首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Photoheterotrophic metabolism of two meta-hydroxy-aromatic acids, meta-, para-dihydroxybenzoate (protocatechuate) and meta-hydroxybenzoate, was investigated in Rhodopseudomonas palustris. When protocatechuate was the sole organic carbon source, photoheterotrophic growth in R. palustris was slow relative to cells using compounds known to be metabolized by the benzoyl coenzyme A (benzoyl-CoA) pathway. R. palustris was unable to grow when meta-hydroxybenzoate was provided as a sole source of organic carbon under photoheterotrophic growth conditions. However, in cultures supplemented with known benzoyl-CoA pathway inducers (para-hydroxybenzoate, benzoate, or cyclohexanoate), protocatechuate and meta-hydroxybenzoate were taken up from the culture medium. Further, protocatechuate and meta-hydroxybenzoate were each removed from cultures containing both meta-hydroxy-aromatic acids at equimolar concentrations in the absence of other organic compounds. Analysis of changes in culture optical density and in the concentration of soluble organic compounds indicated that the loss of these meta-hydroxy-aromatic acids was accompanied by biomass production. Additional experiments with defined mutants demonstrated that enzymes known to participate in the dehydroxylation of para-hydroxybenzoyl-CoA (HbaBCD) and reductive dearomatization of benzoyl-CoA (BadDEFG) were required for metabolism of protocatechuate and meta-hydroxybenzoate. These findings indicate that, under photoheterotrophic growth conditions, R. palustris can degrade meta-hydroxy-aromatic acids via the benzoyl-CoA pathway, apparently due to the promiscuity of the enzymes involved.  相似文献   

3.
1. The addition of aniline to cultures of several yeasts, Fusarium oxysporum and Neurospora crassa growing with protocatechuate as sole carbon source resulted in the precipitation of dianilino-o-benzoquinone (anil). This product was also formed, however, if the medium was uninoculated. 2. The physical presence of yeast cells (living or dead) increased the anil yields in Debaryomyces subglobosus cultures. 3. No anil was formed if p-hydroxybenzoate was the growth substrate. 4. o-Benzoquinone was a strong inhibitor of protocatechuate 3,4-oxygenase and catechol 1,2-oxygenase in these fungi. 5. It was concluded that o-benzoquinone formation from protocatechuate is independent of living yeast.  相似文献   

4.
5.
Several organisms were isolated for their ability to utilize piperonylate as a sole carbon source for growth and aPseudomonas species (Ps. PP-2) was selected for a study of the degradation of this substrate. Only vanillate, isovanillate,p-hydroxybenzoate and protocatechuate, of several possible catabolities, served as growth and oxidation substrates for the organism. Detailed analysis of the culture fluid from piperonylate-grown cells revealed the presence of vanillate and protocatechuate but isovanillate,p-hydroxybenzoate andm-hydroxybenzoate were not detected. The evidence presented suggests that piperonylate is metabolized first to vanillate by methylenedioxy ring cleavage and next to protocatechuate by direct demethylation of vanillate.  相似文献   

6.
The bacterium Acinetobacter baylyi uses the branched β-ketoadipate pathway to metabolize aromatic compounds. Here, the multiple-level regulation of expression of the pca-qui operon encoding the enzymes for protocatechuate and quinate degradation was studied. It is shown that both activities of the IclR-type regulator protein PcaU at the structural gene promoter pcaIp, namely protocatechuate-dependent activation of pca-qui operon expression as well as repression in the absence of protocatechuate, can be observed in a different cellular background (Escherichia coli) and therefore are intrinsic to PcaU. The regulation of PcaU expression is demonstrated to be carbon source dependent according to the same pattern as the pca-qui operon. The increase of the pcaU gene copy number leads to a decrease of the basal expression at pcaIp, indicating that the occupancy of the PcaU binding site is well balanced and depends on the concentration of PcaU in the cell. Luciferase is used as a reporter to demonstrate strong repression of pcaIp when benzoate, a substrate of the catechol branch of the pathway, is present in addition to substrates of the protocatechuate branch (cross-regulation). The same repression pattern was observed for promoter pcaUp. Thus, three promoters involved in gene expression of enzymes of the protocatechuate branch (pobAp upstream of pobA, pcaIp, and pcaUp) are strongly repressed in the presence of benzoate. The negative effect of protocatechuate on pobA expression is not based on a direct sensing of the metabolite by PobR, the specific regulator of pobA expression.  相似文献   

7.
In the presence of p-toluidine and iron, protocatechuate and catechols yield color. Inclusion of p-toluidine in media facilitates the screening of microbial strains for alterations affecting aromatic catabolism. Such strains include mutants affected in the expression of oxygenases and Escherichia coli colonies carrying cloned or subcloned aromatic catabolic genes which encode enzymes giving rise to protocatechuate or catechol. The diphenolic detection system can also be applied to the creation of vectors relying on insertion of cloned DNA into one of the latter marker genes.  相似文献   

8.
Phenol is a toxic aromatic compound used or produced in many industries and as a result a common component of industrial wastewaters. Phenol containing waste streams are frequently hypersaline and therefore require halophilic microorganisms for efficient biotreatment without dilution. In this study three halophilic bacteria isolated from different saline environments and identified as Halomonas organivorans, Arhodomonas aquaeolei and Modicisalibacter tunisiensis were shown to be able to grow on phenol in hypersaline media containing 100 g/L of total salts at a concentration of 3 mM (280 mg/L), well above the concentration found in most waste streams. Genes encoding the aromatic dioxygenase enzymes catechol 1,2 dioxygenase and protocatechuate 3,4-dioxygenase were present in all strains as determined by PCR amplification using primers specific for highly conserved regions of the genes. The gene for protocatechuate 3,4-dioxygenase was cloned from the isolated H. organivorans and the translated protein was evaluated by comparative protein sequence analysis with protocatechuate 3,4-dioxygenase proteins from other microorganisms. Although the analysis revealed a wide range of sequence divergence among the protocatechuate 3,4-dioxygenase family, all of the conserved domain amino acid structures identified for this enzyme family are identical or conservatively substituted in the H. organivorans enzyme.  相似文献   

9.
Aromatic compound degradation in six bacteria representing an ecologically important marine taxon of the α-proteobacteria was investigated. Initial screens suggested that isolates in the Roseobacter lineage can degrade aromatic compounds via the β-ketoadipate pathway, a catabolic route that has been well characterized in soil microbes. Six Roseobacter isolates were screened for the presence of protocatechuate 3,4-dioxygenase, a key enzyme in the β-ketoadipate pathway. All six isolates were capable of growth on at least three of the eight aromatic monomers presented (anthranilate, benzoate, p-hydroxybenzoate, salicylate, vanillate, ferulate, protocatechuate, and coumarate). Four of the Roseobacter group isolates had inducible protocatechuate 3,4-dioxygenase activity in cell extracts when grown on p-hydroxybenzoate. The pcaGH genes encoding this ring cleavage enzyme were cloned and sequenced from two isolates, Sagittula stellata E-37 and isolate Y3F, and in both cases the genes could be expressed in Escherichia coli to yield dioxygenase activity. Additional genes involved in the protocatechuate branch of the β-ketoadipate pathway (pcaC, pcaQ, and pobA) were found to cluster with pcaGH in these two isolates. Pairwise sequence analysis of the pca genes revealed greater similarity between the two Roseobacter group isolates than between genes from either Roseobacter strain and soil bacteria. A degenerate PCR primer set targeting a conserved region within PcaH successfully amplified a fragment of pcaH from two additional Roseobacter group isolates, and Southern hybridization indicated the presence of pcaH in the remaining two isolates. This evidence of protocatechuate 3,4-dioxygenase and the β-ketoadipate pathway was found in all six Roseobacter isolates, suggesting widespread abilities to degrade aromatic compounds in this marine lineage.  相似文献   

10.
The catechol and protocatechuate branches of the 3-oxoadipate pathway, which are important for the bacterial degradation of aromatic compounds, converge at the common intermediate 3-oxoadipate enol-lactone. A 3-oxoadipate enol-lactone-hydrolyzing enzyme, purified from benzoate-grown cells of Rhodococcus opacus (erythropolis) 1CP, was found to have a larger molecular mass under denaturing conditions than the corresponding enzymes previously purified from γ-proteobacteria. Sequencing of the N terminus and of tryptic peptides allowed cloning of the gene coding for the 3-oxoadipate enol-lactone hydrolase by using PCR with degenerate primers. Sequencing showed that the gene belongs to a protocatechuate catabolic gene cluster. Most interestingly, the hydrolase gene, usually termed pcaD, was fused to a second gene, usually termed pcaC, which encodes the enzyme catalyzing the preceding reaction, i.e., 4-carboxymuconolactone decarboxylase. The two enzymatic activities could not be separated chromatographically. At least six genes of protocatechuate catabolism appear to be transcribed in the same direction and in the following order: pcaH and pcaG, coding for the subunits of protocatechuate 3,4-dioxygenase, as shown by N-terminal sequencing of the subunits of the purified protein; a gene termed pcaB due to the homology of its gene product to 3-carboxy-cis,cis-muconate cycloisomerases; pcaL, the fused gene coding for PcaD and PcaC activities; pcaR, presumably coding for a regulator of the IclR-family; and a gene designated pcaF because its product resembles 3-oxoadipyl coenzyme A (3-oxoadipyl-CoA) thiolases. The presumed pcaI, coding for a subunit of succinyl-CoA:3-oxoadipate CoA-transferase, was found to be transcribed divergently from pcaH.  相似文献   

11.
12.
Hydroxycinnamates are plant products catabolized through the diphenol protocatechuate in the naturally transformable bacterium Acinetobacter sp. strain ADP1. Genes for protocatechuate catabolism are central to the dca-pca-qui-pob-hca chromosomal island, for which gene designations corresponding to catabolic function are dca (dicarboxylic acid), pca (protocatechuate), qui (quinate), pob (p-hydroxybenzoate), and hca (hydroxycinnamate). Acinetobacter hcaC had been cloned and shown to encode a hydroxycinnamate:coenzyme A (CoA) SH ligase that acts upon caffeate, p-coumarate, and ferulate, but genes for conversion of hydroxycinnamoyl-CoA to protocatechuate had not been characterized. In this investigation, DNA from pobS to an XbaI site 5.3 kb beyond hcaC was captured in the plasmid pZR8200 by a strategy that involved in vivo integration of a cloning vector near the hca region of the chromosome. pZR8200 enabled Escherichia coli to convert p-coumarate to protocatechuate in vivo. Sequence analysis of the newly cloned DNA identified five open reading frames designated hcaA, hcaB, hcaK, hcaR, and ORF1. An Acinetobacter strain with a knockout of HcaA, a homolog of hydroxycinnamoyl-CoA hydratase/lyases, was unable to grow at the expense of hydroxycinnamates, whereas a strain mutated in HcaB, homologous to aldehyde dehydrogenases, grew poorly with ferulate and caffeate but well with p-coumarate. A chromosomal fusion of lacZ to the hcaE gene was used to monitor expression of the hcaABCDE promoter. LacZ was induced over 100-fold by growth in the presence of caffeate, p-coumarate, or ferulate. The protein deduced to be encoded by hcaR shares 28% identity with the aligned E. coli repressor, MarR. A knockout of hcaR produced a constitutive phenotype, as assessed in the hcaE::lacZ-Kmr genetic background, revealing HcaR to be a repressor as well. Expression of hcaE::lacZ in strains with knockouts in hcaA, hcaB, or hcaC revealed unambiguously that hydroxycinnamoyl-CoA thioesters relieve repression of the hcaABCDE genes by HcaR.  相似文献   

13.
Hydroxylamino aromatic compounds are converted to either the corresponding aminophenols or protocatechuate during the bacterial degradation of nitroaromatic compounds. The origin of the hydroxyl group of the products could be the substrate itself (intramolecular transfer mechanism) or the solvent water (intermolecular transfer mechanism). The conversion of hydroxylaminobenzene to 2-aminophenol catalyzed by a mutase from Pseudomonas pseudoalcaligenes JS45 proceeds by an intramolecular hydroxyl transfer. The conversions of hydroxylaminobenzene to 2- and 4-aminophenol by a mutase from Ralstonia eutropha JMP134 and to 4-hydroxylaminobenzoate to protocatechuate by a lyase from Comamonas acidovorans NBA-10 and Pseudomonas sp. strain 4NT were proposed, but not experimentally proved, to proceed by the intermolecular transfer mechanism. GC-MS analysis of the reaction products formed in H218O did not indicate any 18O-label incorporation during the conversion of hydroxylaminobenzene to 2- and 4-aminophenols catalyzed by the mutase from R. eutropha JMP134. During the conversion of 4-hydroxylaminobenzoate catalyzed by the hydroxylaminolyase from Pseudomonas sp. strain 4NT, only one of the two hydroxyl groups in the product, protocatechuate, was 18O labeled. The other hydroxyl group in the product must have come from the substrate. The mutase in strain JS45 converted 4-hydroxylaminobenzoate to 4-amino-3-hydroxybenzoate, and the lyase in Pseudomonas strain 4NT converted hydroxylaminobenzene to aniline and 2-aminophenol but not to catechol. The results indicate that all three types of enzyme-catalyzed rearrangements of hydroxylamino aromatic compounds proceed via intramolecular transfer of hydroxyl groups.  相似文献   

14.
The aim of this paper was to describe the effect of various metal ions on the activity of protocatechuate 3,4-dioxygenase from Stenotrophomonas maltophilia KB2. We also compared activity of different dioxygenases isolated from this strain, in the presence of metal ions, after induction by various aromatic compounds. S. maltophilia KB2 degraded 13 mM 3,4-dihydroxybenzoate, 10 mM benzoic acid and 12 mM phenol within 24 h of incubation. In the presence of dihydroxybenzoate and benzoate, the activity of protocatechuate 3,4-dioxygenase and catechol 1,2-dioxygenase was observed. Although Fe3+, Cu2+, Zn2+, Co2+, Al3+, Cd2+, Ni2+ and Mn2+ ions caused 20–80 % inhibition of protocatechuate 3,4-dioxygenase activity, the above-mentioned metal ions (with the exception of Ni2+) inhibited catechol 1,2-dioxygenase to a lesser extent or even activate the enzyme. Retaining activity of at least one of three dioxygenases from strain KB2 in the presence of metal ions makes it an ideal bacterium for bioremediation of contaminated areas.  相似文献   

15.
A previous study of deletions in the protocatechuate (pca) region of the Acinetobacter sp. strain ADP1 chromosome revealed that genes required for utilization of the six-carbon dicarboxylic acid, adipic acid, are linked to the pca structural genes. To investigate the genes involved in adipate catabolism, a 33.8-kb SacI fragment, which corrects a deletion spanning this region, was cloned. In addition to containing known pca, qui, and pob genes (for protocatechuate, quinate, and 4-hydroxybenzoate dissimilation), clone pZR8000 contained 10 kb of DNA which was the subject of this investigation. A mutant strain of Escherichia coli DH5α, strain EDP1, was isolated that was able to utilize protocatechuate and 4-hydroxybenzoate as growth substrates when EDP1 cells contained pZR8000. Sequence analysis of the new region of DNA on pZR8000 revealed open reading frames predicted to be involved in β-oxidation. Knockouts of three genes implicated in β-oxidation steps were introduced into the chromosome of Acinetobacter sp. strain ADP1. Each of the mutants was unable to grow with adipate. Because the mutants were affected in their ability to utilize additional saturated, straight-chain dicarboxylic acids, the newly discovered 10 kb of DNA was termed the dca (dicarboxylic acid) region. Mutant strains included one with a deletion in dcaA (encoding an acyl coenzyme A [acyl-CoA] dehydrogenase homolog), one with a deletion in dcaE (encoding an enoyl-CoA hydratase homolog), and one with a deletion in dcaH (encoding a hydroxyacyl-CoA dehydrogenase homolog). Data on the dca region should help us probe the functional significance and interrelationships of clustered genetic elements in this section of the Acinetobacter chromosome.  相似文献   

16.
Metabolism of p-Cresol by the Fungus Aspergillus fumigatus   总被引:3,自引:2,他引:1       下载免费PDF全文
The fungus Aspergillus fumigatus ATCC 28282 was shown to grow on p-cresol as its sole source of carbon and energy. A pathway for metabolism of this compound was proposed. This has protocatechuate as the ring-fission substrate with cleavage and metabolism by an ortho-fission pathway. The protocatechuate was formed by two alternative routes, either by initial attack on the methyl group, which is oxidized to carboxyl, followed by ring-hydroxylation, or by ring-hydroxylation as the first step with subsequent oxidation of 4-methylcatechol to the acid. The pathway was elucidated from several pieces of evidence. A number of compounds, including 4-hydroxybenzyl alcohol, 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, protocatechuic acid, protocatechualdehyde, and 4-methylcatechol, appeared transiently in the medium during growth on p-cresol. These compounds were oxidized without lag by p-cresol-grown cells but not by succinate-grown cells. Enzyme activities for most of the proposed steps were demonstrated in cell extracts after growth on p-cresol, and the products of these activities were identified. None of the activities were found in succinate-grown cells.  相似文献   

17.
Although the protocatechuate branch of the β-ketoadipate pathway in Gram bacteria has been well studied, this branch is less understood in Gram+ bacteria. In this study,Corynebacterium glutamicum was cultivated with protocatechuate,p-cresol, vanillate and 4-hydroxybenzoate as sole carbon and energy sources for growth. Enzymatic assays indicated that growing cells on these aromatic compounds exhibited protocatechuate 3,4-dioxygenase activities. Data-mining of the genome of this bacterium revealed that the genetic locusncg12314-ncg12315 encoded a putative protocatechuate 3,4-dioxygenase. The genes,ncg12314 andncg12315, were amplified by PCR technique and were cloned into plasmid (pET21aP34D). RecombinantEscherichia coli strain harboring this plasmid actively expressed protocatechuate 3,4-dioxygenase activity. Further, when this locus was disrupted inC. glutamicum, the ability to degrade and assimilate protocatechuate,p-cresol, vanillate or 4-hydroxybenzoate was lost and protocatechuate 3,4-dioxygenase activity was disappeared. The ability to grow with these aromatic compounds and protocatechuate 3,4-dioxygenase activity ofC. glutamicum mutant could be restored by gene complementation. Thus, it is clear that the key enzyme for ring-cleavage, protocatechuate 3,4-dioxygenase, was encoded byncg12314 andncg12315. The additional genes involved in the protocatechuate branch of the β-ketoadipate pathway were identified by mining the genome data publically available in the Gen Bank. The functional identification of genes and their unique organization inC. glutamicum provided new insight into the genetic diversity of aromatic compound degradation.  相似文献   

18.
19.
Many Listeria species including L. monocytogenes contain the pathway for the biosynthesis of protocatechuate from shikimate and quinate. The qui1 and qui2 operons within these Listeria spp. encode enzymes for this pathway. The diversion of shikimate pathway intermediates in some Listeria species to produce protocatechuate suggests an important biological role for this compound to these organisms. A total of seven ORFs, including quiC2, were identified within qui1 and qui2, however only three proteins encoded by the operons have been functionally annotated. The final step in Listeria's protocatechuate biosynthesis involves the conversion of dehydroshikimate by a dehydroshikimate dehydratase (DSD). In this study, we demonstrate that QuiC2 functions as a DSD in Listeria spp. through biochemical and structural analyses. Moreover, we show that QuiC2 forms a phylogenetic cluster distinct from other functionally annotated DSDs. The individual phylogenetic clusters of DSD are represented by enzymes that produce protocatechuate for distinct biological processes. Similarly, QuiC2 is expected to produce protocatechuate for a novel biological process. We postulate that protocatechuate produced by DSDs found within the QuiC2 phylogenetic cluster provides an ecological niche for representative organisms.  相似文献   

20.
Sphingomonas paucimobilis SYK-6 is able to grow on a wide variety of dimeric lignin compounds with guaiacyl moieties, which are converted into protocatechuate by the actions of lignin degradation enzymes in this strain. Protocatechuate is a key metabolite in the SYK-6 degradation of lignin compounds with guaiacyl moieties, and it is thought that it degrades to pyruvate and oxaloacetate via the protocatechuate 4,5-cleavage pathway. In a 10.5-kb EcoRI fragment carrying the protocatechuate 4,5-dioxygenase gene (ligAB) (Y. Noda, S. Nishikawa, K. Shiozuka, H. Kadokura, H. Nakajima, K. Yoda, Y. Katayama, N. Morohoshi, T. Haraguchi, and M. Yamasaki. J. Bacteriol. 172:2704–2709, 1990), we found the ligI gene encoding 2-pyrone-4,6-dicarboxylic acid (PDC) hydrolase. PDC hydrolase is a member of this pathway and catalyzes the interconversion between PDC and 4-carboxy-2-hydroxymuconic acid (CHM). The ligI gene is thought to be transcribed divergently from ligAB and consists of an 879-bp open reading frame encoding a polypeptide with a molecular mass of 32,737 Da. The ligI gene product (LigI), expressed in Escherichia coli, was purified to near-homogeneity and was estimated to be a monomer (31.6 kDa) by gel filtration chromatography. The isoelectric point was determined to be 4.9. The optimum pH for hydrolysis of PDC is 8.5, the optimum pH for synthesis of PDC is 6.0 to 7.5, and the Km values for PDC and CHM are 74 and 49 μM, respectively. LigI activity was inhibited by the addition of thiol reagents, suggesting that the cysteine residue is a catalytic site. LigI is more resistant to metal ion inhibition than the PDC hydrolases of Pseudomonas ochraceae (K. Maruyama, J. Biochem. 93:557–565, 1983) and Comamonas testosteroni (P. J. Kersten, S. Dagley, J. W. Whittaker, D. M. Arciero, and J. D. Lipscomb, J. Bacteriol. 152:1154–1162, 1982). The insertional inactivation of the ligI gene in S. paucimobilis SYK-6 led to the complete loss of PDC hydrolase activity and to a growth defect on vanillic acid; it did not affect growth on syringic acid. These results indicate that the ligI gene is essential for the growth of SYK-6 on vanillic acid but is not responsible for the growth of SYK-6 on syringic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号