首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundIncidence and mortality rates of colorectal carcinoma (CRC) are higher in African Americans (AAs) than in Caucasian Americans (CAs). Deficient micronutrient intake due to dietary restrictions in racial/ethnic populations can alter genetic and molecular profiles leading to dysregulated methylation patterns and the inheritance of somatic to germline mutations.ResultsDNA from the tumor of AA CRC patients, compared to adjacent normal tissues, contained 1,588 hypermethylated and 100 hypomethylated differentially methylated regions (DMRs). Whereas, 109 hypermethylated and 4 hypomethylated DMRs were observed in DNA from the tumor of CA CRC patients; representing a 14.6-fold and 25-fold change, respectively. Specifically; CHL1, 4 anti-inflammatory genes (i.e., NELL1, GDF1, ARHGEF4, and ITGA4), and 7 miRNAs (of which miR-9-3p and miR-124-3p have been implicated in CRC) were hypermethylated in DNA samples from AA patients with CRC. From the same sample set, RNAseq analysis revealed 108 downregulated genes (including 14 ribosomal proteins) and 34 upregulated genes (including POLR2B and CYP1B1 [targets of miR-124-3p]) in AA patients with CRC versus CA patients.ConclusionDNA methylation profile and/or products of its downstream targets could serve as biomarker(s) addressing racial health disparity.  相似文献   

2.
Aberrant DNA methylation often occurs in colorectal cancer (CRC). In our study we applied a genome-wide DNA methylation analysis approach, MethylCap-seq, to map the differentially methylated regions (DMRs) in 24 tumors and matched normal colon samples. In total, 2687 frequently hypermethylated and 468 frequently hypomethylated regions were identified, which include potential biomarkers for CRC diagnosis. Hypermethylation in the tumor samples was enriched at CpG islands and gene promoters, while hypomethylation was distributed throughout the genome. Using epigenetic data from human embryonic stem cells, we show that frequently hypermethylated regions coincide with bivalent loci in human embryonic stem cells. DNA methylation is commonly thought to lead to gene silencing; however, integration of publically available gene expression data indicates that 75% of the frequently hypermethylated genes were most likely already lowly or not expressed in normal tissue. Collectively, our study provides genome-wide DNA methylation maps of CRC, comprehensive lists of DMRs, and gives insights into the role of aberrant DNA methylation in CRC formation.  相似文献   

3.
《Epigenetics》2013,8(4):503-512
The identification of genes that are differentially methylated in colorectal cancer (CRC) has potential value for both diagnostic and therapeutic interventions specifically in high-risk populations such as African Americans (AAs). However, DNA methylation patterns in CRC, especially in AAs, have not been systematically explored and remain poorly understood. Here, we performed DNA methylome profiling to identify the methylation status of CpG islands within candidate genes involved in critical pathways important in the initiation and development of CRC. We used reduced representation bisulfite sequencing (RRBS) in colorectal cancer and adenoma tissues that were compared with DNA methylome from a healthy AA subject’s colon tissue and peripheral blood DNA. The identified methylation markers were validated in fresh frozen CRC tissues and corresponding normal tissues from AA patients diagnosed with CRC at Howard University Hospital. We identified and validated the methylation status of 355 CpG sites located within 16 gene promoter regions associated with CpG islands. Fifty CpG sites located within CpG islands—in genes ATXN7L1 (2), BMP3 (7), EID3 (15), GAS7 (1), GPR75 (24), and TNFAIP2 (1)—were significantly hypermethylated in tumor vs. normal tissues (P < 0.05). The methylation status of BMP3, EID3, GAS7, and GPR75 was confirmed in an independent, validation cohort. Ingenuity pathway analysis mapped three of these markers (GAS7, BMP3 and GPR) in the insulin and TGF-β1 network—the two key pathways in CRC. In addition to hypermethylated genes, our analysis also revealed that LINE-1 repeat elements were progressively hypomethylated in the normal-adenoma-cancer sequence. We conclude that DNA methylome profiling based on RRBS is an effective method for screening aberrantly methylated genes in CRC. While previous studies focused on the limited identification of hypermethylated genes, ours is the first study to systematically and comprehensively identify novel hypermethylated genes, as well as hypomethylated LINE-1 sequences, which may serve as potential biomarkers for CRC in African Americans. Our discovered biomarkers were intimately linked to the insulin/TGF-B1 pathway, further strengthening the association of diabetic disorders with colon oncogenic transformation.  相似文献   

4.
The identification of genes that are differentially methylated in colorectal cancer (CRC) has potential value for both diagnostic and therapeutic interventions specifically in high-risk populations such as African Americans (AAs). However, DNA methylation patterns in CRC, especially in AAs, have not been systematically explored and remain poorly understood. Here, we performed DNA methylome profiling to identify the methylation status of CpG islands within candidate genes involved in critical pathways important in the initiation and development of CRC. We used reduced representation bisulfite sequencing (RRBS) in colorectal cancer and adenoma tissues that were compared with DNA methylome from a healthy AA subject’s colon tissue and peripheral blood DNA. The identified methylation markers were validated in fresh frozen CRC tissues and corresponding normal tissues from AA patients diagnosed with CRC at Howard University Hospital. We identified and validated the methylation status of 355 CpG sites located within 16 gene promoter regions associated with CpG islands. Fifty CpG sites located within CpG islands—in genes ATXN7L1 (2), BMP3 (7), EID3 (15), GAS7 (1), GPR75 (24), and TNFAIP2 (1)—were significantly hypermethylated in tumor vs. normal tissues (P < 0.05). The methylation status of BMP3, EID3, GAS7, and GPR75 was confirmed in an independent, validation cohort. Ingenuity pathway analysis mapped three of these markers (GAS7, BMP3 and GPR) in the insulin and TGF-β1 network—the two key pathways in CRC. In addition to hypermethylated genes, our analysis also revealed that LINE-1 repeat elements were progressively hypomethylated in the normal-adenoma-cancer sequence. We conclude that DNA methylome profiling based on RRBS is an effective method for screening aberrantly methylated genes in CRC. While previous studies focused on the limited identification of hypermethylated genes, ours is the first study to systematically and comprehensively identify novel hypermethylated genes, as well as hypomethylated LINE-1 sequences, which may serve as potential biomarkers for CRC in African Americans. Our discovered biomarkers were intimately linked to the insulin/TGF-B1 pathway, further strengthening the association of diabetic disorders with colon oncogenic transformation.  相似文献   

5.
Athletic performance is an important criteria used for the selection of superior horses. However, little is known about exercise-related epigenetic processes in the horse. DNA methylation is a key mechanism for regulating gene expression in response to environmental changes. We carried out comparative genomic analysis of genome-wide DNA methylation profiles in the blood samples of two different thoroughbred horses before and after exercise by methylated-DNA immunoprecipitation sequencing (MeDIP-Seq). Differentially methylated regions (DMRs) in the pre-and post-exercise blood samples of superior and inferior horses were identified. Exercise altered the methylation patterns. After 30 min of exercise, 596 genes were hypomethylated and 715 genes were hypermethylated in the superior horse, whereas in the inferior horse, 868 genes were hypomethylated and 794 genes were hypermethylated. These genes were analyzed based on gene ontology (GO) annotations and the exercise-related pathway patterns in the two horses were compared. After exercise, gene regions related to cell division and adhesion were hypermethylated in the superior horse, whereas regions related to cell signaling and transport were hypermethylated in the inferior horse. Analysis of the distribution of methylated CpG islands confirmed the hypomethylation in the gene-body methylation regions after exercise. The methylation patterns of transposable elements also changed after exercise. Long interspersed nuclear elements (LINEs) showed abundance of DMRs. Collectively, our results serve as a basis to study exercise-based reprogramming of epigenetic traits.  相似文献   

6.
Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs) and the hypomethylation of the megabase-sized partially methylated domains (PMDs) are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI) was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma) dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation.  相似文献   

7.
Aberrant DNA methylation often occurs in colorectal cancer (CRC). In our study we applied a genome-wide DNA methylation analysis approach, MethylCap-seq, to map the differentially methylated regions (DMRs) in 24 tumors and matched normal colon samples. In total, 2687 frequently hypermethylated and 468 frequently hypomethylated regions were identified, which include potential biomarkers for CRC diagnosis. Hypermethylation in the tumor samples was enriched at CpG islands and gene promoters, while hypomethylation was distributed throughout the genome. Using epigenetic data from human embryonic stem cells, we show that frequently hypermethylated regions coincide with bivalent loci in human embryonic stem cells. DNA methylation is commonly thought to lead to gene silencing; however, integration of publically available gene expression data indicates that 75% of the frequently hypermethylated genes were most likely already lowly or not expressed in normal tissue. Collectively, our study provides genome-wide DNA methylation maps of CRC, comprehensive lists of DMRs, and gives insights into the role of aberrant DNA methylation in CRC formation.  相似文献   

8.
9.
Illumina’s Infinium HumanMethylation450 BeadChip arrays were used to examine genome-wide DNA methylation profiles in 22 sample pairs from colorectal cancer (CRC) and adjacent tissues and 19 colon tissue samples from cancer-free donors. We show that the methylation profiles of tumors and healthy tissue samples can be clearly distinguished from one another and that the main source of methylation variability is associated with disease status. We used different statistical approaches to evaluate the methylation data. In general, at the CpG-site level, we found that common CRC-specific methylation patterns consist of at least 15,667 CpG sites that were significantly different from either adjacent healthy tissue or tissue from cancer-free subjects. Of these sites, 10,342 were hypermethylated in CRC, and 5,325 were hypomethylated. Hypermethylated sites were common in the maximum number of sample pairs and were mostly located in CpG islands, where they were significantly enriched for differentially methylated regions known to be cancer-specific. In contrast, hypomethylated sites were mostly located in CpG shores and were generally sample-specific. Despite the considerable variability in methylation data, we selected a panel of 14 highly robust candidates showing methylation marks in genes SND1, ADHFE1, OPLAH, TLX2, C1orf70, ZFP64, NR5A2, and COL4A. This set was successfully cross-validated using methylation data from 209 CRC samples and 38 healthy tissue samples from The Cancer Genome Atlas consortium (AUC = 0.981 [95% CI: 0.9677–0.9939], sensitivity = 100% and specificity = 82%). In summary, this study reports a large number of loci with novel differential methylation statuses, some of which may serve as candidate markers for diagnostic purposes.  相似文献   

10.
The methylation profiles of the placental tissues of human embryos with normal karyotype and trisomy 16 were compared using an Infinium HumanMethylation27 BeadChip array (Illumina, United States). Numerous differences between the extraembryonic tissues with diploid and aneuploid karyotypes were observed. The extraembryonic mesoderm of embryos with trisomy 16 appeared to be less methylated than the diploid tissue, whereas the cytotrophoblast of aneuploid embryos was hypermethylated. The presence of the supernumerary chromosome was shown to influence the epigenetic profile of the genome by changing the level of methylation of CpG sites of all chromosomes. However, the largest number of differentially methylated loci was found on chromosome 16. Furthermore, more often, the epimutations were tissuespecific. In both tissues, the hypomethylated genes belong to the groups of genes responsible for different metabolic processes, whereas the hypermethylated genes control the processes of development, cell adhesion, immune response, and response to stimulus.  相似文献   

11.
Hypoxic placentation has been considered as a key step for the development of preeclampsia (PE); however, the underlying epigenetic mechanisms are still not fully understood. The purpose of this study is to investigate the whole genome DNA methylation status of PE. A microarray analysis using the Infinium HumanMethylation450 BeadChip assay in the placentas and maternal peripheral blood (PB) from PE patients and normal controls was performed. For validation, a quantitative RT-PCR analysis was used. Maternal PB showed 71 differentially methylated CpG loci (44 hypermethylated and 27 hypomethylated), while placenta revealed 365 loci (37 hypermethylated and 328 hypomethylated) at the statistical significance level of |Δβ| ≥ 0.17 and P ≤ 0.01. Notably, among the candidates showing significant signals, GRK5 (a member of G protein-coupled receptor kinase family that has previously been known to be associated with PE) showed a significantly hypomethylated level in the placentas of PE patients (Δβ = ?0.176, P = 2.8 × 10?5). In the validation for the potential effect of GRK5 methylation on the gene regulation, GRK5 expression was significantly increased in the placentas from PE patients compared to those from controls (P = 0.027). In further GO analysis, genes of MHC class II protein complex showed the most significant differential methylation in the maternal PB of PE patients, while genes of palate development were differentially methylated in the placenta. Although further replication and functional studies are required, our preliminary results suggest that PE has distinct DNA methylation profiles in the maternal PB and placentas, which may provide insight into future research.  相似文献   

12.
《Genomics》2022,114(5):110478
Stomach cancer is the fifth most common cancer in terms of prevalence and incidence and the fourth leading cause of mortality in men and women worldwide. It is well-established that aberrant DNA methylation in cells can lead to carcinogenesis. The primary objective of our study was to investigate the aberrant DNA methylation status of genes associated with stomach cancer with a particular reference to the ethnic population of Mizoram, North East India. The site-level analysis identified 2883 CpG sites differentially methylated, representing ~922 genes. Out of which 476 Differentially Methylated Positions (DMPs) were promoter-associated, 452 DMPs were hypermethylated, and 24 were hypomethylated. The region-level analysis identified 462 Differentially Methylated Regions (DMRs) corresponding to ~320 genes, of which ~281 genes were hypermethylated and ~40 genes were hypomethylated. TCGA analysis showed that some of the genes had been previously implicated in other cancers including stomach cancer. Five hypermethylated genes were selected as candidate genes for further investigations and they have shown to be novel and could serve as candidate hypermethylation biomarkers for stomach cancer in this particular ethnic group.  相似文献   

13.
Wang B  Li Y  Tan Y  Miao X  Liu XD  Shao C  Yang XH  Turdi S  Ma LJ  Ren J  Cai L 《PloS one》2012,7(3):e33853
BACKGROUND: Cadmium (Cd) is classified as a human carcinogen probably associated with epigenetic changes. DNA methylation is one of epigenetic mechanisms by which cells control gene expression. Therefore, the present study genome-widely screened the methylation-altered genes in the liver of rats previously exposed to low-dose Cd. METHODOLOGY PRINCIPAL FINDINGS: Rats were exposed to Cd at 20 nmol/kg every other day for 4 weeks and gene methylation was analyzed at the 48(th) week with methylated DNA immunoprecipitation-CpG island microarray. Among the 1629 altered genes, there were 675 genes whose promoter CpG islands (CGIs) were hypermethylated, 899 genes whose promoter CGIs were hypomethylated, and 55 genes whose promoter CGIs were mixed with hyper- and hypo-methylation. Caspase-8 gene promoter CGIs and TNF gene promoter CGIs were hypermethylated and hypomethylated, respectively, along with a low apoptosis rate in Cd-treated rat livers. To link the aberrant methylation of caspase-8 and TNF genes to the low apoptosis induced by low-dose Cd, mice were given chronic exposure to low-dose Cd with and without methylation inhibitor (5-aza-2'-deoxyctidene, 5-aza). At the 48(th) week after Cd exposure, livers from Cd-treated mice displayed the increased caspase-8 CGI methylation and decreased caspase-8 protein expression, along with significant increases in cell proliferation and overexpression of TGF-β1 and cytokeratin 8/18 (the latter is a new marker of mouse liver preneoplastic lesions), all which were prevented by 5-aza treatment. CONCLUSION/SIGNIFICANCE: These results suggest that Cd-induced global gene hypermethylation, most likely caspase-8 gene promoter hypermethylation that down-regulated its expression, leading to the decreased hepatic apoptosis and increased preneoplastic lesions.  相似文献   

14.
Oral Squamous Cell Carcinoma (OSCC) is a serious and one of the most common and highly aggressive malignancies. Epigenetic factors such as DNA methylation have been known to be implicated in a number of cancer etiologies. The main objective of this study was to investigate physiognomies of Promoter DNA methylation patterns associated with oral cancer epigenome with special reference to the ethnic population of Meghalaya, North East India. The present study identifies 27,205 CpG sites and 3811 regions that are differentially methylated in oral cancer when compared to matched normal. 45 genes were found to be differentially methylated within the promoter region, of which 38 were hypermethylated and 7 hypomethylated. 14 of the hypermethylated genes were found to be similar to that of the TCGA-HNSCC study some of which are TSGs and few novel genes which may serve as candidate methylation biomarkers for OSCC in this poorly characterized ethnic group.  相似文献   

15.
16.
Hepatocellular carcinoma (HCC) incidence has increased in the US and also has one of the fastest growing death rates of any cancer. The purpose of the current study was to discover novel genome-wide aberrant DNA methylation patterns in HCC tumors that are predominantly HCV-related. Infinium HumanMethylation 450K BeadChip arrays were used to examine genome-wide DNA methylation profiles in 66 pairs of HCC tumor and adjacent non-tumor tissues. After Bonferroni adjustment, a total of 130,512 CpG sites significantly differed in methylation level in tumor compared with non-tumor tissues, with 28,017 CpG sites hypermethylated and 102,495 hypomethylated in tumor tissues. Absolute tumor/non-tumor methylation differences ≥ 20% were found in 24.9% of the hypermethylated and 43.1% of the hypomethylated CpG sites; almost 10,000 CpG sites have ≥ 30% DNA methylation differences. Most (60.1%) significantly hypermethylated CpG sites are located in CpG islands, with 21.6% in CpG shores and 3.6% in shelves. In contrast, only a small proportion (8.2%) of significantly hypomethylated CpG sites are situated in islands, while most are found in open sea (60.2%), shore (17.3%) or shelf (14.3%) regions. A total of 2,568 significant CpG sites (2,441 hypermethylated and 127 hypomethylated) covering 589 genes are located within 684 differentially methylated regions defined as regions with at least two significant CpG sites displaying > 20% methylation differences in the same direction within 250-bp. The top 500 significant CpG sites can significantly distinguish HCC tumor from adjacent tissues with one misclassification. Within adjacent non-tumor tissues, we also identified 75 CpG sites significantly associated with gender, 228 with HCV infection, 17,207 with cirrhosis, and 56 with both HCV infection and cirrhosis after multiple comparisons adjustment. Aberrant DNA methylation profiles across the genome were identified in tumor tissues from US HCC cases that are predominantly related to HCV infection. These results demonstrate the significance of aberrant DNA methylation in HCC tumorigenesis.  相似文献   

17.
Lukas Vrba 《Epigenetics》2018,13(1):61-72
Cancer-specific DNA methylation from the tumor derived fraction of cell free DNA found in blood samples could be used for minimally invasive detection and monitoring of cancer. The knowledge of marker regions with cancer-specific DNA methylation is necessary to the success of such a process. We analyzed the largest cancer DNA methylation dataset available—TCGA Illumina HumanMethylation450 data with over 8,500 tumors—in order to find cancer-specific DNA methylation markers for most common human cancers. First, we identified differentially methylated regions for individual cancer types and those were further filtered against data from normal tissues to obtain marker regions with cancer-specific methylation, resulting in a total of 1,250 hypermethylated and 584 hypomethylated marker CpGs. From hypermethylated markers, optimal sets of six markers for each TCGA cancer type were chosen that could identify most tumors with high specificity and sensitivity [area under the curve (AUC): 0.969-1.000] and a universal 12 marker set that can detect tumors of all 33 TCGA cancer types (AUC >0.84). In addition to hundreds of new DNA methylation markers, our approach also identified markers that are in current clinical use, SEPT9 and GSTP1, indicating the validity of our approach and a significant potential utility for the newly discovered markers. The hypermethylated markers are linked to polycomb associated loci and a significant fraction of the discovered markers is within noncoding RNA genes; one of the best markers is MIR129-2. Future clinical testing of herein discovered markers will confirm new markers that will improve minimally invasive diagnosis and monitoring for multiple cancers.  相似文献   

18.
19.
20.
DNA methylation reprogramming occurs during mammalian gametogenesis and embryogenesis. Sex-specific DNA methylation patterns at specific CpG islands controlling imprinted genes are acquired during this window of development. Characterization of the DNA methylation dynamics of imprinted genes acquired by oocytes during folliculogenesis is essential for understanding the physiological and genetic aspects of female gametogenesis and to determine the parameters for oocyte competence. This knowledge can be used to improve in vitro embryo production (IVP), specifically because oocyte competence is one of the most important aspects determining the success of IVP. Imprinted genes, such as IGF2, play important roles in embryo development, placentation and fetal growth. The aim of this study was to characterize the DNA methylation profile of the CpG island located in IGF2 exon 10 in oocytes during bovine folliculogenesis. The methylation percentages in oocytes from primordial follicles, final secondary follicles, small antral follicles, large antral follicles, MII oocytes and spermatozoa were 73.74 ± 2.88%, 58.70 ± 7.46%, 56.00 ± 5.58%, 65.77 ± 5.10%, 56.35 ± 7.45% and 96.04 ± 0.78%, respectively. Oocytes from primordial follicles showed fewer hypomethylated alleles (15.5%) than MII oocytes (34.6%) (p = 0.039); spermatozoa showed only hypermethylated alleles. Moreover, MII oocytes were less methylated than spermatozoa (p<0.001). Our results showed that the methylation pattern of this region behaves differently between mature oocytes and spermatozoa. However, while this region has a classical imprinted pattern in spermatozoa that is fully methylated, it was variable in mature oocytes, showing hypermethylated and hypomethylated alleles. Furthermore, our results suggest that this CpG island may have received precocious reprogramming, considering that the hypermethylated pattern was already found in growing oocytes from primordial follicles. These results may contribute to our understanding of the reprogramming of imprinted genes during bovine oogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号