首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of motilin in the generation of the gastric component of phase 3 of the migrating myoelectric complex (MMC) was studied in human volunteers. Interdigestive motor activity was recorded manometrically in five normal subjects after a fast of at least 15 h. Intraluminal pressures were measured in the gastric antrum at 4 levels 3 cm apart and in the upper small bowel at 3 levels 25 cm apart. Blood samples were drawn every 10 min for radioimmunoassay of motilin and PP. After 2 spontaneously occurring activity fronts (AF) had been recorded, bovine PP was infused intravenously at a rate of 50 μg/h. Following the third AF a combination of PP (50 μg/h) and 13-norleucine-motilin (30 μg/h) was infused until after the next AF. It was found that 90% of the spontaneous AFs originated in the stomach. They were preceded by a motilin peak. During the PP infusion, plasma PP levels increased from 29 to 256 pmol/l, motilin decreased from 42 to 15 pmol/l, and all AFs originated in the small bowel. During the combined PP and motilin infusion, plasma motilin increased to 330 pmol/l, and all AFs again originated in the stomach. It is concluded that motilin has an important role in the regulation of the MMC activity front in the stomach, but not in the small intestine. Postprandial rises in plasma PP might be involved in lowering motilin levels after a meal, and indirectly, in the disruption of gastric MMCs during digestion.  相似文献   

2.
Close intraarterial injections of motilin to the small intestine of the anaesthetized dog produce prolonged phasic contractions. Tetrodotoxin infused intraarterially blocked field stimulated contractions and abolished the response to motilin as did treatment with a combination of hexamethonium and atropine. Atropine alone increased the dose of motilin required to induce responses. Hexamethonium alone similarly increased the dose of motilin required in the jejunum, but not for the ileum. These results suggest that motilin acts to contract small intestine by stimulation of intrinsic excitatory nerves, some of which are post-ganglionic cholinergic and some of which are not, but are activated by a pathway with a nicotinic synapse. The ED50 for ileal contractions was greater than that for the jejunum and the time to reach maximum contractions longer suggesting a decreased responsiveness of the lower small intestine to motilin as compared to the upper gastro-intestinal tract. These results and the lesser quantity of immunoreactive motilin in the ileum than in the jejunum may explain the lack of relationship of the activity front of the migrating motor complex in the lower small intestine to venous motilin concentrations.  相似文献   

3.
Tsutsui C  Kajihara K  Yanaka T  Sakata I  Itoh Z  Oda S  Sakai T 《Peptides》2009,30(2):318-329
Although many studies have demonstrated the action of motilin on migrating motor complex by using human subjects and relatively large animals, the precise physiological mechanisms of motilin remain obscure. One reason for the lack of progress in this research field is that large animals are generally not suitable for molecular-level study. To overcome this problem, in this study, we focused on the house musk shrew (Suncus murinus, order: Insectivora, suncus named as laboratory strain) as a small model animal, and we present here the results of motilin gene cloning and its availability for motilin study. The motilin gene has a high homology sequence with that of other mammals, including humans. Suncus motilin is predicted to exist as a 117-residue prepropeptide that undergoes proteolytic cleavage to form a 22-amino-acid mature peptide. The results of RT-PCR showed that motilin mRNA is highly expressed in the upper small intestine, and low levels of expression were found in many tissues. Morphological analysis revealed that suncus motilin-producing cells were present in the upper small intestinal mucosal layer but not in the myenteric plexus. Administration of suncus motilin to prepared muscle strips of rabbit duodenum showed almost the same contractile effect as that of human motilin. Moreover, suncus stomach preparations clearly responded to suncus or human motilin stimulation. To our knowledge, this is the first report that physiological active motilin was determined in small laboratory animals, and the results of this study suggest that suncus is a suitable model animal for studying the motilin-ghrelin family.  相似文献   

4.
We have looked at the plasma concentrations of motilin, pancreatic polypeptide (PP), and somatostatin (STS) during the various phases of the interdigestive motor complex (IDMC) in dogs. As expected, motilin cyclical increase was always associated with the phase III of the IDMC. Statistical analysis of PP variations revealed a significant rise 10 min before duodenal phase III; however, in individual animals, this relationship was inconsistent. Although a dose-related increase in PP blood levels was induced by administration of synthetic canine motilin (0-200 ng kg-1 iv), fasting plasma levels of PP were not correlated with the concentrations of circulating endogenous motilin. After truncal vagotomy, while motilin release and the intestinal motility pattern remained unaltered, the phase III associated cyclical increases of PP disappeared. Infusion of physiological amounts of PP (1 microgram kg-1 h-1 for 3 h) mimicking the postprandial release failed to reproduce a fed pattern type of intestinal motility and of motilin secretion. No statistical correlation could be established between STS plasma levels and the motor activity of the intestine. STS plasma levels were not correlated with circulating concentrations of motilin and the exogenous administration of physiological doses of synthetic canine motilin failed to modify STS plasma levels. Morphine (200 micrograms kg-1 iv) stimulated only the release of motilin. These data suggest that the role played by circulating concentrations of PP and STS in the control of the IDMC in dog is at most minimal.  相似文献   

5.
In order to study the regulatory mechanism of motilin release, plasma motilin was measured in healthy dogs during the fasting state and after the ingestion of ordinary nutrient. Fasting plasma motilin levels were found to fluctuate intermittently, but ingestion of a meal completely abolished the intermittent motilin release and resulted in low motilin levels lasting for 6–8 h. To clarify the role of the duodenum in this motilin release, an operation was performed in five dogs by which we excluded from the alimentary tract the upper half of the small intestine not including the duodenum from a point 2 cm below the larger pancreatic duct. After this operation meal ingestion still caused a decrease in plasma motilin levels. However, after a modified version of the operation was performed in 5 other dogs by which the upper half of the small intestine together with the duodenum was transected at the pyloric ring, plasma motilin was not suppressed by meal ingestion. These results suggest that motilin secretion is regulated by nutrient ingestion and that the passage of nutrients through the duodenum plays a important role in its regulation.  相似文献   

6.
This study investigates motilin effects on the proximal stomach in patients with functional dyspepsia (FD) and healthy volunteers. Eight healthy volunteers and 12 patients with FD were infused with synthetic motilin or placebo. Proximal gastric volume was measured with a barostat at constant pressure and during isobaric distensions. Abdominal symptoms were scored by visual analog scales. Plasma motilin concentrations were measured by radioimmunoassay. Motilin concentrations and baseline gastric volumes were similar for patients and healthy volunteers. Motilin, compared with placebo, reduced gastric volume by 112 ml [F(29,195); confidence interval (CI) 95%] in patients and by 96 ml [F(-7,200); CI 95%] in healthy volunteers. In patients, motilin decreased compliance by 76 ml/mmHg [F(9,143); CI 95%] compared with placebo, which was similar in volunteers [66 ml/mmHg; F(11,120); CI 95%]. Patients were more nauseous during motilin compared with placebo (P = 0.04), whereas healthy volunteers did not experience nausea. We conclude that in a fasted condition, FD patients have a similar proximal gastric motor response to motilin as healthy volunteers, but experience an exaggerated sensation of nausea.  相似文献   

7.
The aim of this work was to determine the influence of the vagus on the circulating levels of immunoreactive (IR) motilin. Five mongrel dogs were equipped with chronically implanted electrodes in the small intestine to record the myoelectrical activity. The release of IR motilin during fasting, after a meal, and during an infusion of insulin was studied before and after truncal vagotomy at the diaphragmatic level. When tested at least two weeks after the operation, the motility pattern of the small intestine and the secretion of IR motilin remained unaltered by vagal section. Cyclic increases in IR motilin associated with phase III's of the interdigestive myoelectric complexes were still observed after vagotomy (maximum levels of IR motilin: 250 +/- 37 versus 239 +/- 19 fmol X mL-1, not significant), and they were still abolished by feeding or by insulin. However, an inhibitory influence can probably be mediated by the vagus since, in normal animals, vagal stimulation by a "modified sham feeding" (tease feeding or presentation of food) at the beginning of a period of phase III activity promptly interrupted this part of the complex and decreased significantly the release of IR motilin by about 20%. The release of motilin is not chronically altered by distal vagotomy in dogs.  相似文献   

8.
We previously identified ghrelin and motilin genes in Suncus murinus (suncus), and also revealed that motilin induces phase III-like strong contractions in the suncus stomach in vivo, as observed in humans and dogs. Moreover, repeated migrating motor complexes were found in the gastrointestinal tract of suncus at regular 120-min intervals. We therefore proposed suncus as a small laboratory animal model for the study of gastrointestinal motility. In the present study, we identified growth hormone secretagogue receptor (GHS-R) and motilin receptor (GPR38) genes in the suncus. We also examined their tissue distribution throughout the body. The amino acids of suncus GHS-R and GPR38 showed high homology with those of other mammals and shared 42% amino acid identity. RT-PCR showed that both the receptors were expressed in the hypothalamus, medulla oblongata, pituitary gland and the nodose ganglion in the central nervous system. In addition, GHS-R mRNA expressions were detected throughout the stomach and intestine, whereas GPR38 was expressed in the gastric muscle layer, lower intestine, lungs, heart, and pituitary gland. These results suggest that ghrelin and motilin affect gut motility and energy metabolism via specific receptors expressed in the gastrointestinal tract and/or in the central nervous system of suncus.  相似文献   

9.
Characterization of immunoreactive motilin from the rat small intestine.   总被引:2,自引:0,他引:2  
Immunocytochemistry, radioimmunoassay, chromatography, and biological assay using a rabbit isolated duodenal muscle strip preparation were used in attempting to characterize motilin from the rat small intestine. Several different antisera and monoclonal antibodies directed against natural porcine motilin were used. A variety of fixation techniques using Bouin's, paraformaldehyde, and benzoquinone with different staining methods including, fluorescein-conjugated second antibody, peroxidase-antiperoxidase or peroxidase-conjugated second antibody techniques were used. All methods failed to detect immunoreactive motilin cells in the rat small intestine. The same antisera were used in radioimmunoassays for motilin to evaluate extracts of rat intestinal tissue. Two of these detected immunoreactive motilin in gut extracts, and these antisera showed a different distribution for the peptide. Samples containing immunoreactive motilin obtained from cation exchange chromatography on SP-Sephadex-G25 were concentrated and assayed for biological activity in a rabbit duodenal muscle strip preparation. Desensitization of duodenal tissue to porcine motilin could be demonstrated by pretreatment with this peptide. The biological activity of partially purified rat intestinal immunoreactive motilin was not prevented by pretreatment of the tissue with motilin. Further purification of this preparation on Bio-Gel P-10 yielded an immunoreactive motilin peak that co-eluted with natural porcine motilin. Rat intestinal immunoreactive motilin did not co-elute with natural porcine motilin following high pressure liquid chromatography on a Waters microBondapak C18 reversed-phase column using a linear gradient of water-acetonitrile (10-45%) over 30 min. Although of similar molecular size, rat motilin is probably structurally dissimilar to other mammalian motilins.  相似文献   

10.
5-羟色胺和胃动素在狗小肠移行性复合运动调控中的作用   总被引:18,自引:0,他引:18  
Yang CM  Zhou L  Zhang H  Hao W 《生理学报》1998,50(4):431-438
应用慢性植入小肠腔外应力传感器记录清醒狗小肠移行性复合运动(MMC)。在颈外静脉和支配10 ̄15cm肠段的空肠动脉内分别放置-硅胶管以备灌流药物的取血样品用。本研究观察了静脉和动脉注射药物对小肠MMC的影响及MMC不同时相血浆5-羟色胺(5-HT)和胃动素的浓度变化。结果表明:(1)MMC不同时相血浆5-HT和胃动素浓度呈周期性变化,5-HT峰值在胃动素峰值之前出现。血浆5-HT浓度在MMCⅡ相后  相似文献   

11.
We determined along the small intestine of young and adult rabbits the activities of lactase (LPH) and sucrase (SI), the levels of their cognate mRNAs, and examined the in vitro biosynthesis of LPH and pro-SI. Lactase activity is low in the proximal 1/3 of the intestine, whereas the mRNA levels are high. However, the rates of biosynthesis of the LPH forms correlated well with the steady-state levels of LPH mRNA in all segments, indicating that factor(s) acting post-translationally produce a decline in brush border LPH in the proximal small intestine. These factor(s) are not involved in the processing of pro-LPH to mature LPH, since the relative amounts of the various forms of LPH are almost the same along the small intestine. Unexpectedly, we find that also for SI the ratio of activity to mRNA is low in proximal intestine. The biosynthesis of pro-SI correlates with the steady-state levels of its mRNA. Hence, the steady-state levels of LPH and SI along the small intestine are regulated both by mRNA levels and by posttranslational factor(s).  相似文献   

12.
This study was designed to establish whether the rise in plasma motilin observed after a meal in humans can influence the postprandial motor activity of the antrum. Antroduodenal postprandial motility profiles and indices obtained from 5 controls and 5 subjects infused with exogenous synthetic motilin (0.1 microgram.kg-1) or with the motilin receptor agonist erythromycin lactobionate (200 mg) were compared. Motilin infusion increased plasma motilin concentrations about 5 times above the physiological range but failed to modify the normal postprandial contractile response. On the other hand, in 4 of the 5 subjects, erythromycin induced an intense motor response that mimicked phase III of the migrating motor complex. Our study demonstrates that, during the postprandial period, motilin antral receptors can be stimulated only with doses of motilin exceeding the physiological plasma concentrations, and that the motor effect obtained did not mimic the usual postprandial motility pattern. Our results, therefore, do not support the proposal that the postprandial motility of the antrum is regulated by the plasma levels of motilin.  相似文献   

13.
Summary The distribution of endocrine cells in the gastrointestinal tract of the house musk shrew, Suncus murinus (Family Soricidae, Order Insectivora) was studied immunohistochemically. The hormones investigated were gastrin, cholecystokinin (CCK), somatostatin, secretin, glucagon, gastric inhibitory polypeptide (GIP), motilin and neurotensin. In the gastric mucosa, gastrin and somatostatin cells were only found in the pyloric regions, and no other hormonal cell-types were observed. In the intestinal mucosa, the largest number of endocrine cells belonged to the gastrin and glucagon/glicentin cell-types, whereas CCK-33/39 and secretin cells were the least numerous. Numbers of other cell-types were intermediate between these two groups. The gastrin and GIP cells were mostly localized in the proximal portion of the intestine, decreasing in number towards the distal portion. The motilin and CCK-33/39 cells were restricted to the proximal half. The glucagon/glicentin and neurotensin cells were most abundant in the middle portion. The somatostatin and secretin cells, although only present in small numbers, were randomly distributed throughout the intestine. This characteristic distribution of gastrointestinal endocrine cells is discussed in comparison with the distribution patterns of other mammals.Dr. Munemitsu Hoshino, who was Professor of the Department of Pathology and directed this study, passed away on May 23rd 1988  相似文献   

14.
The role of pancreatic polypeptide (PP) and motilin in the regulation of the migrating motor complex (MMC) was studied in normal subjects. Both plasma motilin and PP levels changed cyclically in the fasted state and were highest in the late phase II period preceding the activity front in the duodenum. A continental breakfast invariably disrupted the MMC and induced a fed pattern of motility. After the meal plasma motilin levels decreased whereas PP levels rose significantly. Infusion of pure porcine motilin during the fasted state induced an activity front and a rise in plasma PP levels. Infusion of bovine PP in doses producing plasma PP levels above the postprandial values neither induced an activity front nor prevented its occurrence. During PP infusion, however, plasma motilin levels were low, although the activity front was not inhibited. PP seems to have no clear role in the regulation of the motor component of the MMC of man. The role of motilin in the production of the activity front of the MMC is discussed.  相似文献   

15.
The aim of this study was to determine the effect of caloric restriction (CR) in mouse small intestine on the production and secretion of immunoglobulin (Ig) A, the population of lymphocytes in the lamina propria, and the expression of cytokines that mediate and regulate innate and adaptive immunity. One group of young Balb/c mice was fed ad libitum, while the CR group was fed ad libitum and fasted on alternate days. When mice were six months old, IgA levels in the proximal small intestine were quantified by enzyme-linked immunosorbent assay, while the number of IgA containing cells, CD4+ T cells and CD8+ T cells in the duodenal mucosa was determined by immunohistochemistry. Furthermore, the expression of several intestinal cytokines, the genes for α-chain IgA, and the polymeric Ig receptor (pIgR) were analyzed by real-time polymerase chain reaction. CR decreased the levels of IgA in the intestine, apparently a consequence of a reduced number of IgA+ cells in the lamina propria that decrease the production and secretion of this Ig, and a reduced secretion of S-IgA into the bile, which in turn discharges into the proximal intestine. Contrarily, CR increased the expression of genes for α-chain IgA, and the pIgR, indicating that transport of IgA was not a key factor in the decrease of this Ig. Additionally, CR modified the expression of genes for tumor necrosis factor-α, interferon-γ, tumor growth factor-β, interleukin (IL)-2 and IL-10, all of which regulate the synthesis of IgA and pIgR, the inflammatory response, and the immune response in the intestine.  相似文献   

16.
Induction of angiotensin-converting enzyme was examined in proximal and distal intestinal segments of rats fed a low-protein (4%) diet and then switched to a high-protein (gelatin) diet. Animals were killed at varying time points, and brush-border membranes and total RNA were prepared from the segments. In the proximal intestine, there was a fivefold increase in angiotensin-converting enzyme levels after 14 days but only a twofold change in mRNA. In the distal intestine, there was no increase in enzyme activity but mRNA increased 2.4-fold. Organ culture was used to measure changes in enzyme biosynthesis. There was a 5- to 6-fold increase in the biosynthesis of angiotensin-converting enzyme in the proximal intestine 24 h after the switch to the gelatin diet and a 1.6-fold increase in mRNA levels. No change in biosynthesis was observed in the distal small intestine despite an increase in mRNA. These results support the conclusion that rapid dietary induction of intestinal angiotensin-converting enzyme is differentially regulated in proximal and distal segments of the small intestine.  相似文献   

17.
Motilin-immunoreactivity has been localized by two electron immunocytochemical techniques, using gold-labelled protein A or IgG as second layer, in a specific type of endocrine cell scattered in the epithelium of human and canine upper small intestine. The motilin (M) cell is characterized by relatively small (180 nm in man; 200 nm in the dog), solid granules with homogeneous core and closely applied membrane, round in man, round to irregularly-shaped in the dog. Perinuclear microfilaments are prominent in human motilin cells.  相似文献   

18.
Glutathione S-transferase (GST) protein in gastrointestinal (GI) tracts of 16 organ donors, from whom all or substantial portions of the GI tract (stomach-colon) were available, was quantitated by HPLC and examined for interindividual variability/consistency of organ-specific patterns of expression. GSTP1, GSTA1, and GSTA2 were major components, and GSTM1 and GSTM3 were minor components. Consistent patterns of organ-specific expression were evident despite a high degree of interindividual variation of expression. GSTP1 was expressed throughout the GI tract and showed a decrease of expression from stomach to colon. GSTA1 and GSTA2 were expressed at high levels in duodenum and small intestine and expression decreased from proximal to distal small intestine. In contrast, GSTA1 and GSTA2 expression in colon and stomach of all subjects was low, particularly for colon where GSTA1 expression was 20- to 800-fold lower than that in corresponding small intestine. These consistent patterns of expression would suggest that compared to duodenum and small intestine, colon and to a lesser extent stomach always have low potential for GST-dependent detoxification of chemical carcinogens and are therefore at greater risk of genotoxic effects, particularly via substrates that are specific for GSTA1. This may be a factor in the greater susceptibility of stomach and colon to cancers compared to duodenum/small intestine.  相似文献   

19.
Summary Motilin-immunoreactivity has been localized by two electron immunocytochemical techniques, using goldlabelled protein A or IgG as second layer, in a specific type of endocrine cell scattered in the epithelium of human and canine upper small intestine. The motilin (M) cell is characterized by relatively small (180 nm in man; 200 nm in the dog), solid granules with homogeneous core and closely applied membrane, round in man, round to irregularly-shaped in the dog. Perinuclear microfilaments are prominent in human motilin cells.  相似文献   

20.
Although the physiologic function of the gastrointestinal hormone motilin remains uncertain, plasma levels of this peptide vary with migrating myoelectric complexes (MMCs) in the small intestine. In the fed state, both MMCs and plasma motilin are suppressed. During fasting, cyclical peaks of motilin in plasma occur at the same time as Phase III of the MMC cycle occurs in the duodenum. This dependence of motilin concentrations in plasma on the feeding state of the animal prompted an investigation of the effects of motilin on feeding behavior. Intraperitoneal injection of motilin into fasted, but not fed, rats stimulated eating in a dose dependent manner. A significant stimulation of feeding was seen at doses of 5 and 10 μg/kg. Sated rats did not eat whether injected with motilin or vehicle. The feeding response to motilin was blocked by prior injection of the rats with naloxone, naltrexone, or pentagastrin. The dose response suppression of food intake by naloxone was similar in fasted animals treated with motilin or vehicle. Motilin may function as a hunger hormone during periods of fasting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号