首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleophilic selectivity (Swain-Scott's constant s) of chloroethylene oxide (CEO), an ultimate carcinogenic metabolite of vinyl chloride, was determined to be 0.71 using the 4-(p-nitrobenzyl)pyridine (NBP) assay (Spears method). The molar extinction coefficient of the adduct formed between NBP and CEO was measured; and the second-order rate constants for the reactions of CEO with NBP and with thiosulfate were estimated at three temperatures. The disappearance of CEO and the formation of chloroacetaldehyde (CAA) and glycolaldehyde (GCA) were followed in D2O or a mixture of D2O/hexadeuterated acetone (acetone-d6), using Fourier transform proton nuclear magnetic resonance spectroscopy (1H-FTNMR). Evidence was obtained that CEO reacts with chloride ions to yield CAA at a rate constant of about 17 M-1 h-1 in D2O/acetone-d6 (1 : 1, v/v) at 280 K. Under the same conditions, the first-order rate constant kr for the thermal rearrangement of CEO into CAA was estimated to be approximately 0.41 h-1. These data suggest that the isomerization of CEO may be a minor reaction in physiological saline. These chemical properties of CEO are discussed in relation to the mechanism of vinyl chloride-induced carcinogenesis.  相似文献   

2.
The reactions of NADPH- or dithionite-dependent reduction of cytochrome P-450 were studied using a stopped flow technique. It was found that the kinetic curves for both reactions may be fitted by a sum of the two exponents. The arrhenius plots for the fast phase rate constants are linear for both reactions. On the contrary, the breaks on the corresponding plots for the slow phase rate constants are observed at 22 and 33 degrees C for cytochrome P-450 reduction by dithionite and at 31 degrees C for NADPH-dependent reduction of cytochrome P-450. The coincidence of the values of the rate constants and activation energy (56 +/- 5 kJ/mol) for the fast phase of NADPH-dependent reduction of cytochrome P-450 with values of catalytic constants and activation energy for demethylation of tertiary amines suggests that the first electron transfer process from NADPH-cytochrome P-450 reductase to cytochrome P-450 may be the rate-limiting step. A diverse character of the kinetic parameters for the two cytochrome P-450 reduction reactions is indicative of different nature of biphasity of these processes.  相似文献   

3.
Reactions of nucleophilic substitution and enzymatic processes involving metalloporphirins (MP) are considered in terms of coordination of zinc(II)tetraphenylporphine (Zn-TPhP) with corresponding ligands/nucleophiles/substrates/bases. Linear correlations are performed between kinetic parameters of the Zn-TPhP coordination processes in chloroform (stability constants) and reactions of nucleophilic substitution both in aqueous and organic solvents involving pyridines, pyridine N-oxides, anilines, primary amines, as well as in reactions of oxidation of anilines with horseradish peroxidase in aqueous media (rate constants). Thermodynamic parameters of the complex formation and nucleophilic substitution linearly correlate with each other in the case of pyridines, anilines, and primary amines.  相似文献   

4.
Primary amines functionally replace lysine 258 by catalyzing both the 1,3-prototropic shift and external aldimine hydrolysis reactions with the inactive aspartate aminotransferase mutant K258A. This finding allows classical Brønsted analyses of proton transfer reactions to be applied to enzyme-catalyzed reactions. An earlier study of the reaction of K258A with cysteine sulfinate (Toney, M.D. & Kirsch, J.F., 1989, Science 243, 1485) provided a beta value of 0.4 for the 1,3-prototropic shift. The beta value reported here for the transamination of oxalacetate to aspartate is 0.6. The catalytic efficacy of primary amines is largely determined by basicity and molecular volume. The dependence of the rate constants for the reactions of K258A and K258M on amine molecular volume is nearly identical. This observation argues that the alkyl groups of the added amines do not occupy the position of the lysine 258 side chain in the wild type enzyme. Large primary C alpha and insignificant solvent deuterium kinetic isotope effects with amino acid substrates demonstrate that the amine nitrogen of the exogenous catalysts directly abstracts the labile proton in the rate-determining step.  相似文献   

5.
Pattison DI  Davies MJ 《Biochemistry》2005,44(19):7378-7387
Hypochlorous acid (HOCl) is a powerful oxidant generated from H(2)O(2) and chloride ions by the heme enzyme myeloperoxidase (MPO) released from activated leukocytes. In addition to its potent antibacterial effects, excessive HOCl production can lead to host tissue damage, with this implicated in human diseases such as atherosclerosis, cystic fibrosis, and arthritis. HOCl reacts rapidly with biological materials, with proteins being major targets. Chlorinated amines (chloramines) formed from Lys and His side chains and alpha-amino groups on proteins are major products of these reactions; these materials are however also oxidants and can undergo further reactions. In this study, the kinetics of reaction of His side-chain chloramines with other protein components have been investigated by UV/visible spectroscopy and stopped flow methods at pH 7.4 and 22 degrees C, using the chloramines of the model compound 4-imidazoleacetic acid and N-alpha-acetyl-histidine. The second-order rate constants decrease in a similar order (Cys > Met > disulfide bonds > Trp approximately alpha-amino > Lys > Tyr > backbone amides > Arg) to the corresponding reactions of HOCl, but are typically 5-25 times slower. These rate constants are consistent with His side-chain chloramines being important secondary oxidants in HOCl-mediated damage. These studies suggest that formation and subsequent reactions of His side-chain chloramines may be responsible for the targeted secondary modification of selected protein residues by HOCl that has previously been observed experimentally and highlight the importance of chloramine structure on their subsequent reactivity.  相似文献   

6.
Gatto C  Helms JB  Prasse MC  Huang SY  Zou X  Arnett KL  Milanick MA 《Biochemistry》2006,45(44):13331-13345
The effects of three classes of organic cations on the inhibition of the plasma membrane Ca pump (PMCA) were determined and compared to inhibition of the Na pump. Quaternary amines (tetramethylammonium, tetraethylammonium, and tetrapropylammonium, TMA, TEA, and TPA, respectively) did not inhibit PMCA. This is not to imply that PMCA is inherently selective against monovalent cations because guanidine and tetramethylguanidine inhibited PMCA by competing with Ca(2+). The divalent organic cation, ethyl diamine, inhibited PMCA but was not competitive with Ca(2+). In contrast, propyl diamine did compete with Ca(2+) and was about 10-fold more potent than butyl diamine in inhibiting PMCA. For the Na pump, both TEA and TPA inhibited, but TMA did not. TEA, guanidine, and tetramethylguanidine inhibition was competitive with Na(+) for ATPase activation and with K(+) for pNPPase activation, both of which are cytoplasmic substrate cation effects. Thus, these findings are consistent with TEA, guanidine, and tetramethylguanidine inhibiting from the cytoplasmic side of the Na pump; in contrast, we have previously shown that TPA did not inhibit from the cytoplasmic side. The divalent alkane diamines ethyl, propyl, and butyl diamine all inhibited the Na pump and all competed at the intracellular surface. The order of potency was ED > PD > BD consistent with an optimal size for binding; similarly, for the quaternary amines TMA is apparently too small to make appropriate contacts, and TPA is too large. Homology models based upon the high-resolution SERCA structure are included to contextualize the kinetic observations.  相似文献   

7.
The effects of organic quaternary amines, tetraethylammonium (TEA) chloride and benzyltriethylammonium (BTEA) chloride, on Na,K pump current were examined in rat cardiac myocytes superfused in extracellular Na(+)-free solutions and whole-cell voltage-clamped with patch electrodes containing a high Na(+)-salt solution. Extracellular application of these quaternary amines competitively inhibited extracellular K(+) (K(+)(o)) activation of Na,K pump current; however, the concentration for half maximal inhibition of Na,K pump current at 0 mV (K(0)(Q)) by BTEA, 4.0 +/- 0.3 mM, was much lower than the K(0)(Q) for TEA, 26.6 +/- 0.7 mM. Even so, the fraction of the membrane electric field dissipated during K(+)(o) activation of Na,K pump current (lambda(K)), 39 +/- 1%, was similar to lambda(K) determined in the presence of TEA (37 +/- 2%) and BTEA (35 +/- 2%), an indication that the membrane potential (V(M)) dependence for K(+)(o) activation of the Na,K pump current was unaffected by TEA and BTEA. TEA was found to inhibit the Na,K pump current in a V(M)-independent manner, i.e., inhibition of current dissipated 4 +/- 2% of the membrane electric field. In contrast, BTEA dissipated 40 +/- 5% of the membrane electric field during inhibition of Na,K pump current. Thus, BTEA inhibition of the Na,K-ATPase is V(M)-dependent. The competitive nature of inhibition as well as the similar fractions of the membrane electric field dissipated during K(+)(o)-dependent activation and BTEA-dependent inhibition of Na,K pump current suggest that BTEA inhibits the Na,K-ATPase at or very near the enzyme's K(+)(o) binding site(s) located in the membrane electric field. Given previous findings that organic quaternary amines are not occluded by the Na,K-ATPase, these data clearly demonstrate that an ion channel-like structure provides access to K(+)(o) binding sites in the enzyme.  相似文献   

8.
An analytical method for determining very high binding constants at equilibrium for reactions requiring an effector is proposed and applied to study the interaction of tetracycline with the repressor of the tetracycline resistance gene from Tn10. In this method complex formation is limited by low concentrations of the effector, which is Mg2+ for the interaction of tetracycline and Tet repressor. The binding of Mg2+ to tetracycline and subsequent formation of the ternary repressor-Mg(2+)-tetracycline complex are coupled reactions yielding a dependence of repressor-tetracycline-Mg2+ complex formation on the concentration of free Mg2+. The binding constants can be determined from the quantitative analysis of ternary complex formation with increasing Mg2+ concentrations. This method allows the determination of very high association constants at equilibrium in a large range of protein concentrations. In the case of repressor and tetracycline, the same affinity constant of 3 +/- 2 x 10(9) M-1 was found in the range of 0.1 to 5 microM of repressor. This result indicates that no association or dissociation of the repressor subunits occurs upon binding of tetracycline. Furthermore, the results show that a repressor dimer binds two effector molecules without significant cooperativity.  相似文献   

9.
Tetraethylammonium ion (TEA) and its longer chain derivatives have been used extensively to block currents through K-selective ion channels. Substantial information has been gained about the structure and gating mechanisms of K and other cation channels from the analysis of the blocking interactions of TEA and other quaternary ammonium ions. We now present an analysis of blocking interactions between single Cl-selective ion channels from acutely dissociated rat cortical neurons and externally applied TEA. TEA applied to the extracellular membrane surface (TEAo) blocked Cl channels in a voltage-dependent manner, with hyperpolarizing potentials favoring block. The voltage dependence of block could be adequately fit assuming that TEA enters the channel pore and binds to a site located approximately 28% of the way through the membrane electrical field. The dose-response relationship between fractional current and [TEA]o at a fixed holding potential of -40 mV was well fit to a simple model with two blocking sites with dissociation constants (Kd) of approximately 2 and 70 mM. The dose-response relationship could also be fit by a mechanism where TEA only partially blocks the channels. At the bandwidth used in these experiments (1-2 kHz), both the mean open duration (composed of the open and blocked durations) and burst duration (composed of open, blocked, and short lifetime shut durations) increased with increased [TEA]o. This is expected if TEAo can bind and unbind only when the channel is in the open kinetic state. These results suggest that the structure of the permeability pathway of these anion-selective channels may be very similar to that of other channels that are blocked by TEA. Additionally, these results caution that a blocking effect by TEA cannot, by itself, be used as sufficient evidence for implicating the participation of K channels in a particular process.  相似文献   

10.
The significance of conserved cysteines in the human organic cation transporter 2 (hOCT2), namely the six cysteines in the long extracellular loop (loop cysteines) and C474 in transmembrane helix 11, was examined. Uptake of tetraethylammonium (TEA) and 1-methyl-4-phenypyridinium (MPP) into Chinese hamster ovary cells was stimulated >20-fold by hOCT2 expression. Both cell surface expression and transport activity were reduced considerably following mutation of individual loop cysteines (C51, C63, C89, C103, and C143), and the C89 and C103 mutants had reduced Michaelis constants (K(t)) for MPP. The loop cysteines were refractory to interaction with thiol-reactive biotinylation reagents, except after pretreatment of intact cells with dithiothreitol or following cell membrane solubilization. Reduction of disulfide bridge(s) did not affect transport, but labeling the resulting free thiols with maleimide-PEO(2)-biotin did. Mutation of C474 to an alanine or phenylalanine did not affect the K(t) value for MPP. In contrast, the K(t) value associated with TEA transport was reduced sevenfold in the C474A mutant, and the C474F mutant failed to transport TEA. This study shows that some but not all of the six extracellular loop cysteines exist within disulfide bridge(s). Each loop cysteine is important for plasma membrane targeting, and their mutation can influence substrate binding. The effect of C474 mutation on TEA transport suggests that it contributes to a TEA binding surface. Given that TEA and MPP are competitive inhibitors, the differential effects of C474 modification on TEA and MPP binding suggest that the binding surfaces for each are distinct, but overlapping in area.  相似文献   

11.
Capillary electrophoresis has been applied to monitor model reactions in solution-phase combinatorial chemistry. In particular, the simultaneous alkylation reactions of secondary amines with a series of benzyl halides has been investigated. Reactant and product concentrations were monitored using capillary electrophoresis in a non-aqueous buffer system. The simplified sample preparation was a key feature making this an attractive method of analysis. The results demonstrate that capillary electrophoresis is a useful tool for monitoring reactions to determine initial rates, rate constants, and extinction correlation coefficients for quantitative analysis in combinatorial chemistry, and is a broadly applicable technique for the analysis of a variety of organic and bioorganic transformations.  相似文献   

12.
Reactions ofnucleophilic substitution and enzymatic processes with participation of metal-porphyrins (MP) are considered from the point of view of Zn-tetraphenylporphin (Zn-TPhP) coordination with corresponding ligand/nucleophyl/substrate/base. Linear correlations perform between kinetic parameters of process of coordination of Zn-TPhP in chloroform (constants of stability) and reactions of nucleophilic substitution both in aqueous and organic solvents with participation ofpyridines, N-oxides ofpyridines, anilines, primary amines and oxidation of anilines by horseradish peroxidase in aqueous solutions (rate constants). Thermodynamic parameters of complexation and nucleophilic substitution mutually correlate linearly in the case of pyridines, anilines and primary amines.  相似文献   

13.
Xanthine oxidase catalyzed mutagenicity of 4-nitrobiphenyl (NBP), a dog-bladder carcinogen, was tested in Ames assay using Salmonella typhimurium TA98 strains. NBP was active as a mutagen in the parent strain TA98 which is proficient in nitroreductase, while it was inactive in the strain TA98NR which is deficient in nitroreductase. However, preincubation of NBP at 37 degrees C with NADH and commercial preparations of xanthine oxidase for 30 min resulted in a dose-dependent increase in the mutagenic activity in TA98NR. Allopurinol blocked the xanthine oxidase catalyzed mutagenicity of NBP in TA98NR and the extent of inhibition was dependent upon the concentration of the inhibitor. Rat-liver and dog-bladder cytosol preparations also enhanced the mutagenic activity of NBP in TA98NR in a dose-dependent manner. In addition, the cytosol-mediated activity was also inhibited by allopurinol, implying that the cytosolic enzyme activity might be due to xanthine oxidase. In vitro enzymatic reduction of NBP using bacterial cell lysates of TA98 and TA98NR revealed the major product of reduction to be 4-aminobiphenyl. The transient intermediates of reduction were not detected during the in vitro incubation. The reduction intermediate N-hydroxylaminobiphenyl showed direct and equal mutagenic activity in both TA98 and TA98NR, in contrast to NBP. These results suggest that N-hydroxylaminobiphenyl is generated during the preincubation of NBP with xanthine oxidase or cytosolic preparations and the former might account for the mutagenicity of NBP. Furthermore, the occurrence of such enzyme(s) in the target tissue for NBP carcinogenesis, support the hypothesis that metabolic activation of the bladder carcinogen NBP could occur within the target organ by virtue of its intrinsic metabolic potential.  相似文献   

14.
The effect of tetraethylammonium ion (TEA) on the voltage clamp currents of nodes of Ranvier of frog myelinated nerve fibers is studied. The delayed K currents can be totally abolished by TEA without affecting the transient Na currents or the leakage current in any way. Both inward and outward currents disappear. In low TEA concentrations small K currents remain with normal time constants. The dose-response relationship suggests the formation of a complex between TEA and a receptor with a dissociation constant of 0.4 mM. Other symmetrical quaternary ammonium ions have very little effect. There is no competition between TEA and agents that affect the Na currents such as Xylocaine, tetrodotoxin, or Ca ions. The pharmacological data demonstrate that the Na, K, and leakage permeabilities are chemically independent, probably because their mechanisms occupy different sites on the nodal membrane. The data are gathered and analyzed by digital computer.  相似文献   

15.
Capillary electrophoresis has been applied to monitor model reactions in solution‐phase combinatorial chemistry. In particular, the simultaneous alkylation reactions of secondary amines with a series of benzyl halides has been investigated. Reactant and product concentrations were monitored using capillary electrophoresis in a non‐aqueous buffer system. The simplified sample preparation was a key feature making this an attractive method of analysis. The results demonstrate that capillary electrophoresis is a useful tool for monitoring reactions to determine initial rates, rate constants, and extinction correlation coefficients for quantitative analysis in combinatorial chemistry, and is a broadly applicable technique for the analysis of a variety of organic and bioorganic transformations. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng (Comb Chem) 61:169–177, 1998/1999.  相似文献   

16.
Aromatic amines represent one of the most important classes of industrial and environmental chemicals: many of them have been reported to be powerful carcinogens and mutagens, and/or hemotoxicants. Their toxicity has been studied also with quantitative structure-activity relationship (QSAR) methods: these studies are potentially suitable for investigating mechanisms of action and for estimating the toxicity of compounds lacking experimental determinations. In this paper, we first summarized the QSAR models for the rodent carcinogenicity of the aromatic amines. The gradation of potency of the carcinogenic amines depended firstly on their hydrophobicity, and secondly on electronic (reactivity, propensity to be metabolically transformed) and steric properties. On the contrary, the difference between carcinogenic and non-carcinogenic aromatic amines depended mainly on electronic and steric properties. These QSARs can be used directly for estimating the carcinogenicity of aromatic amines. A two-step prediction is possible: (1) estimation of yes/no activity; (2) if the answer from step 1 is yes, then prediction of the degree of potency. The QSARs for rodent carcinogenicity were put in a wider context by comparing them with those for: (a) Salmonella mutagenicity; (b) general toxicity; (c) enzymatic reactions; (d) physical-chemical reactions. This comparative QSAR exercise generated a coherent global picture of the action mechanisms of the aromatic amines. The QSARs for carcinogenicity were similar to those for Salmonella mutagenicity, thus pointing to a similar mechanism of action. On the contrary, the general toxicity QSARs (both in vitro and in vivo systems) were mostly based on hydrophobicity, pointing to an aspecific mechanism of action much simpler than that for carcinogenicity and mutagenicity. The oxidation of the amines (first step in the main metabolic pathway leading to carcinogenic and mutagenic species) had identical QSARs in both enzymatic and physical-chemical systems, thus providing evidence for the link between simple chemical reactions and those in biological systems. The results show that it is possible to generate mechanistically and statistically sound QSAR models for rodent carcinogenicity, and indirectly that the rodent bioassay is a reliable source of good quality data.  相似文献   

17.
The effects of oxygen in the photolysis of rose bengal, eosin, erythrosin and methylene blue were studied in the presence of formate and electron donors, such as ascorbic acid, aromatic amino acids or aliphatic amines, e.g. triethylamine (TEA). The overall reaction is conversion of oxygen via the hydroperoxyl/superoxide ion radical into hydrogen peroxide. The quantum yield of oxygen uptake (Phi(-O2)) increases with the donor concentration. The photoinduced formation of H2O2 is initiated by quenching of the triplet state of the dye by the donor and subsequent reactions of both the dye and donor radicals with oxygen. For methylene blue and the xanthene dyes in the presence of 10 mM ascorbic acid or 0.1 M TEA Phi(-O2)=0.07-0.25. The spectral and kinetic properties of the specific dye transients, including the radicals involved and the pH and concentration dependences, are discussed.  相似文献   

18.
The reactions of pentacyanonitrosylferrate(II) with ethyl-, n-propyl-, n-butyl-, cyclohexyl- and benzylamines were studied in dilute aqueous solution at 8.6–9.6 pH and 15–35 °C. Nitrosation, diazotation and deamination processes take place in the reactions resulting in alcohols and N2 gas as final products. On the basis of spectrophotometric and gasvolumetric experiments the rate law was determined as follows.v = k[RNH2][Fe(CN)5NO2?] The dependence on pH was interpreted by the protonation equilibria of the amines. From the function of the logarithm of rate constants vs. reciprocal temperature, relatively small activation enthalpies (15–70 kJ mol?1) and extremely high negative activation entropies [(?80) ? (?240) J K?1 mol?1] were found. The mechanism was interpreted by the analogy with nitrous acid diazotation.A parallel trend was observed between the rate constants at 25 °C and the basicity constants of the amines.  相似文献   

19.
The reaction of triethanolamine (TEA) with active substrates—p-nitrophenyl esters and cinnamoyl imidazole (CI)—is catalyzed by divalent heavy metal ions. With Hg2+, rate enhancements of 100–1000 (depending on the substrate) were observed, the overall rate constants of substrate decomposition thus exceeding those of spontaneous hydrolysis up to 100,000-fold. The predominant active species at low L:M ratio was found to be the Hg-(TEA)2 complex. The dependence of the reaction rate upon excess of amino alcohol—at constant Hg2+ concentration—is attributable to formation of another active complex—Hg-(TEA)3.The high reactivity of the system is due to the alcoholate group of metal-bound TEA, whose pK has been lowered by the proximity of the metal ion. This labile nucleophilic alcoholate attacks the substrate causing its alcoholysis and forming O-acyl-TEA. The lability of the metal-alcoholate bond can be enhanced by low concentrations of halide ions, thus causing up to 5-fold additional increase in alcoholysis rate. Higher halide ion concentrations cause inhibition, probably due to formation of inactive HgX2 molecules.Presumably an important role of the metal ion in metalloenzymes is to affect the decrease in the pK value of a reactive group so that it can exhibit activity under physiological conditions.  相似文献   

20.
The polyspecific organic cation transporter 1 (OCT1 [SLC22A1]) mediates facilitated transport of small (hydrophilic) organic cations. OCT1 is localized at the basolateral membrane of epithelial cells in the liver, kidney, and intestine and could therefore be involved in the elimination of endogenous amines and xenobiotics via these organs. To investigate the pharmacologic and physiologic role of this transport protein, we generated Oct1 knockout (Oct1(-/-)) mice. Oct1(-/-) mice appeared to be viable, healthy, and fertile and displayed no obvious phenotypic abnormalities. The role of Oct1 in the pharmacology of substrate drugs was studied by comparing the distribution and excretion of the model substrate tetraethylammonium (TEA) after intravenous administration to wild-type and Oct1(-/-) mice. In Oct1(-/-) mice, accumulation of TEA in liver was four to sixfold lower than in wild-type mice, whereas direct intestinal excretion of TEA was reduced about twofold. Excretion of TEA into urine over 1 h was 53% of the dose in wild-type mice, compared to 80% in knockout mice, probably because in Oct1(-/-) mice less TEA accumulates in the liver and thus more is available for rapid excretion by the kidney. In addition, we found that absence of Oct1 leads to decreased liver accumulation of the anticancer drug metaiodobenzylguanidine and the neurotoxin 1-methyl-4-phenylpyridium. In conclusion, our data show that Oct1 plays an important role in the uptake of organic cations into the liver and in their direct excretion into the lumen of the small intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号