首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypoxia/reoxygenation injury to cultured endothelial cells results in cytoskeletal rearrangement and second messenger activation related to increased monolayer junctional permeability. Cytoskeletal rearrangement by reactive oxygen species may be related to specific activation of the phospholipase D (PLD) pathway. Human umbilical vein endothelial cell monolayers are exposed to H2O2 (100 μM) or metabolites of the PLD pathway for 1–60 min. Changes in cAMP levels, Ca2+ levels, PIP2 production, filamin distribution, and intercellular gap formation are then quantitated. H2O2-induced filamin translocation from the membrane to the cytosol occurs after 1-min H2O2 treatment, while intercellular gap formation significantly increases after 15 min. H2O2 and phosphatidic acid exposure rapidly decrease intracellular cAMP levels, while increasing PIP2 levels in a Ca2+-independent manner. H2O2-induced cAMP decreases are prevented by inhibiting phospholipase D. H2O2-induced cytoskeletal changes are prevented by inhibiting phospholipase D, phosphatidylinositol-4-phosphate kinase, phosphoinositide turnover, or by adding a synthetic peptide that binds PIP2. These data indicate that metabolites produced downstream of H2O2-induced PLD activation may mediate filamin redistribution and F-actin rearrangement. J. Cell. Biochem. 68:511–524, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
3.
To understand the effect of any biomolecules in specific metabolic pathways in humans, bioavailability and for other basic understanding, stable isotopically-labelled biomolecules (preferably deuterated) is the fundamental pre-requisite. Production of deuterated biomolecules such as, astaxanthin, β-carotene, lutein, chlorophyll-a, and eicosapentaenoic acid (EPA, 20:5n-3) by metabolic tagging have been shown in commercially important microalgae, Haematococcus pluvialis and Phaeodactylum tricornutum. These microalgae were grown in appropriate optimized medium supplemented with 25 % (v/v) deuterated water. LC–MS analysis showed a maximum of 20, 25, 23, 24, and 27 % replacement of hydrogen by deuterium atoms respectively in astaxanthin, β-carotene, lutein, chlorophyll-a, and EPA. To our knowledge, this is the first report on the production of deuterated astaxanthin, chlorophyll-a and EPA by these microalgae.  相似文献   

4.
Cyclophosphamide (CP) is one of the widely used anticancer agents; however, it has serious deleterious effects on normal host cells due to its nonspecific action. The essential trace element Selenium (Se) is suggested to have chemopreventive and chemotherapeutic efficacy and currently used in pharmaceutical formulations. Previous report had shown Nano-Se could protect CP-induced hepatotoxicity and genotoxicity in normal Swiss albino mice; however, its role in cancer management is still not clear. The aim of present study is to investigate the chemoprotective efficacy of Nano-Se against CP-induced toxicity as well as its chemoenhancing capability when used along with CP in Swiss albino mice against Ehrlich’s ascites carcinoma (EAC) cells. CP was administered (25 mg/kg b.w., i.p.) and Nano-Se was given (2 mg Se/kg b.w., p.o.) in concomitant and pretreatment schedule. Increase levels of serum hepatic marker, hepatic lipid peroxidation, DNA damage, and chromosomal aberration in CP-treated mice were significantly (P < 0.05) reversed by Nano-Se. The lowered status of various antioxidant enzymes in tumor-bearing mice after CP treatment was also effectively increased by Nano-Se. Administration of Nano-Se along with CP caused a significant reduction in tumor volume, packed cell volume, viable tumor cell count, and increased the survivability of the tumor-bearing hosts. The results suggest that Nano-Se exhibits significant antitumor and antioxidant effects in EAC-bearing mice. The potential for Nano-Se to ameliorate the CP-evoked toxicity as well as to improve the chemotherapeutic effect could have beneficial implications for patients undergoing chemotherapy with CP.  相似文献   

5.
Non-phagocytic NAD(P)H oxidases have been implicated as major sources of reactive oxygen species in blood vessels. These oxidases can be activated by cytokines, thereby generating O(2), which is subsequently converted to H(2)O(2) and other oxidant species. The oxidants, in turn, act as important second messengers in cell signaling cascades. We hypothesized that reactive oxygen species, themselves, can activate the non-phagocytic NAD(P)H oxidases in vascular cells to induce oxidant production and, consequently, cellular injury. The current report demonstrates that exogenous exposure of non-phagocytic cell types of vascular origin (smooth muscle cells and fibroblasts) to H(2)O(2) activates these cell types to produce O(2) via an NAD(P)H oxidase. The ensuing endogenous production of O(2) contributes significantly to vascular cell injury following exposure to H(2)O(2). These results suggest the existence of a feed-forward mechanism, whereby reactive oxygen species such as H(2)O(2) can activate NAD(P)H oxidases in non-phagocytic cells to produce additional oxidant species, thereby amplifying the vascular injury process. Moreover, these findings implicate the non-phagocytic NAD(P)H oxidase as a novel therapeutic target for the amelioration of the biological effects of chronic oxidant stress.  相似文献   

6.
O,O,S-Trimethylphosphorothioate (OOS-TMP), an impurity present in various organophosphorus insecticides, has previously been shown to induce hypophagia. The major goal of this study was to investigate its mechanism of action. Both intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) injection transiently induced hypophagia at a dose of 5mg/kg within 6h, without causing lung injury. Hypophagia was accompanied by up-regulation of corticotropin releasing factor (CRF) (2.92+/-0.45 vs. 1.7+/-0.5, at 2h after i.c.v., 3.40+/-1.38 vs. 1.76+/-0.41 at 6h after i.p., P<0.05) in the hypothalamus. After i.c.v. injection, hypophagia recovered by 6h after dosing. At doses higher than 5mg/kg, i.c.v. injection induced continuous hypophagia from 20min to 72h after dosing, accompanied by hypothermia and lung injury. OOS-TMP was considered to induce hypophagia through enhancing expression of CRF.  相似文献   

7.
8.
Human blood neutrophils bear two types of Fc receptors that recognize the Fc portion of immunoglobulin G: FcRII and FcRIII. In earlier studies we found that neutrophils not only express FcRIII on their plasma membrane but also contain a large population of FcRIII-containing vesicles mainly located in the juxtanuclear area. To find out whether these vesicles derive from the plasma membrane, we used electron microscopic techniques to study compartments involved in ligand-independent endocytosis in human neutrophil granulocytes. The endocytic compartments were labeled with BSA-gold. This marker entered the cell through non-coated invaginations of the plasma membrane as well as via coated pits. After internalization, BSA-gold was present in numerous electron-lucent vesicles in the juxtanuclear area and in the trans-Golgi reticulum, endosomes, and lysosome-like structures. FcRIII also occurred in the BSA-gold-containing electron-lucent vesicles in the juxtanuclear area, as shown by postembedding immunocytochemical labeling of FcRIII in cells already containing BSA-gold. Quantification showed that 29% of all FcRIII-containing vesicles also bear BSA-gold while the remaining 71% contain only the receptor. In sum, our findings show that one third of the FcRIII-containing electron-lucent vesicles in neutrophil granulocytes derive from the plasma membrane and are involved in ligand-independent endocytosis of FcRIII. The majority of these vesicles, however, are not of an endocytic origin and might constitute an "internal pool" of receptors in these cells.  相似文献   

9.
Zhang W  Wang C  Qin C  Wood T  Olafsdottir G  Welti R  Wang X 《The Plant cell》2003,15(10):2285-2295
Hydrolysis of common membrane phospholipids occurs in response to various environmental stresses, but the control and cellular function of this hydrolysis are not fully understood. Hydrogen peroxide (H2O2) is a pivotal signaling molecule involved in various stress responses. Here, we show that the plasma membrane-bound phospholipase D, PLDdelta, is activated in response to H2O2 and that the resulting phosphatidic acid (PA) functions to decrease H2O2-promoted programmed cell death. The Arabidopsis genome has 12 PLD genes, and knockout of PLDdelta abolishes specifically the oleate-stimulated PLD activity. H2O2 treatment of Arabidopsis cells activates PLD enzyme activity, and ablation of PLDdelta abolishes that activation. PLDdelta-null cells display increased sensitivity to H2O2-induced cell death. The addition of PA to PLDdelta-null cells mitigates the H2O2 effect, whereas suppression of the H2O2-induced PA formation in wild-type cells increases the effect. PLDdelta-ablated plants exhibit increased susceptibility to stress. These results demonstrate that activation of oleate-stimulated PLDdelta constitutes an important step in the plant response to H2O2 and increasing plant stress tolerance.  相似文献   

10.
Hypoxia/reoxygenation injury in vitro causes endothelial cell cytoskeletal rearrangement that is related to increased monolayer permeability. Nonmuscle filamin (ABP-280) promotes orthogonal branching of F-actin and links microfilaments to membrane glycoproteins. Human umbilical vein endothelial cell monolayers are exposed to H2O2 (100 μM) for 1–60 min, with or without modulators of cAMP-dependent second-messenger pathways, and evaluated for changes in filamin distribution, cAMP levels, and the formation of gaps at interendothelial junctions. Filamin translocates from the membrane-cytoskeletal interface to the cytosol within 1 min of exposure to H2O2. This is associated with a decrease in endothelial cell cAMP levels from 83 pmoles/mg protein to 15 pmoles/mg protein. Intercellular gaps form 15 min after H2O2 treatment and progressively increase in number and diameter through 60 min. Both filamin redistribution and actin redistribution are associated with decreased phosphorylation of filamin and are prevented by activation of the cAMP-dependent protein kinase pathway. A synthetic peptide corresponding to filamin's C-terminal, cAMP-dependent, protein kinase phosphorylation site effectively induces filamin translocation and intercellular gap formation, which suggests that decreased phosphorylation of filamin at this site causes filamin redistribution and destabilization of junctions. These data indicate that H2O2-induced filamin redistribution and interendothelial cell gap formation result from inhibition of the cAMP-dependent protein kinase pathway. J. Cell. Physiol. 172:373–381, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Methylmercury (MeHg) is a neurotoxic agent acting via diverse mechanisms, including oxidative stress. MeHg also induces astrocytic dysfunction, which can contribute to neuronal damage. The cellular effects of MeHg were investigated in human astrocytoma D384 cells, with special reference to the induction of oxidative-stress-related events. Lysosomal rupture was detected after short MeHg-exposure (1 μM, 1 h) in cells maintaining plasma membrane integrity. Disruption of lysosomes was also observed after hydrogen peroxide (H2O2) exposure (100 μM, 1 h), supporting the hypothesis that lysosomal membranes represent a possible target of agents causing oxidative stress. The lysosomal alterations induced by MeHg and H2O2 preceded a decrease of the mitochondrial potential. At later time points, both toxic agents caused the appearance of cells with apoptotic morphology, chromatin condensation, and regular DNA fragmentation. However, MeHg and H2O2 stimulated divergent pathways, with caspases being activated only by H2O2. The caspase inhibitor z-VAD-fmk did not prevent DNA fragmentation induced by H2O2, suggesting that the formation of high-molecular-weight DNA fragments was caspase independent with both MeHg and H2O2. The data point to the possibility that lysosomal hydrolytic enzymes act as executor factors in D384 cell death induced by oxidative stress.  相似文献   

12.
The role of different Ca2+ sources in the activation of the NADPH oxidase was investigated in human neutrophil granulocytes. Selective depletion of the stimulus-responsive intracellular Ca2+ -pool and the consequent opening of the store-dependent Ca2+ channel of the plasma membrane was achieved with thapsigargin, an inhibitor of microsomal Ca2+ -ATPase. Low concentration (10-100 nM) of thapsigargin did not induce any O2*- -production, indicating that elevation of [Ca2+]ic to similar level and probably via similar route as following stimulation of chemotactic receptors, by itself is not sufficient to activate the NADPH oxidase. In significantly higher concentration (1-10 microM) thapsigargin did induce O2*- -generation but this effect was not the result of elevation of [Ca2+]ic. In the absence of external Ca2+ a gradual decrease of the responsive Ca2+ pool was accompanied by a gradual decrease of the rate and duration of the respiratory response stimulated by formyl-methionyl-leucyl-phenylalanin. Maximal extent of receptor-initiated O2*- -production could only be obtained when the intracellular [Ca2+] was higher than the resting level. Under this condition Ca2+ originating from intracellular or external source was equally effective in supporting the biological response.  相似文献   

13.
Formyl-met-leu-phe (fMLP) induces actin assembly in neutrophils; the resultant increase in F-actin content correlates with an increase in the rate of cellular locomotion at fMLP concentrations less than or equal to 10(-8) M (Howard, T.H., and W.H. Meyer, 1984, J. Cell Biol., 98:1265-1271). We studied the time course of change in F-actin content, F-actin distribution, and cell shape after fMLP stimulation. F-actin content was quantified by fluorescence activated cell sorter analysis of nitrobenzoxadiazole-phallacidin-stained cells (Howard, T.H., 1982, J. Cell Biol., 95(2, Pt. 2:327a). F-actin distribution and cell shape were determined by analysis of fluorescence photomicrographs of nitrobenzoxadiazole-phallacidin-stained cells. After fMLP stimulation at 25 degrees C, there is a rapid actin polymerization that is maximal (up to 2.0 times the control level) at 45 s; subsequently, the F-actin depolymerizes to an intermediate F-actin content 5-10 min after stimulation. The depolymerization of F-actin reflects a true decrease in F-actin content since the quantity of probe extractable from cells also decreases between 45 s and 10 min. The rate of actin polymerization (3.8 +/- 0.3-4.4 +/- 0.6% increase in F-actin/s) is the same for 10(-10) - 10(-6) M fMLP and the polymerization is inhibited by cytochalasin D. The initial rate of F-actin depolymerization (6.0 +/- 1.0-30 +/- 5% decrease in F-actin/min) is inversely proportional to fMLP dose. The F-actin content of stimulated cells at 45 s and 10 min is greater than control levels and varies directly with fMLP dose. F-actin distribution and cell shape also vary as a function of time after stimulation. 45 s after stimulation the cells are rounded and F-actin is diffusely distributed; 10 min after stimulation the cell is polarized and F-actin is focally distributed. These results indicate that actin polymerization and depolymerization follow fMLP stimulation in sequence, the rate of depolymerization and the maximum and steady state F-actin content but not the rate of polymerization are fMLP dose dependent, and concurrent with F-actin depolymerization, F-actin is redistributed and the cell changes shape.  相似文献   

14.
This study employed confocal laser scanning microscopy to monitor the effect of H2O2 on cytosolic as well as mitochondrial calcium (Ca2+) concentrations, mitochondrial inner membrane potential (psi m) and flavine adenine dinucleotide (FAD) oxidation state in isolated mouse pancreatic acinar cells. The results show that incubation of pancreatic acinar cells with H2O2, in the absence of extracellular Ca2+ ([Ca2+],) led to an increase either in cytosolic and in mitochondrial Ca2+ concentration. Additionally, H2O2 induced a depolarization of mitochondria and increased oxidized FAD level. Pretreatment of cells with the mitochondrial inhibitors rotenone or cyanide inhibited the response induced by H2O2 on mitochondrial inner membrane potential but failed to block oxidation of FAD in the presence of H2O2. However, the H2O2-evoked effect on FAD state was blocked by pretreatment of cells with the mitochondrial uncoupler, carbonyl cyanide p-trifluoromethoxy-phenylhydrazone (FCCP). On the other hand, perfusion of cells with thapsigargin (Tps), an inhibitor of the SERCA pump, led to an increase in mitochondrial Ca2+ concentration and in oxidized FAD level, and depolarized mitochondria. Pretreatment of cells with thapsigargin inhibited H2O2-evoked changes in mitochondrial Ca2+ concentration but not those in membrane potential and FAD state. The present results have indicated that H2O2 can evoke marked changes in mitochondrial activity that might be due to the oxidant nature of H2O2. This in turn could represent the mechanism of action of ROS to induce cellular damage leading to cell dysfunction and generation of pathologies in the pancreas.  相似文献   

15.
16.
Although transactivation by the liganded vitamin D receptor (VDR) is well described at the molecular level, the precise molecular mechanism of negative regulation by the liganded VDR remains to be elucidated. We have previously reported a novel class of negative vitamin D response element (nVDRE) called 1alphanVDRE in the human 25(OH)D31alpha-hydroxylase [1alpha(OH)ase] gene by 1alpha,25(OH)2D3-bound VDR. This element was composed of two E-box-type motifs that bound to VDIR for transactivation, which was attenuated by liganded VDR. Here, we explore the possible functions of VDIR and E-box motifs in the human (h) PTH and hPTHrP gene promoters. Functional mapping of the hPTH and hPTHrP promoters identified E-box-type elements acting as nVDREs in both the hPTH promoter (hPTHnVDRE; -87 to -60 bp) and in the hPTHrP promoter (hPTHrPnVDRE; -850 to -600 bp; -463 to -104 bp) in a mouse renal tubule cell line. The hPTHnVDRE alone was enough to direct ligand-induced transrepression mediated through VDR/retinoid X receptor and VDIR. Direct DNA binding of hPTHnVDRE to VDIR, but not VDR/retinoid X receptor, was observed and ligand-induced transrepression was coupled with recruitment of VDR and histone deacetylase 2 (HDAC2) to the hPTH promoter. These results suggest that negative regulation of the hPTH gene by liganded VDR is mediated by VDIR directly binding to the E-box-type nVDRE at the promoter, together with recruitment of an HDAC corepressor for ligand-induced transrepression.  相似文献   

17.
Histone proteins are involved in compaction of DNA and the protection of cells from oxygen toxicity. However, several studies have demonstrated that the metal-binding histone reacts with H(2)O(2), leading to oxidative damage to a nucleobase. We investigated whether histone can accelerate oxidative DNA damage, using a minimal model for the N-terminal tail of histone H4, CH(3)CO-AKRHRK-CONH(2), which has a metal-binding site. This histone peptide enhanced DNA damage induced by H(2)O(2) and Cu(II), especially at cytosine residues, and induced additional DNA cleavage at the 5'-guanine of GGG sequences. The peptide also enhanced the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine and ESR spin-trapping signal from H(2)O(2) and Cu(II). Cyclic redox reactions involving histone-bound Cu(II) and H(2)O(2), may give rise to multiple production of radicals leading to multiple hits in DNA. It is noteworthy that the histone H4 peptide with specific sequence AKRHRK can cause DNA damage rather than protection under metal-overloaded condition.  相似文献   

18.
The effect of H(2)O(2) on smooth muscle heavy meromyosin (HMM) and subfragment 1 (S1) was examined. The number of molecules that retained the ability to bind ATP and the actinactivated rate of P(i) release were measured by single-turnover kinetics. H(2)O(2) treatment caused a decrease in HMM regulation from 800- to 27-fold. For unphosphorylated and phosphorylated heavy meromyosin and for S1, approximately 50% of the molecules lost the ability to bind to ATP. H(2)O(2) treatment in the presence of EDTA protected against ATPase inactivation and against the loss of total ATP binding. Inactivation of S1 versus time correlated to a loss of reactive thiols. Treatment of H(2)O(2)-inactivated phosphorylated HMM or S1 with dithiothreitol partially reactivated the ATPase but had no effect on total ATP binding. H(2)O(2)-inactivated S1 contained a prominent cross-link between the N-terminal 65-kDa and C-terminal 26-kDa heavy chain regions. Mass spectral studies revealed that at least seven thiols in the heavy chain and the essential light chain were oxidized to cysteic acid. In thiophosphorylated porcine tracheal muscle strips at pCa 9 + 2.1 mM ATP, H(2)O(2) caused a approximately 50% decrease in the amplitude but did not alter the rate of force generation, suggesting that H(2)O(2) directly affects the force generating complex. Dithiothreitol treatment reversed the H(2)O(2) inhibition of the maximal force by approximately 50%. These data, when compared with the in vitro kinetic data, are consistent with a H(2)O(2)-induced loss of functional myosin heads in the muscle.  相似文献   

19.
H(2)O(2)-induced pulmonary arterial smooth muscle (PASM) contractions are independent of Ca(2+) and myosin light chain phosphorylation. The purpose of this study was to determine whether mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK) 1 and ERK2, or protein kinase C (PKC) activation is required for H(2)O(2)-induced contraction. Porcine PASM strips were stimulated with 1 mM H(2)O(2), 120 mM KCl, or 10 microM phorbol myristic acetate and freeze clamped at various times during the contractions. Changes in relative amounts of tyrosine/threonine phosphorylated MAPK compared with total MAPK were measured. MAPK tyrosine phosphorylation levels increased in correlation with tension development. However, 50 microM PD-98059, a MAPK/ERK kinase-MAPK kinase blocker, reduced MAPK phosphorylation below resting levels, even though the magnitude of the isometric tension development was unaltered. Freeze-clamped PASM strips were placed in a PKC activity assay buffer containing (32)P and CaCl(2) to measure the total myelin basic protein phosphorylation. The data show that: 1) the time courses of PKC activity and force produced in response to H(2)O(2) do not correlate, and 2) MAPK activation may be a concurrent event with, or a consequence of, tension development in response to a variety of agonists but is not responsible for contractions to H(2)O(2), high K(+), or phorbol esters.  相似文献   

20.
Treatment of IMR-90 human diploid fibroblasts with a sublethal concentration of H(2)O(2) induces premature senescence. We investigated the protein abundance, subcellular localization and involvement of caveolin 1 in premature senescence. Caveolin 1 is a scaffolding protein able to concentrate and organize signaling molecules within the caveolae membrane domains. We report the first evidence of increased nuclear and cytoplasmic localization of caveolin 1 during establishment of H(2)O(2)-induced premature senescence. Moreover, we demonstrate that phosphorylation of caveolin 1 during treatment with H(2)O(2) is dependent on p38alpha mitogen-activated protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号