首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Estrogen causes rapid endothelial nitric oxide (NO) production because of the activation of plasma membrane-associated estrogen receptors (ER) coupled to endothelial NO synthase (eNOS). In the present study, we determined the role of G proteins in eNOS activation by estrogen. Estradiol-17beta (E(2), 10(-8) m) and acetylcholine (10(-5) m) caused comparable increases in NOS activity (15 min) in intact endothelial cells that were fully blocked by pertussis toxin (Ptox). In addition, exogenous guanosine 5'-O-(2- thiodiphosphate) inhibited E(2)-mediated eNOS stimulation in isolated endothelial plasma membranes, and Ptox prevented enzyme activation by E(2) in COS-7 cells expressing ERalpha and eNOS. Coimmunoprecipitation studies of plasma membranes from COS-7 cells transfected with ERalpha and specific Galpha proteins demonstrated E(2)-stimulated interaction between ERalpha and Galpha(i) but not between ERalpha and either Galpha(q) or Galpha(s); the observed ERalpha-Galpha(i) interaction was blocked by the ER antagonist ICI 182,780 and by Ptox. E(2)-stimulated ERalpha-Galpha(i) interaction was also demonstrable in endothelial cell plasma membranes. Cotransfection of Galpha(i) into COS-7 cells expressing ERalpha and eNOS yielded a 3-fold increase in E(2)-mediated eNOS stimulation, whereas cotransfection with a protein regulator of G protein signaling, RGS4, inhibited the E(2) response. These findings indicate that eNOS stimulation by E(2) requires plasma membrane ERalpha coupling to Galpha(i) and that activated Galpha(i) mediates the requisite downstream signaling events. Thus, novel G protein coupling enables a subpopulation of ERalpha to initiate signal transduction at the cell surface. Similar mechanisms may underly the nongenomic actions of other steroid hormones.  相似文献   

2.
Endothelial nitric oxide (NO) synthase (eNOS) is controlled by Ca(2+)/calmodulin and caveolin-1 in caveolae. It has been recently suggested that Na(+)/Ca(2+) exchanger (NCX), also expressed in endothelial caveolae, is involved in eNOS activation. To investigate the role played by NCX in NO synthesis, we assessed the effects of Na(+) loading (induced by monensin) on rat aortic rings and cultured porcine aortic endothelial cells. Effect of monensin was evaluated by endothelium-dependent relaxation of rat aortic rings in response to acetylcholine and by real-time measurement of NO release from cultured endothelial cells stimulated by A-23187 and bradykinin. Na(+) loading shifted the acetylcholine concentration-response curve to the left. These effects were prevented by pretreatment with the NCX inhibitors benzamil and KB-R7943. Monensin potentiated Ca(2+)-dependent NO release in cultured cells, whereas benzamil and KB-R7943 totally blocked Na(+) loading-induced NO release. These findings confirm the key role of NCX in reverse mode on Ca(2+)-dependent NO production and endothelium-dependent relaxation.  相似文献   

3.
4.
Rapid activation of endothelial nitric oxide synthase by estrogen.   总被引:7,自引:0,他引:7  
P W Shaul 《Steroids》1999,64(1-2):28-34
Estrogen is an important atheroprotective molecule that causes the rapid dilation of blood vessels by stimulating endothelial nitric oxide synthase (eNOS). There is also evidence that estrogen modulates airway epithelial NO production, thereby potentially affecting bronchial hyperresponsiveness. Studies in cultured endothelial and airway epithelial cells indicate that physiologic concentrations of estrogen cause rapid direct activation of eNOS that is unaffected by actinomycin D, but fully inhibited by estrogen receptor (ER) antagonism. Overexpression of ERalpha leads to marked enhancement of the acute response to estrogen, and this process is blocked by ER antagonism, it is specific to estrogen, and it requires the ERalpha hormone binding domain. In addition, the acute response of eNOS to estrogen can be reconstituted in COS-7 cells cotransfected with wild-type ERalpha and eNOS, but not by transfection with eNOS alone. Furthermore, the inhibition of calcium influx, or tyrosine kinases or MAP kinase prevents the stimulation of eNOS by estrogen, and estrogen causes rapid ER-dependent activation of MAP kinase. These findings indicate that the acute effects of estrogen on both endothelial and airway epithelial eNOS are mediated by ERalpha functioning in a novel, nongenomic manner to activate the enzyme via calcium-dependent, MAP kinase-dependent mechanisms.  相似文献   

5.
Mogami K  Kishi H  Kobayashi S 《FEBS letters》2005,579(2):393-397
Neutral sphingomyelinase (N-SMase) elevated nitric oxide (NO) production without affecting intracellular Ca(2+) concentration ([Ca(2+)](i)) in endothelial cells in situ on aortic valves, and induced prominent endothelium-dependent relaxation of coronary arteries, which was blocked by N(omega)-monomethyl-L-arginine, a NO synthase (NOS) inhibitor. N-SMase induced translocation of endothelial NOS (eNOS) from plasma membrane caveolae to intracellular region, eNOS phosphorylation on serine 1179, and an increase of ceramide level in endothelial cells. Membrane-permeable ceramide (C(8)-ceramide) mimicked the responses to N-SMase. We propose the involvement of N-SMase and ceramide in Ca(2+)-independent eNOS activation and NO production in endothelial cells in situ, linking to endothelium-dependent vasorelaxation.  相似文献   

6.
Chambliss KL  Shaul PW 《Steroids》2002,67(6):413-419
Estrogen has important atheroprotective and vasoactive properties related to its capacity to stimulate nitric oxide (NO) production by endothelial NO synthase. Previous work has shown that these effects are mediated by estrogen receptor (ER) alpha functioning in a nongenomic manner via calcium-dependent, MAP kinase-dependent mechanisms. Recent studies have demonstrated that estradiol (E(2)) activates eNOS in isolated endothelial plasma membranes in the absence of added calcium, calmodulin or eNOS cofactors. Studies of blockade by ICI 182,780 and by ER alpha antibody, and also immunoidentification experiments indicate that the process is mediated by a subpopulation of plasma membrane-associated ER alpha. Fractionation of endothelial cell plasma membranes has further revealed that ER alpha protein is localized to caveolae, and that E(2) causes stimulation of eNOS in isolated caveolae which is ER-dependent and calcium-dependent, whereas noncaveolae membranes are insensitive. Furthermore, in intact endothelial cells the activation of eNOS by E(2) is prevented by pertussis toxin, and exogenous GDP beta S inhibits the response in isolated plasma membranes. Coimmunoprecipitation studies have shown that E(2) exposure causes interaction between ER alpha and G(alpha i) on the plasma membrane, and eNOS activation by E(2) is enhanced by overexpression of G(alpha i) and attenuated by expression of a protein regulator of G protein signaling (RGS), RGS4. Thus, a subpopulation of ER alpha is localized to caveolae in endothelial cells, where they are coupled via G(alpha i) to eNOS in a functional signaling module. Emphasizing the dependence on cell surface-associated receptors, these observations provide evidence for the existence of a steroid receptor fast-action complex, or SRFC, in caveolae.  相似文献   

7.
Endothelial nitric-oxide synthase (eNOS) plays a central role in cardiovascular regulation. eNOS function is critically modulated by Ca(2+) and protein phosphorylation, but the interrelationship between intracellular Ca(2+) mobilization and eNOS phosphorylation is poorly understood. Here we show that endoplasmic reticulum (ER) Ca(2+) release activates eNOS by selectively promoting its Ser-635/633 (bovine/human) phosphorylation. With bovine endothelial cells, thapsigargin-induced ER Ca(2+) release caused a dose-dependent increase in eNOS Ser-635 phosphorylation, leading to elevated NO production. ER Ca(2+) release also promoted eNOS Ser-633 phosphorylation in mouse vessels in vivo. This effect was independent of extracellular Ca(2+) and selective to Ser-635 because the phosphorylation status of other eNOS sites, including Ser-1179 or Thr-497, was unaffected in thapsigargin-treated cells. Blocking ERK1/2 abolished ER Ca(2+) release-induced eNOS Ser-635 phosphorylation, whereas inhibiting protein kinase A or Ca(2+)/calmodulin-dependent protein kinase II had no effect. Protein phosphorylation assay confirmed that ERK1/2 directly phosphorylated the eNOS Ser-635 residue in vitro. Further studies demonstrated that ER Ca(2+) release-induced ERK1/2 activation mediated the enhancing action of purine or bradykinin receptor stimulation on eNOS Ser-635/633 phosphorylation in bovine/human endothelial cells. Mutating the Ser-635 to nonphosphorylatable alanine prevented ATP from activating eNOS in cells. Taken together, these studies reveal that ER Ca(2+) release enhances eNOS Ser-635 phosphorylation and function via ERK1/2 activation. Because ER Ca(2+) is commonly mobilized by agonists or physicochemical stimuli, the identified ER Ca(2+)-ERK1/2-eNOS Ser-635 phosphorylation pathway may have a broad role in the regulation of endothelial function.  相似文献   

8.
The consumption of cacao-derived (i.e., cocoa) products provides beneficial cardiovascular effects in healthy subjects as well as individuals with endothelial dysfunction such as smokers, diabetics, and postmenopausal women. The vascular actions of cocoa are related to enhanced nitric oxide (NO) production. These actions can be reproduced by the administration of the cacao flavanol (-)-epicatechin (EPI). To further understand the mechanisms behind the vascular action of EPI, we investigated the effects of Ca(2+) depletion on endothelial nitric oxide (NO) synthase (eNOS) activation/phosphorylation and translocation. Human coronary artery endothelial cells were treated with EPI or with bradykinin (BK), a well-known Ca(2+)-dependent eNOS activator. Results demonstrate that both EPI and BK induce increases in intracellular calcium and NO levels. However, under Ca(2+)-free conditions, EPI (but not BK) is still capable of inducing NO production through eNOS phosphorylation at serine 615, 633, and 1177. Interestingly, EPI-induced translocation of eNOS from the plasmalemma was abolished upon Ca(2+) depletion. Thus, under Ca(2+)-free conditions, EPI can stimulate NO synthesis independent of calmodulin binding to eNOS and of its translocation into the cytoplasm. We also examined the effect of EPI on the NO/cGMP/vasodilator-stimulated phosphoprotein (VASP) pathway activation in isolated Ca(2+)-deprived canine mesenteric arteries. Results demonstrate that under these conditions, EPI induces the activation of this vasorelaxation-related pathway and that this effect is inhibited by pretreatment with nitro-L-arginine methyl ester, suggesting a functional relevance for this phenomenon.  相似文献   

9.
Wang TH  Yang D  Liu PQ  Gong SZ  Lu W  Pan JY 《生理学报》2000,52(6):479-482
利用小牛胸主动脉内皮细胞(BAECs)作为模型,观察17β-雌二醇(E2)BAECs一氧化氮(NO)释放、一氧化氮合酶(eNOS)mRNA表达和细胞内钙(〔Ca^2+〕i)的影响,以及雌激素受体(ER)拮抗剂tamoxifen和NOS抑制剂(L-NAME)的作用。结果显示,E2(10^-12 ̄10^-8mol/L)呈尝试依赖性促进BAECs中NO的释放,以10^-8mol/L浓度E2处理BAECs  相似文献   

10.
膜雌激素受体介导一氧化氮合酶活性增高的快速非基因效应   总被引:13,自引:1,他引:12  
Wang TH  Fu XD  Yang D  Tan Z  Pan JY 《生理学报》2003,55(2):213-218
实验利用新生小牛胸主动脉内皮细胞(BAECs)作为模型,观察17β-雌二醇(E2)、E2BSA对BAECs中内皮型一氧化氯合酶(eNOS)的快速激活作用,并探讨了丝裂素活化蛋白激酶(MAPK)信号通路在其中的作用。结果显示,不同浓度的E2(0.001—1lμmol/L)作用于BAECs l5 min均能快速激活eNOS;0.01μmol/L浓度的E2作用于BAECs,5min即能激活eNOS,15min达到最大效应,随后eNOS快速失活;E2BSA(17.5ng/m1)作用于BAECs,15min同样可激活eNOS。E2、E2BSA激活eNOS的作用均能被雌激素受体(ER)拮抗剂tamoxifen(0.1μmol/L)或MAPK激酶特异抑制剂PD98059(50μmol/L)所阻断。放线菌素D(25μg/ml)不能阻断E2、E2BSA对eNOS的激活作用。E2(0.01μmol/L)、E2BSA(17.5ng/ml)作用于BAECs l5 min后可明显促进p42/p44磷酸化MAPK蛋白表达,而对p42/p44 MAPK总蛋白表达无影响。Tamoxifen可部分阻断E2;E2BSA激活p42/p44磷酸化MAPK的作用。这些结果提示,BAECs膜上可能存在膜雌激素受体(membrane estrogen receptor,mER),E2、E2BSA作用于mER后可通过MAPK信号途径快速激活eNOS。  相似文献   

11.
Estradiol (E(2)) causes endothelium-dependent vasodilation, mediated, in part, by enhanced nitric oxide (NO) release. We have previously shown that E(2)-induced activation of endothelial nitric oxide synthase (eNOS) reduces its calcium dependence. This pathway of eNOS activation is unique to a limited number of stimuli, including shear stress, the response to which is herbimycin-inhibitable. Consistent with this, herbimycin and geldanamycin pretreatment of human umbilical vein endothelial cells (HUVEC) abrogated E(2)-stimulated NO release and cGMP production, respectively. These benzoquinone ansamycins are potent inhibitors of Hsp90 function, which has recently been shown to play a role in stimulus-dependent eNOS activation. As in response to shear, E(2) induced an Hsp90-eNOS association, peaking at 30 min and completely inhibited by the conventional estrogen receptor antagonist ICI 182,780. These findings suggest that Hsp90 plays an important role in the rapid, estrogen receptor-mediated modulation of eNOS activation by estrogen.  相似文献   

12.
Protein palmitoylation represents an important mechanism governing the dynamic subcellular localization of many signaling proteins. Palmitoylation of endothelial nitric-oxide synthase (eNOS) promotes its targeting to plasmalemmal caveolae; agonist-promoted depalmitoylation leads to eNOS translocation. Depalmitoylation and translocation of eNOS modulate the agonist response, but the pathways that regulate eNOS palmitoylation and depalmitoylation are poorly understood. We now show that the newly characterized acyl-protein thioesterase 1 (APT1) regulates eNOS depalmitoylation. Immunoblot analyses indicate that APT1 is expressed in bovine aortic endothelial cells, which express eNOS. APT1 overexpression appears to accelerate the depalmitoylation of eNOS in COS-7 cells cotransfected with eNOS and APT1 cDNAs. Additionally, purified recombinant APT1 depalmitoylates eNOS assayed in biological membranes isolated from endothelial cells biosynthetically labeled with [(3)H]palmitate or COS-7 cells transfected with eNOS cDNA. More important, the APT1-catalyzed depalmitoylation of palmitoyl-eNOS is potentiated by Ca(2+)-calmodulin (CaM), a key allosteric activator of eNOS. In contrast, APT1-catalyzed depalmitoylation of the G protein Galpha(s) is unaffected by Ca(2+)-CaM. Furthermore, caveolin, a palmitoylated membrane protein, does not appear to be a substrate for APT1. Taken together, these results support a role for APT1 in the regulation of eNOS depalmitoylation and suggest that Ca(2+)-CaM activation of eNOS renders the enzyme more susceptible to APT1-catalyzed depalmitoylation.  相似文献   

13.
Nitric oxide (NO) is synthesized from L-arginine, and in endothelial cells influx of L-arginine is mediated predominantly via Na+-independent cationic amino acid transporters. Constitutive, Ca2+-calmodulin-sensitive eNOS (endothelial nitric oxide synthase) metabolizes L-arginine to NO and L-citrulline. eNOS is present in membrane caveolae and the cytosol and requires tetrahydrobiopterin, NADPH, FAD and FMN as additional cofactors for its activity. Supply of L-arginine for NO synthesis appears to be derived from a membrane-associated compartment distinct from the bulk intracellular amino acid pool, e.g. near invaginations of the plasma membrane referred to as 'lipid rafts' or caveolae. Co-localization of eNOS and the cationic amino acid transport system y+ in caveolae in part explains the 'arginine paradox', related to the phenomenon that in certain disease states eNOS requires an extracellular supply of L-arginine despite having sufficient intracellular L-arginine concentrations. Vasoactive agonists normally elevate [Ca2+]i (intracellular calcium concentration) in endothelial cells, thus stimulating NO production, whereas fluid shear stress, 17beta-oestradiol and insulin cause phosphorylation of the serine/threonine protein kinase Akt/protein kinase B in a phosphoinositide 3-kinase-dependent manner and activation of eNOS at basal [Ca2+]i levels. Adenosine causes an acute activation of p42/p44 mitogen-activated protein kinase and NO release, with membrane hyperpolarization leading to increased system y+ activity in fetal endothelial cells. In addition to acute stimulatory actions of D-glucose and insulin on L-arginine transport and NO synthesis, gestational diabetes, intrauterine growth retardation and pre-eclampsia induce phenotypic changes in the fetal vasculature, resulting in alterations in the L-arginine/NO signalling pathway and regulation of [Ca2+]i. These alterations may have significant implications for long-term programming of the fetal cardiovascular system.  相似文献   

14.
Estradiol stimulates endothelial nitric oxide synthase (eNOS) via the activation of plasma membrane (PM)-associated estrogen receptor (ER) alpha. The process requires Src and erk signaling and eNOS phosphorylation by phosphoinositide 3-kinase (PI3 kinase)-Akt kinase, with Src and PI3 kinase associating with ERalpha upon ligand activation. To delineate the basis of nongenomic eNOS stimulation, the potential roles of ERalpha domains necessary for classical nuclear function were investigated in COS-7 cells. In cross-linking studies, estradiol-17beta (E2) caused PM-associated ERalpha to form dimers. However, eNOS activation by E2 was unaltered for a dimerization-deficient mutant ERalpha (ERalphaL511R). In contrast, ERalpha mutants lacking the nuclear localization signals (NLS), NLS2,3 (ERalphaDelta250-274) or the DNA binding domain (ERalphaDelta185-251), which targeted normally to PM and caveolae/rafts, were incapable of activating eNOS. The loss of NLS2/NLS3 prevented Src and erk activation, and it altered ligand-induced PI3 kinase-ERalpha interaction and prevented eNOS phosphorylation. Loss of the DNA binding domain did not change E2 activation of Src or erk, but ligand-induced PI3 kinase-ERalpha binding and eNOS phosphorylation did not occur. Thus, dimerization is not required for ERalpha coupling to eNOS; however, NLS2/NLS3 plays a role in Src activation, and the DNA binding region is involved in the dynamic interaction between ERalpha and PI3 kinase.  相似文献   

15.
Florian M  Lu Y  Angle M  Magder S 《Steroids》2004,69(10):637-645
OBJECTIVES: Acute administration of estrogen results in vasodilation and increased nitric oxide (NO) production. We examined the hypothesis that this is due to activation of Akt/PKB which subsequently increases eNOS activity. METHODS AND RESULTS: Treatment of bovine microvascular and human umbilical endothelial cells (HUVEC) with 17-beta-estradiol (E2) (10(-9) to 10(-5)M) increased phosphorylation of Akt within 1 min and this was followed by phosphorylation of eNOS. These effects were blocked by wortmannin, a PI(3)K inhibitor and the upstream activator of Akt. The estrogen receptor antagonist, ICI 182,780, inhibited eNOS phosphorylation. E2 increased calcium dependent NOS activity and nitrite production and this was inhibited by wortmannin and ICI 182,780. E2 increased the vasodilatory response of aortic rings to acetylcholine and wortmannin blocked the effect. E2 (10(-9)M) dilated cerebral microvascular vessels under conditions of no flow, constant flow and increasing flow and this was blocked by wortmannin. Tamoxifen, a partial estrogen receptor antagonist, also dilated the microvessels. CONCLUSIONS:: E2 increases NO production through an Akt/PKB dependent pathway. This is associated with increased sensitivity to endothelial dependent dilation. In cerebral microvessels, E2 and tamoxifen produce significant dilation at low concentrations with and without acetylcholine induced stimulation of endothelial vasodilation.  相似文献   

16.
17.
Vascular cell signaling by membrane estrogen receptors   总被引:1,自引:0,他引:1  
Kim KH  Moriarty K  Bender JR 《Steroids》2008,73(9-10):864-869
  相似文献   

18.
Chronic estrogen treatment increases endothelial vasodilator function in cerebral arteries. Endothelial nitric oxide (NO) synthase (eNOS) is a primary target of the hormone, but other endothelial factors may be modulated as well. In light of possible interactions between NO and prostaglandins, we tested the hypothesis that estrogen treatment increases prostanoid-mediated dilation using NOS-deficient female mouse models, i.e., mice treated with a NOS inhibitor [N(G)-nitro-l-arginine methyl ester (l-NAME)] for 21 days or transgenic mice with the eNOS gene disrupted (eNOS(-/-)). All mice were ovariectomized; some in each group were treated chronically with estrogen. Cerebral blood vessels then were isolated for biochemical and functional analyses. In vessels from control mice, estrogen increased protein levels of eNOS but had no significant effect on cyclooxygenase (COX)-1 protein, prostacyclin production, or constriction of pressurized, middle cerebral arteries to indomethacin, a COX inhibitor. In l-NAME-treated mice, however, cerebrovascular COX-1 levels, prostacyclin production, and constriction to indomethacin, as well as eNOS protein, were all greater in estrogen-treated animals. In vessels from eNOS(-/-) mice, estrogen treatment also increased levels of COX-1 protein and constriction to indomethacin, but no effect on prostacyclin production was detected. Thus cerebral blood vessels of control mice did not exhibit effects of estrogen on the prostacyclin pathway. However, when NO production was dysfunctional, the impact of estrogen on a COX-sensitive vasodilator was revealed. Estrogen has multiple endothelial targets; estrogen effects may be modified by interactions among these factors.  相似文献   

19.
Eicosapentaenoic acid (EPA), but not its metabolites (docosapentaenoic acid and docosahexaenoic acid), stimulated nitric oxide (NO) production in endothelial cells in situ and induced endothelium-dependent relaxation of bovine coronary arteries precontracted with U46619. EPA induced a greater production of NO, but a much smaller and more transient elevation of intracellular Ca(2+) concentration ([Ca(2+)]i), than did a Ca(2+) ionophore (ionomycin). EPA stimulated NO production even in endothelial cells in situ loaded with a cytosolic Ca(2+) chelator 1,2-bis-o-aminophenoxythamine-N',N',N'-tetraacetic acid, which abolished the [Ca(2+)]i elevations induced by ATP and EPA. The EPA-induced vasorelaxation was inhibited by N(omega)-nitro-L-arginine methyl ester. Immunostaining analysis of endothelial NO synthase (eNOS) and caveolin-1 in cultured endothelial cells revealed eNOS to be colocalized with caveolin in the cell membrane at a resting state, while EPA stimulated the translocation of eNOS to the cytosol and its dissociation from caveolin, to an extent comparable to that of the eNOS translocation induced by a [Ca(2+)]i-elevating agonist (10 microM bradykinin). Thus, EPA induces Ca(2+)-independent activation and translocation of eNOS and endothelium-dependent vasorelaxation.  相似文献   

20.
We report the modulatory effects of estrogen on release of endothelium-derived relaxing factors (EDRFs) in a human endothelial cell line, EA.hy926. Using bioassay, we showed that EA.hy926 released EDRF including nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF) measured by relaxation of pre-contracted endothelium-denuded rabbit aortic rings. This EDRF production was significantly higher in cells treated for 24 h with 17-beta-estradiol (10(-6)mol/L) than control cells. Addition of L-NAME to the perfusate of cells caused the relaxation induced by the endothelial cell perfusate to become transient and abolished the enhancement of relaxation due to estrogen treatment. Addition of K(Ca) channel blockers to the perfusate abolished the L-NAME-resistant relaxation of the bioassay ring. Using real-time PCR, we demonstrated that eNOS expression in estrogen-treated cells was significantly higher than controls. These results show that estrogen exerts a potentially important vasculo-protective effect by stimulating NO but not EDHF production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号