首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cadmium induced lipid peroxidation (LPO) and the activity of antioxidantenzymes after the administration of a single dose of CdCl 2 (0.4 mg kg body wt, ip) was studied in rat erythrocytes.Cd intoxication increased erythrocyte LPO along with a decrease insuperoxide dismutase (SOD) up to three days of Cd treatment. Thedecrease in erythrocyte catalase (CAT) activity was marked within9 h of Cd intoxication. After three days of Cd treatment, LPOdecreased towards normal, along with an increase in erythrocyteSOC and CAT activity. Blood glutathione (GSH) decreased significantlywithin 24 h of Cd treatment, followed by an increase towards normal.Erythrocyte glutathione S-transferase (GST) activity increased up to10 days of Cd intoxication, probably in an attempt to reduce Cd toxicity.Serum glutamate pyruvate transaminase (SGPT), serum alkaline phosphatase(SALP) and serum bilirubin increased up to 10 days of Cd intoxication.Blood urea increased significantly up to three days, followed by a decreasetowards normal. The results show that Cd induced LPO was associated with adecrease in antioxidant enzymes and GSH in erythrocytes; as these antioxidantsincrease in erythrocytes with recovery from Cd intoxication, the Cd inducedLPO reversed towards normal. The increase in the SGPT, SALP and serum bilirubincorrelated with LPO. The results suggest that Cd intoxication induces oxidativestress and alters the antioxidant system, resulting in oxidative damage torat erythrocytes. © Rapid Science 1998  相似文献   

2.
Thirty-two barrows (Duroc x Landrace x Yorkshire) were randomly divided into four groups, each of which included eight pigs. The groups received the same basal diet supplemented with 0, 100, 250 and 400mg/kg fluoride, respectively. The malondialdehyde (MDA) and glutathione (GSH) levels, antioxidant enzymes activities and zinc/copper superoxide dismutase (Cu/Zn SOD) mRNA content in the liver were determined to evaluate the fluoride hepatic intoxication. Results showed the increased lipid peroxides (LPO) level and the reduced GSH content, along with a concomitant decrease in the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px). Moreover, the level of hepatic Cu/Zn SOD mRNA was also significantly reduced. We suggest the mechanism of fluoride injuring the liver as follows: fluoride causes a decrease in Cu/Zn SOD mRNA and the reduced activities of antioxidant enzymes, leads to the declined ability of scavenging free radicals with excessive production of LPO, which seriously damages the hepatic structure and function.  相似文献   

3.
Arsenic toxicity may lead to skin manifestations and arsenic accumulation in keratinised tissue. Thus human keratinocytes has been extensively used to study dermal effects of arsenic exposure. The present study was aimed to investigate time and dose-dependent effects of arsenic using HaCaT cell line. Another major focus of the study was to evaluate if treatment with monoisoamyl dimercaptosuccinic acid (MiADMSA) offers protection against arsenic-induced oxidative stress and apoptotic cell death using HaCaT cells. HaCaT cell lines were incubated to three different concentrations of arsenic (10, 30 and 50 μM) for 24 h to identify the toxic dose by measuring oxidative stress variables. Later, MiADMSA pre-incubation for an hour preceded arsenic exposure (30 μM). We evaluated cell morphology, lactate dehydrogenase, glutathione linked enzyme and antioxidant enzyme activities to measure oxidative stress status, while MTT assay and caspase 9 and 3 levels were determined for cell viability and apoptotic status. The present study suggests arsenic-induced toxicity in a concentration-dependant manner. Arsenic also caused a significant increase in lactate dehydrogenase accompanied by an elevated antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase and caspase activity). Interestingly, pre-treatment of cell with MiADMSA elicited significant protection against arsenic-induced oxidative stress and apoptotic cell death. The present findings are of clinical relevance and suggest MiADMSA to be a promising candidate in protecting skin against arsenic-induced toxic effects, which need further exploration using in vivo experimental models.  相似文献   

4.
A wide number of pesticides, including highly persistent organochlorine compounds, such as lindane (γ-Hexachlorocyclohexane), have deteriorative effect on fauna and flora by inducing oxidative stress. Lindane induces cell damage by producing free radicals and reactive oxygen species. Quercetin, a dietary flavonoid, is ubiquitous in fruits and vegetables and plays an important role in human health by virtue of its antioxidant function. In this study the flavonoid quercetin was used to investigate its antioxidative effect against lindane induced oxidative stress in rats. The level of lipid peroxidation, reduced glutathione (GSH) were analysed in addition to the antioxidant enzymes such as catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD) and glutathione-s-transferase (GST) activities in the liver and kidney tissue. Levels of hepatic marker enzymes in serum like Aspartate transaminase (AST), Alanine transaminase (ALT), Alkaline phosphatase (ALP) and Lactate dehydrogenase (LDH) and renal markers like serum creatinine and serum urea were estimated. Administration of Lindane induced histopathological alterations and increased levels of serum hepatic and renal markers and malondialdehyde (MDA) with a significant decrease in GSH content and CAT, SOD, GPx and GST activities. Cotreatment of quercetin along with lindane significantly decreased the lindane induced alteration in histology, serum hepatic and renal markers and MDA and also improved the cellular antioxidant status. The results show that Quercetin ameliorates Lindane induced oxidative stress in liver and kidney. The quercetin exhibited chemopreventive effect when administered along with lindane.  相似文献   

5.
Arsenic induced free radical toxicity in brain of mice   总被引:5,自引:0,他引:5  
The present study was designed to investigate the in vivo effects of oral administration of arsenic trioxide (As2O3; 0.5 and 1 mg/kg body weight/day for 45 days) on cerebral hemispheres and cerebellum in male mice, Mus musculus. Arsenic reduced the concentration of glutathione (GSH) in cerebral hemisphere and cerebellum at both the dose levels; while increased lipid peroxidation (LPO) in cerebral hemisphere and cerebellum regions. Further, the activities of antioxidant enzymes viz., superoxide dismutase and catalase also declined in these two regions with dose indicating oxidative stress. This effect is caused by the action of reactive oxygen species (ROS) induced by arsenic exposure.  相似文献   

6.
Arsenic, a notoriously poisonous metalloid, is ubiquitous in the environment, and it affects nearly all organ systems of animals including humans. The present study was designed to investigate the preventive role of a triterpenoid saponin, arjunolic acid against arsenic-induced oxidative damage in murine brain. Sodium arsenite was selected as a source of arsenic for this study. The free-radical-scavenging activity and the in vivo antioxidant power of arjunolic acid were determined from its 2,2-diphenyl-1-picryl hydrazyl radical scavenging ability and ferric reducing/antioxidant power assay, respectively. Oral administration of sodium arsenite at a dose of 10 mg/kg body weight for 2 days significantly decreased the activities of antioxidant enzymes, superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase and glutathione peroxidase, the level of cellular metabolites, reduced glutathione, total thiols and increased the level of oxidized glutathione. In addition, it enhanced the levels of lipid peroxidation end products and protein carbonyl content. Treatment with arjunolic acid at a dose of 20 mg/kg body weight for 4 days prior to arsenic administration almost normalized above indices. Histological findings due to arsenic intoxication and arjunolic acid treatment supported the other biochemical changes in murine brains. Results of 2,2-diphenyl-1-picryl hydrazyl radical scavenging and ferric reducing/antioxidant power assays clearly showed the in vitro radical scavenging as well as the in vivo antioxidant power of arjunolic acid, respectively. The effect of a well-established antioxidant, vitamin C, has been included in the study as a positive control. Combining all, results suggest that arjunolic acid possessed the ability to ameliorate arsenic-induced oxidative insult in murine brain and is probably due to its antioxidant activity.  相似文献   

7.
Arsenic is a well-known environmental toxic metalloid element and carcinogen that affects multiple organ systems including tissue lipid peroxidation and reproduction. The present study was aimed to investigate the protective role of N-acetylcysteine (NAC) on arsenic-induced testicular oxidative damage and antioxidant and steroidogeneic enzymes and sperm parameters in mice. Arsenic was administered through drinking water to mice at a concentration of 4.0 ppm sodium arsenite (actual concentration 2.3 ppm arsenic) for 35 days. The body weight of treated mice did not show significant change as compared with the control mice. In arsenic exposed mice there was a significant decrease in the weight of the testis, epididymis and prostate gland as compared with the control animals. Significant reduction was observed in epididymal sperm count, motile sperms and viable sperms in mice exposed to arsenic indicate decreased spermatogenesis and poor sperm quality. The activity levels of testicular 3β- and 17β-hydroxysteroid dehydrogenases and circulatory levels of testosterone were also decreased in arsenic treated mice indicating reduced steroidogenesis. A significant increase in the activities of lipid peroxidation and a significant decrease in the activities of antioxidant enzymes were observed in the testis of mice exposed to arsenic. In addition, significant increase in the testicular arsenic levels was observed during arsenic intoxication. No significant changes in the oxidation status and selected reproductive variables were observed in the N-acetylcysteine alone treated mice. Whereas, intra-peritoneal injection of NAC to arsenic exposed mice showed a significant increase in the weights of reproductive organs, reduction in arsenic-induced oxidative stress in the tissues and improvement in steroidogenesis over arsenic-exposed mice indicating the beneficial role of N-acetylcysteine to counteract arsenic-induced oxidative stress and to restore the suppressed reproduction in male mice.  相似文献   

8.
Arsenic compounds are classified as toxicants and human carcinogens. Environmental exposure to arsenic imposes a big health issue worldwide. Sinapic acid is a phenylpropanoid compound and is found in various herbal materials and high-bran cereals. It has been reported that sinapic acid has antioxidant efficacy as metal chelators due to the orientation of functional groups. However, it has not yet been examined in experimental animals. In light of this fact, the purpose of this study was to characterize the protective role of sinapic acid against arsenic induced toxicity in rats. Rats were orally treated with arsenic alone (5 mg/kg body weight (bw)/day) plus sinapic acid at different doses (10, 20 and 40 mg/kg bw/day) for 30 days. Hepatotoxicity was measured by the increased activities of serum hepatospecific enzymes namely aspartate transaminase, alanine transaminase, alkaline phosphatase, gamma glutamyl transferase, lactate dehydrogenase and total bilirubin along with increased elevation of lipid peroxidative markers, thiobarbituric acid reactive substances, lipid hydroperoxides, protein carbonyl content and conjugated dienes. The toxic effect of arsenic was also indicated by significantly decreased activities of enzymatic antioxidants like superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase and glucose-6-phosphate dehydrogenase along with non-enzymatic antioxidant like reduced glutathione. Administration of sinapic acid exhibited significant reversal of arsenic induced toxicity in hepatic tissue. The effect at a dose of 40 mg/kg bw/day was more pronounced than the other two doses (10 and 20 mg/kg bw/day). All these changes were supported by reduction of arsenic concentration and histopathological observations of the liver. These results suggest that sinapic acid has a protective effect over arsenic induced toxicity in rat.  相似文献   

9.
Water-soluble nanoparticles of curcumin were synthesized, characterized and applied as a stable detoxifying agent for arsenic poisoning. Chitosan nanoparticles of less than 50 nm in diameter containing curcumin were prepared. The particles were characterized by TEM, DLS and FT-IR. The therapeutic efficacy of the encapsulated curcumin nanoparticles (ECNPs) against arsenic-induced toxicity in rats was investigated. Sodium arsenite (2mg/kg) and ECNPs (1.5 or 15 mg/kg) were orally administered to male Wistar rats for 4 weeks to evaluate the therapeutic potential of ECNPs in blood and soft tissues. Arsenic significantly decreased blood δ-aminolevulinic acid dehydratase (δ-ALAD) activity, reduced glutathione (GSH) and increased blood reactive oxygen species (ROS). These changes were accompanied by increases in hepatic total ROS, oxidized glutathione, and thiobarbituric acid-reactive substance levels. By contrast, hepatic GSH, superoxide dismutase and catalase activities significantly decreased on arsenic exposure, indicative of oxidative stress. Brain biogenic amines (dopamine, norepinephrine and 5-hydroxytryptamine) levels also showed significant changes on arsenic exposure. Co-administration of ECNPs provided pronounced beneficial effects on the adverse changes in oxidative stress parameters induced by arsenic. The results indicate that ECNPs have better antioxidant and chelating potential (even at the lower dose of 1.5 mg/kg) compared to free curcumin at 15 mg/kg. The significant neurochemical and immunohistochemical protection afforded by ECNPs indicates their neuroprotective efficacy. The formulation provides a novel therapeutic regime for preventing arsenic toxicity.  相似文献   

10.
In an attempt to develop new herbal therapy, an aqueous extract of the seed of Moringa oleifera was used to screen the effect on arsenic-induced hepatic toxicity in female rat of Wistar strain. Subchronic exposure to sodium arsenite (0.4 ppm/100 g body weight/day via drinking water for a period of 24 days) significantly increased activities of hepatic and lipid function markers such as alanine transaminase, aspartate transaminase, cholesterol, triglycerides, LDL along with a decrease in total protein and HDL. A notable distortion of hepatocellular histoarchitecture was prominent with a concomitant increase in DNA fragmentation following arsenic exposure. A marked elevation of lipid peroxidation in hepatic tissue was also evident from the hepatic accumulation of malondialdehyde and conjugated dienes along with suppressed activities in the antioxidant enzymes such as superoxide dismutase and catalase. However, co-administration of aqueous seed extract of M. oleifera (500 mg/100 g body weight/day for a period of 24 days) was found to significantly prevent the arsenic-induced alteration of hepatic function markers and lipid profile. Moreover, the degeneration of histoarchitecture of liver found in arsenic-treated rats was protected along with partial but definite prevention against DNA fragmentation induction. Similarly, generation of reactive oxygen species and free radicals were found to be significantly less along with restored activities of antioxidant enzymes in M. oleifera co-administered group with comparison to arsenic alone treatment group. The present investigation offers strong evidence for the hepato-protective and antioxidative efficiencies of M. oleifera seed extract against oxidative stress induced by arsenic.  相似文献   

11.
Protection of arsenic-induced testicular oxidative stress by arjunolic acid   总被引:1,自引:0,他引:1  
Arsenic-induced tissue damage is a major concern to the human population. An impaired antioxidant defense mechanism followed by oxidative stress is the major cause of arsenic-induced toxicity, which can lead to reproductive failure. The present study was carried out to investigate the preventive role of arjunolic acid, a triterpenoid saponin isolated from the bark of Terminalia arjuna, against arsenic-induced testicular damage in mice. Administration of arsenic (in the form of sodium arsenite, NaAsO(2), at a dose of 10 mg/kg body weight) for 2 days significantly decreased the intracellular antioxidant power, the activities of the antioxidant enzymes, as well as the levels of cellular metabolites. In addition, arsenic intoxication enhanced testicular arsenic content, lipid peroxidation, protein carbonylation and the level of glutathione disulfide (GSSG). Exposure to arsenic also caused significant degeneration of the seminiferous tubules with necrosis and defoliation of spermatocytes. Pretreatment with arjunolic acid at a dose of 20 mg/kg body weight for 4 days could prevent the arsenic-induced testicular oxidative stress and injury to the histological structures of the testes. Arjunolic acid had free radical scavenging activity in a cell-free system and antioxidant power in vivo. In summary, the results suggest that the chemopreventive role of arjunolic acid against arsenic-induced testicular toxicity may be due to its intrinsic antioxidant property.  相似文献   

12.
Abstract

Arsenic-induced tissue damage is a major concern to the human population. An impaired antioxidant defense mechanism followed by oxidative stress is the major cause of arsenic-induced toxicity, which can lead to reproductive failure. The present study was carried out to investigate the preventive role of arjunolic acid, a triterpenoid saponin isolated from the bark of Terminalia arjuna, against arsenic-induced testicular damage in mice. Administration of arsenic (in the form of sodium arsenite, NaAsO2, at a dose of 10 mg/kg body weight) for 2 days significantly decreased the intracellular antioxidant power, the activities of the antioxidant enzymes, as well as the levels of cellular metabolites. In addition, arsenic intoxication enhanced testicular arsenic content, lipid peroxidation, protein carbonylation and the level of glutathione disulfide (GSSG). Exposure to arsenic also caused significant degeneration of the seminiferous tubules with necrosis and defoliation of spermatocytes. Pretreatment with arjunolic acid at a dose of 20 mg/kg body weight for 4 days could prevent the arsenic-induced testicular oxidative stress and injury to the histological structures of the testes. Arjunolic acid had free radical scavenging activity in a cell-free system and antioxidant power in vivo. In summary, the results suggest that the chemopreventive role of arjunolic acid against arsenic-induced testicular toxicity may be due to its intrinsic antioxidant property.  相似文献   

13.
Co-administration of iron in combination with monoisoamyl dimercaptosuccinic acid (MiADMSA) against chronic arsenic poisoning in mice was studied. Mice preexposed to arsenic (25 ppm in drinking water for 6 months) mice were treated with MiADMSA (50 mg/kg, intraperitoneally) either alone or in combination with iron (75 or 150 mg/kg, orally) once daily for 5 days. Arsenic exposure led to a significant depletion of blood δ-aminolevulinic acid dehydratase (ALAD) activity, hematocrit, and white blood cell (WBC) counts accompanied by small decline in blood hemoglobin level. Hepatic reduced glutathione (GSH) level, catalase and superoxide dismutase (SOD) activities showed a significant decrease while, oxidized glutathione (GSSG) and thiobarbituric acid-reactive substances (TBARS) levels increased on arsenic exposure, indicating arsenic-induced hepatic oxidative stress. Liver aspartate and alanine transaminases (AST and ALT) activities also decreased significantly on arsenic exposure. Kidney GSH, GSSG, catalase level and SOD activities remained unchanged, while, TBARS level increased significantly following arsenic exposure. Brain GSH, glutathione peroxidase (GPx), and SOD activities decreased, accompanied by a significant elevation of TBARS level after chronic arsenic exposure. Treatment with MiADMSA was marginally effective in reducing ALAD activity, while administration of iron was ineffective when given alone. Iron when co-administered with MiADMSA restored blood ALAD activity. Administration of iron alone had no beneficial effects on hepatic oxidative stress, while in combination with MiADMSA it produced significant decline in hepatic TBARS level compared to the individual effect of MiADMSA. Renal biochemical variables were insensitive to any of the treatments. Combined administration of iron with MiADMSA also had no additional beneficial effect over the individual protective effect of MiADMSA on brain oxidative stress. Interestingly, combined administration of iron with MiADMSA provided more pronounced depletion of blood arsenic, while no additional beneficial effects on tissue arsenic level over the individual effect of MiADMSA were noted. The results lead us to conclude that iron supplementation during chelation has some beneficial effects particularly on heme synthesis pathway and blood arsenic concentration.  相似文献   

14.
Antioxidative property and tumor inhibitive property of B. monniera (20mg/kg body wt, sc) was examined in 3-methylcholanthrene induced fibrosarcoma rats. Antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and the levels of glutathione (GSH) and the rate of lipid peroxidation (LPO) in the liver and kidney tissues were assessed. A significant increase was noted for the rate of LPO with a corresponding decrease in the antioxidant enzyme status in fibrosarcoma bearing rats. In fibrosarcoma bearing rats, the tumor markers like lactate dehydrogenase (LDH), creatine kinase (CK), alanine transaminase (ALT), aspartate transaminase (AST) and sialic acid (SA) were increased in the serum. Treatment with B. monniera extract significantly increased the antioxidant enzyme status, inhibited lipid peroxidation and reduced the tumor markers. It can be concluded that B.monniera extract promotes the antioxidant status, reduces the rate of lipid peroxidation and the markers of tumor progression in the fibrosarcoma bearing rats.  相似文献   

15.
Molecular mechanisms involved in arsenic-induced toxicity are complex and elusive. Liver is one of the most favored organs for arsenic toxicity as methylation of arsenic occurs mostly in the liver. In this study, we have selected a range of environmentally relevant doses of arsenic to examine the basis of arsenic toxicity and the role of pomegranate fruit extract (PFE) in combating it. Male Swiss albino mice exposed to different doses of arsenic presented marked hepatic injury as evident from histological and electron microscopic studies. Increased activities of enzymes alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and alkaline phosphatase corroborated extensive liver damage. It was further noted that arsenic exposure initiated reactive oxygen species (ROS)-dependent apoptosis in the hepatocytes involving loss of mitochondrial membrane potential. Arsenic significantly increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB), coupled with increase in phosphorylated Iκ-B, possibly as adaptive cellular survival strategies. Arsenic-induced oxidative DNA damage to liver cells culminated in p53 activation and increased expression of p53 targets like miR-34a and Bax. Pomegranate polyphenols are known to possess remarkable antioxidant properties and are capable of protecting normal cells from various stimuli-induced oxidative stress and toxicities. We explored the protective role of PFE in ameliorating arsenic-induced hepatic damage. PFE was shown to reduce ROS generation in hepatocytes, thereby reducing arsenic-induced Nrf2 activation. PFE also inhibited arsenic-induced NF-κB-inflammatory pathway. Data revealed that PFE reversed arsenic-induced hepatotoxicity and apoptosis by modulating the ROS/Nrf2/p53–miR-34a axis. For the first time, we have mapped the possible signaling pathways associated with arsenic-induced hepatotoxicity and its rescue by pomegranate polyphenols.  相似文献   

16.

The present study was designed to investigate the effects of lithium treatment on red blood cells which were given arsenic exposure. Long-term lithium therapy is being extensively used for the treatment of bipolar disorders. Arsenic is a group I carcinogen and a major toxic pollutant in drinking water that affects millions of people worldwide. Male SD rats were segregated into four groups, viz. normal control, lithium treated, arsenic treated, and lithium + arsenic treated. Lithium was supplemented as lithium carbonate at a dose level of 1.1 g/kg diet for a period of 8 weeks. Arsenic was given in the form of sodium arsenite at a dose level of 100 ppm in drinking water, ad libitum, for the same period. Lysates of red blood cells were used to investigate the effects of lithium and arsenic treatments on anti-oxidant enzymes, reduced glutathione (GSH), and lipid peroxidation (LPO) levels. Various hematological parameters, activities of Na+ K+ ATPase and delta-aminolevulinic acid dehydratase (δ-ALAD) were also assessed. A significant reduction was observed in the activities of antioxidant enzymes, GSH levels, total erythrocyte counts, Na+ K+ ATPase, and ALAD enzyme activities in lysates of red blood cells when exposed either to lithium or arsenic. In addition, a significant increase in the levels of malondialdehyde (MDA), lymphocytes, neutrophils, and total leukocytes was also observed following lithium as well as arsenic treatments. However, when arsenic-treated rats were subjected to lithium treatment, a pronounced alteration was noticed in all the above parameters. Therefore, we conclude that lithium supplementation to the arsenic-treated rats enhances the adverse effects on red blood cells and therefore use of lithium may not be medicated to patients who are vulnerable to arsenic exposure through drinking water. It can also be inferred that adverse effects of lithium therapy may get aggravated in patients thriving in the arsenic-contaminated area.

  相似文献   

17.
The present study deals with the therapeutic potential of combined administration of N-acetylcysteine (NAC) along with monoisoamyl DMSA (MiADMSA) against chronic arsenic poisoning in guinea pigs. Animal were exposed to 50 ppm arsenic in drinking water for 8 mo and subsequently treated for 5 consecutive days with 100 mg/kg NAC (orally) and MiADMSA (intraperitoneally), individually or in combination (50 mg/kg each). Arsenic exposure produced a significant depletion of blood δ-aminolevulinic acid dehydrate (ALAD) activity, increased the blood zinc protoporphyrin (ZPP) level, and reduced blood and liver glutathione (GSH) levels in guinea pigs. Hepatic oxidized glutathione (GSSG) and thiobarbituric acid reactive substance (TBARS) levels showed a marked increase, whereas hepatic alkaline phosphatase (ALP) activity decreased and acid phosphatase (ACP) activity increased on arsenic exposure. Significant depletion of liver transaminase activities on arsenic exposure suggests organ injury. Administration of MiADMSA, alone and in combination with NAC after arsenic exposure, was able to significantly enhance hepatic GSH and to reduce GSSG and TBARS levels compared to the arsenic control. Biochemical variables indicative of liver injury generally remained insensitive to any of these treatments. The recoveries in parameters indicative of oxidative stress were more marked in guinea pigs treated with combined administration of NAC and MiADMSA than monotherapy. Interestingly, there was a more pronounced depletion of arsenic from blood and tissues after combined treatment with NAC plus MiADMSA than MiADMSA. Blood and tissues copper, zinc, iron, and calcium concentrations showed a significant increase after arsenic exposure, which showed improvement, particularly after combined administration of MiADMSA and NAC. Based on these data, a proposal can be made that greater effectiveness in chelation treatment against chronic arsenic poisoning (i.e., turnover in the oxidative stress and removed of arsenic from the system) could be achieved by combined administration of an antioxidant (preferably having a thiol moiety) with MiADMSA.  相似文献   

18.
Using diabetes mellitus as a model of oxidative damage, this study investigated whether subacute treatment (10 mg/kg/day, intraperitoneally for 14 days) with the compound piperine would protect against diabetes-induced oxidative stress in 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione (GSH and GSSG, respectively) content, and activities of the free-radical detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. Piperine treatment of normal rats enhanced hepatic GSSG concentration by 100% and decreased renal GSH concentration by 35% and renal glutathione reductase activity by 25% when compared to normal controls. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Treatment with piperine reversed the diabetic effects on GSSG concentration in brain, on renal glutathione peroxidase and superoxide dismutase activities, and on cardiac glutathione reductase activity and lipid peroxidation. Piperine treatment did not reverse the effects of diabetes on hepatic GSH concentrations, lipid peroxidation, or glutathione peroxidase or catalase activities; on renal superoxide dismutase activity; or on cardiac glutathione peroxidase or catalase activities. These data indicate that subacute treatment with piperine for 14 days is only partially effective as an antioxidant therapy in diabetes.  相似文献   

19.
We investigated genotoxicity and oxidative stress in the gills of Labeo rohita exposed to 33.6, 67.1, and 100.6 mg L–1of cadmium chloride at 96 h. Genotoxicity was assessed using single cell gel electrophoresis whereas oxidative stress was monitored through lipid peroxidation induction and antioxidant response parameters, namely reduced glutathione (GSH), glutathione peroxidase, glutathione-S-transferase, superoxide dismutase, and catalase (CAT) activities. Significant (p < .05) effect of both concentration and time of exposure was observed on the extent of DNA damage in treated fish. Similarly, malondialdehyde content, level of GSH, and activities of antioxidant enzymes were significantly elevated in treated groups, except CAT. The increased DNA damage and lipid peroxidation (LPO) content along with fluctuation in antioxidant defense system in fish indicated the interaction of cadmium (Cd) with DNA repair processes and production of reactive oxygen species. Thus, Cd is liable for induction of LPO, alteration of antioxidant defenses, and DNA damage in gills of L. rohita.  相似文献   

20.
In this meta-analysis, studies reporting arsenic-induced oxidative damage in mouse models were systematically evaluated to provide a scientific understanding of oxidative stress mechanisms associated with arsenic poisoning. Fifty-eight relevant peer-reviewed publications were identified through exhaustive database searching. Oxidative stress indexes assessed included superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), glutathione-s-transferase (GST), glutathione reductase (GR), oxidized glutathione (GSSG), malondialdehyde (MDA), and reactive oxygen species (ROS). Our meta-analysis showed that arsenic exposure generally suppressed measured levels of the antioxidants, SOD, CAT, GSH, GPx, GST, and GR, but increased levels of the oxidants, GSSG, MDA, and ROS. Arsenic valence was important and GR and MDA levels increased to a significantly (P < 0.05) greater extent upon exposure to As3+ than to As5+. Other factors that contributed to a greater overall oxidative effect from arsenic exposure included intervention time, intervention method, dosage, age of animals, and the sample source from which the indexes were estimated. Our meta-analysis effectively summarized a wide range of studies and detected a positive relationship between arsenic exposure and oxidative damage. These data provide a scientific basis for the prevention and treatment of arsenic poisoning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号