate, sub-tropical, tropical and deep-water. The specific routine metabolic rate, temperature-corrected using the Boltzmann's factor (MR), and the average base composition of genomes (GC%) were calculated in each group. Fish of the polar habitat showed the highest MR. Temperate fish displayed a significantly higher MR than tropical fish, which had the lowest average value. These results were apparently in agreement with the cold adaptation hypothesis. In contrast with this hypothesis, however, the MR of fish living in deep-water environment turned out to be not significantly different from that of fish living in tropical habitats. Most probably, the amount of oxygen dissolved in the water directly affects MR adaptation. Regarding the different habitats, the genomic GC levels showed a decreasing trend similar to that of MR. Indeed, both polar and temperate fish showed a GC level significantly higher than that of both sub-tropical and tropical fish. Plotting the genomic GC levels versus the MR a significant positive correlation was found, supporting the hypothesis that metabolic rate can explain not only the compositional transition mode (e.g. amphibian/mammals), but also the compositional shifting mode (e.g. fish/fish) of evolution observed for vertebrate genomes.  相似文献   

16.
The compositional distributions of large (main-band) DNA fragments from eight birds belonging to eight different orders (including both paleognathous and neognathous species) are very broad and extremely close to each other. These findings, which are paralleled by the compositional similarity of homologous coding sequences and their codon positions, support the idea that birds are a monophyletic group.The compositional distribution of third-codon positions of genes from chicken, the only avian species for which a relatively large number of coding sequences is known, is very broad and bimodal, the minor GC-richer peak reaching 100% GC. The very high compositional heterogeneity of avian genomes is accompanied (as in the case of mammalian genomes) by a very high speciation rate compared to cold-blooded vertebrates which are characterized by genomes that are much less heterogeneous. The higher GC levels attained by avian compared to mammalian genomes might be correlated with the higher body temperature (41–43°C) of birds compared to mammals (37°C).A comparison of GC levels of coding sequences and codon positions from man and chicken revealed very close average GC levels and standard deviations. Homologous coding sequences and codon positions from man and chicken showed a surprisingly high degree of compositional similarity which was, however, higher for GC-poor than for GC-rich sequences. This indicates that GC-poor isochores of warm-blooded vertebrates reflect the composition of the isochores of the genome of the common reptilian ancestor of mammals and birds, which underwent only a small compositional change at the transition from cold- to warm-blooded vertebrates. In contrast, the GC-rich isochores of birds and mammals are the result of large compositional changes at the same evolutionary transition, where were in part different in the two classes of warm-blooded vertebrates.Correspondence to: G. Bernaadi  相似文献   

17.
The blood-group specific glycoproteins of human ovarian cyst fluids have been isolated by equilibrium density gradient centrifugation in CsCl; they have been characterised in terms of buoyant density, selective salvation and apparent molecular weight, both in CsCl and Cs(2)SO(4).  相似文献   

18.
A DNA species with buoyant densities greater than mouse cellular DNA was found associated with intracytoplasmic A particles (CAP) isolated from mouse mammary tumor virus-infected mouse mammary tumors and mouse Leydig cell tumors which produce CAP but no complete mouse mammary tumor virus virions. This DNA species was absent in identically prepared tissue fractions from tumors which did not contain CAP. Treatment of CAP-associated DNA with pancreatic RNase A did not alter the buoyant density although a reduction in apparent molecular weight (broadening of the DNA band at equilibrium) was observed upon analytical equilibrium sedimentation in CsCl. The molecular weight of untreated CAP-associated DNA was estimated to range from 0.8 x 10(6) to 3.1 x 10(6). Base composition analysis showed CAP-DNA to possess an approximate guanine plus cytosine content of 38%. Ninety percent of CAP-associated DNA eluted as single-stranded molecules upon hydroxyapatite column chromatography, a characteristic that accounts in part for its higher buoyant density in neutral CsCl compared to native double-stranded mouse DNA. In two preparations, CAP-DNA had a sedimentation coefficient of 7 to 8S.  相似文献   

19.
Chloroplast DNA of the duckweed Spirodela oligorrhiza, isolated by CsCl gradient centrifugation, was characterized by its buoyant density, guanine + cytosine content, melting behavior, circularity, and contour length. In all these characteristics, chloroplast DNA of S. oligorrhiza is similar to the chloroplast genomes of other higher plants, except that it has a significantly larger size.  相似文献   

20.
594 fish genomes have been sequenced in past two decades, this represents 1.85% of the total reported fish species (32,000). Despite this no study represents the trends and only some studies have delved into how the genome size (GS) of the genomes are shaped by species taxonomy. However, all these studies have used data obtained by traditional cytometric methods and also have largely disregarded other genome attributes namely GC, number of chromosomes (CR), number of genes (GE), and protein count (PC). The present study used the most current data on genome attributes of fishes as generated by the whole genome sequencing projects to understand the trends, effect of taxonomy on the genome attributes (GS, GC, CR, GE, and PC) and the interrelation of genome attributes. The trends states that maximum number of fish genomes were sequenced in year 2020, order Cichliformes represents the highest number of published genomes, Illumina is the most used technology for sequencing fish genomes, etc. Our analyses exhibit some concrete trends for fishes as a whole and indicated a strong selection for smaller genomes among all vertebrates and a strong effect of taxonomy on all genome attributes. It also provides clear insights that the fish GS is significantly different from birds, amphibians, reptiles, mammals and insects while the GC only varied from insects. An inverse relation was observed between the GS and GC, and a direct relation was observed between the GS and CR, GE and PC. The results also signify that the per MB value of all the genome attributes decline with increasing GS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号