首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantification of peripheral nerve regeneration in animal studies of nerve injury and repair by histologic, morphologic, and electrophysiologic parameters has been controversial because such studies may not necessarily correlate with actual nerve function. This study modifies the previously described sciatic functional index (SFI), tibial functional index (TFI), and peroneal functional index (PFI) based on multiple linear regression analysis of factors derived from measurements of walking tracks in rats with defined nerve injuries. The factors that contributed to these formulas were print-length factor (PLF), toe-spread factor (TSF), and intermediary toe-spread factor (ITF). It was shown that animals with selective nerve injuries gave walking tracks that were consistent, predictable, and based on known neuromuscular deficits. The new formula for sciatic functional index was compared with previously described indices. The sciatic functional index, tibial functional index, and peroneal functional index offer the peripheral nerve investigator a noninvasive quantitative assessment of hindlimb motor function in the rat with selective hindlimb nerve injury.  相似文献   

2.
Walking track analysis: a long-term assessment of peripheral nerve recovery.   总被引:23,自引:0,他引:23  
Functional recovery following sciatic, tibial, and peroneal nerve injury was assessed over a 1-year period using walking track analysis in the rat. Internal neurolysis did not affect nerve function. Crush injury induced a temporary, but complete, loss of function that recovered to control levels by 4 weeks. Nerve transection resulted in complete loss of function without any evidence of recovery. After nerve repair, functional recovery occurred, reaching near-optimal recovery by 12 weeks. The degree of functional recovery varied with the specific nerve involved. The sciatic nerve recovered 41 percent of function, whereas the tibial nerve recovered 54 percent of function. The peroneal nerve exhibited the highest degree of recovery, achieving functional levels similar to control values. Assessment of neural regeneration using walking track analysis appears to be a valuable addition to the traditional methods of histology and electrophysiology.  相似文献   

3.
Target-specific nerve regeneration through a nerve guide in the rat   总被引:6,自引:0,他引:6  
Nerve regeneration across a gap in peripheral nerve has been achieved through various nonneural nerve guides in both lower and primate species. This technique can only be useful if the regenerated nerve cable grows specifically to and reinnervates the appropriate distal target. In this study, the proximal peroneal fascicle of rat sciatic nerve was inserted into the proximal limb of a Y-shaped nerve guide. Distal peroneal and tibial fascicles were placed within the two distal limbs of the same Y. The proximal peroneal nerve grew preferentially by a 2:1 ratio to the appropriate distal peroneal fascicle suggesting that target-specific reinnervation is possible through a nerve guide.  相似文献   

4.
The Sciatic Functional Index (SFI) is widely used to evaluate functional recovery after sciatic nerve injury, primarily in the rat, and more recently shown useful in the mouse. This quantitative, non-invasive method allows tracking of regeneration capability, visible in the gait of the animal. Using a Martin micro needle holder, carrying a force measured to be 49.2 N, the left sciatic nerve was crushed for 60 s. We accumulated data from walking tracks collected preoperatively and 1, 7, 14, 21, and 28 days after injury. SFI values were first calculated in the traditional manner. Then using the preoperative values as the normal value in the postoperative calculations, SFI was again calculated; this isolated the calculations to either injured or contra lateral leg giving a "split" plot. The traditional SFI calculations resulted in typical shaped graphs for both rats and mice. However, the "split" SFI calculations showed how rats and mice differ in their recovery from sciatic nerve injury. The mouse graph shows the intact leg remaining stable and the injured leg having functional impairment, which then recovers. The rat graph showed functional impairment of the injured leg, however, the intact leg had an increase in SFI values as if to compensate until the injured leg showed recovery.  相似文献   

5.
The Sciatic Functional Index (SFI) is widely used to evaluate functional recovery after sciatic nerve injury, primarily in the rat, and more recently shown useful in the mouse. This quantitative, non-invasive method allows tracking of regeneration capability, visible in the gait of the animal. Using a Martin micro needle holder, carrying a force measured to be 49.2 N, the left sciatic nerve was crushed for 60 s. We accumulated data from walking tracks collected preoperatively and 1, 7, 14, 21, and 28 days after injury. SFI values were first calculated in the traditional manner. Then using the preoperative values as the normal value in the postoperative calculations, SFI was again calculated; this isolated the calculations to either injured or contra lateral leg giving a “split” plot. The traditional SFI calculations resulted in typical shaped graphs for both rats and mice. However, the “split” SFI calculations showed how rats and mice differ in their recovery from sciatic nerve injury. The mouse graph shows the intact leg remaining stable and the injured leg having functional impairment, which then recovers. The rat graph showed functional impairment of the injured leg, however, the intact leg had an increase in SFI values as if to compensate until the injured leg showed recovery.  相似文献   

6.
Numerous studies have been devoted to the regeneration of the motor pathway toward a denervated muscle after nerve injury. However, the regeneration of sensory muscle endings after repair by self-anastomosis are little studied. In previous electrophysiological studies, our laboratory showed that the functional characteristics of tibialis anterior muscle afferents are differentially affected after injury and repair of the peroneal nerve with and without chronic electrostimulation. The present study focuses on the axonal regeneration of mechano- (fibers I and II) and metabosensitive (fibers III and IV) muscle afferents by evaluating the recovery of their response to different test agents after nerve injury and repair by self-anastomosis during 10 wk of treadmill running (LSR). Data were compared with control animals (C), animals with nerve lesion and suture (LS), and animals with lesion, suture, and chronic muscle rehabilitation by electrostimulation (LSE) with a biphasic current modulated in pulse duration and frequency, eliciting a pattern mimicking the activity delivered by the nerve to the muscle. Compared with the C group, results indicated that 1) muscle weight was smaller in LS and LSR groups, 2) the fatigue index was greater in the LS group and smaller in the LSE group, 3) metabosensibility remained altered in the LS and LSE groups, and 4) mechanosensitivity presented a large increase of the activation pattern in the LS and LSE groups. Our data indicated that chronic muscle electrostimulation partially favors the recovery of muscle properties (i.e., muscle weight and twitch response were close to the C group) and that rehabilitation by treadmill running also efficiently induced a better functional muscle afferent recovery (i.e., the discharge pattern was similar to the C group). The effectiveness of the chronic electromyostimulation and the treadmill exercise on afferent recovery is discussed with regard to parameters listed above.  相似文献   

7.
Glial‐derived neurotrophic factor (GDNF) and nerve growth factor (NGF) have both been shown to enhance peripheral nerve regeneration following injury and target different neuronal populations. The delivery of either growth factor at the site of injury may, therefore, result in quantitative differences in motor nerve regeneration and functional recovery. In this study we evaluated the effect of affinity‐based delivery of GDNF or NGF from fibrin‐filled nerve guidance conduits (NGCs) on motor nerve regeneration and functional recovery in a 13 mm rat sciatic nerve defect. Seven experimental groups were evaluated consisting of GDNF or NGF and the affinity‐based delivery system (DS) within NGCs, control groups excluding the DS and/or growth factor, and nerve isografts. Groups with growth factor in the conduit demonstrated equivalent or superior performance in behavioral tests and relative muscle mass measurements compared to isografts at 12 weeks. Additionally, groups with GDNF demonstrated greater specific twitch and tetanic force production in extensor digitorum longus (EDL) muscle than the isograft control, while groups with NGF produced demonstrated similar force production compared to the isograft control. Assessment of motor axon regeneration by retrograde labeling further revealed that the number of ventral horn neurons regenerating across NGCs containing GDNF and NGF DS was similar to the isograft group and these counts were greater than the groups without growth factor. Overall, the GDNF DS group demonstrated superior functional recovery and equivalent motor nerve regeneration compared to the isograft control, suggesting it has potential as a treatment for motor nerve injury. Biotechnol. Bioeng. 2010;106: 970–979. © 2010 Wiley Periodicals, Inc.  相似文献   

8.
Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a promising strategy for peripheral nerve repair.  相似文献   

9.
目的:探讨他汀类(statins)药物Simvastatin在大鼠坐骨神经损伤修复中的作用及可能的作用机制。方法:制作SD大鼠标准坐骨神经钳夹损伤(crush)模型后,分别予Simvastatin和溶媒对照干预2周。手术前后不同时间点进行趾展功能指数测定、神经电生理学、血脂水平、血清IL-6检测和组织学评价。结果:Simvastatin干预组与对照组比较,趾展功能指数在术后5d和8d显著增大(P〈0.05),足趾展开速度快;2周肌肉复合动作电位幅度高,4周神经传导速度快;组织学显示有髓神经纤维数量多,髓鞘厚,排列相对整齐。各组手术前血脂水平无差异,手术后2周均有不同程度的降低,但Simvastatin干预组总胆固醇降低程度最轻,与对照组比较有显著差异(P〈0.05);Simvastatin干预组手术后5d,血清IL-6水平明显低于对照组(P〈0.05)。结论:本研究发现,Simvastatin可能通过抑制免疫炎症反应,维持神经损伤后胆固醇的平衡,促进大鼠坐骨神经损伤的修复和再生。  相似文献   

10.
Reconstruction of a short nerve gap by a nerve graft produces donor-site scarring, loss of donor nerve function, and neuroma formation. This study compared the regeneration achieved after 1 year in 16 monkeys across a 3-cm upper arm ulnar nerve gap with a bioabsorbable polyglycolic acid nerve conduit with the regeneration achieved with a classical interfascicular interpositional sural nerve graft. The results demonstrated electrophysiologic and histologic evidence of neural regeneration across the gaps in all experimental groups. The bioabsorbable nerve conduit groups and the sural nerve graft group had mean fiber diameters, amplitudes, and conduction velocities each significantly less than those of normal control ulnar nerves. There was, however, no significant difference between any of the experimental groups. Electromyography demonstrated recovery of 19 of the 28 (68 percent) intrinsic muscles studied. These results demonstrate that the primate peripheral nerve can regenerate across short nerve gaps when guided by an appropriate nerve conduit, suggesting that a single-stage biodegradable polyglycolic acid conduit may be used as an alternative to a short interfascicular nerve graft.  相似文献   

11.
A new type of a biodegradable nerve graft conduit material, the amnion tube, has been developed in our laboratory. To test the tube in the peripheral nerve regeneration process, it was initially applied across a 1-cm sciatic nerve gap in rats and was compared with other nerve conduit materials. We used male Sprague-Dawley rats as our animal model. The experiment included 66 rats that were randomly assigned into five groups: autograft (n = 17), amnion tube (n = 19), silicone tube (n = 20), no repair (n = 7), and sham group (n = 3). The process of peripheral nerve regeneration was evaluated at 2, 4, 10, and 17 weeks following injury and repair by using morphologic and functional assessments of the outcome of nerve regeneration in each animal. Nerve regeneration across the amnion tube nerve conduit was comparable with that seen in autograft and superior to that of the silicone group. A uniform nerve tissue was seen filling and crossing the amnion conduit, and the regenerated nerve from the proximal stump reached the distal end and was undifferentiated from the normal nerve tissues. At 4 months, the amnion tube biodegraded and no longer could be identified and differentiated from the nerve tissues. The amnion tube animal group showed a number of axons very close to that in the nerve autograft group (37,157 versus 33,054). Functional recovery at a 2- to 4-week interval was significantly statistically higher only in the amnion tube animal group (p = 0.01). However, the improvement disappeared between 10 and 17 weeks. In conclusion, the amnion tube is a potential ideal nerve conduit material secondary to its unique characteristics: it contains important neurotropic factors, is biodegradable, provokes a very weak immune response, is semiflexible, is readily available, and is easily manufactured into different sizes and diameters.  相似文献   

12.

Upper limb nerve injuries are common, and their treatment poses a challenge for physicians and surgeons. Experimental models help in minimum exploration of the functional characteristics of peripheral nerve injuries of forelimbs. This study was conducted to characterize the functional recovery (1, 3, 7, 10, 14, and 21 days) after median and ulnar nerve crush in mice and analyze the histological and biochemical markers of nerve regeneration (after 21 days). Sensory–functional impairments appeared after 1 day. The peripheral nerve morphology, the nerve structure, and the density of myelin proteins [myelin protein zero (P0) and peripheral myelin protein 22 (PMP22)] were analyzed after 21 days. Cold allodynia and fine motor coordination recovery occurred on the 10th day, and grip strength recovery was observed on the 14th day after injury. After 21 days, there was partial myelin sheath recovery. PMP22 recovery was complete, whereas P0 recovery was not. Results suggest that there is complete functional recovery even with partial remyelination of median and ulnar nerves in mice.

  相似文献   

13.
14.
ABSTRACT: BACKGROUND: Nerve conduits provide a promising strategy for peripheral nerve injury repair. However, the efficiency of nerve conduits to enhance nerve regeneration and functional recovery is often inferior to that of autografts. Nerve conduits require additional factors such as cell adhesion molecules and neurotrophic factors to provide a more conducive microenvironment for nerve regeneration. METHODS: In the present study, poly{(lactic acid)-co-[(glycolic acid)-alt-(L-lysine)]} (PLGL) was modified by grafting Gly-Arg-Gly-Asp-Gly (RGD peptide) and nerve growth factor (NGF) for fabricating new PLGL-RGD-NGF nerve conduits to promote nerve regeneration and functional recovery. PLGL-RGD-NGF nerve conduits were tested in the rat sciatic nerve transection model. Rat sciatic nerves were cut off to form a 10 mm defect and repaired with the nerve conduits. All of the 32 Wistar rats were randomly divided into 4 groups: group PLGL-RGD-NGF, group PLGL-RGD, group PLGL and group autograft. At 3 months after surgery, the regenerated rat sciatic nerve was evaluated by footprint analysis, electrophysiology, and histologic assessment. Experimental data were processed using the statistical software SPSS 10.0. RESULTS: The sciatic function index value of groups PLGL-RGD-NGF and autograft was significantly higher than those of groups PLGL-RGD and PLGL. The nerve conduction velocities of groups PLGL-RGD-NGF and autograft were significantly faster than those of groups PLGL-RGD and PLGL. The regenerated nerves of groups PLGL-RGD-NGF and autograft were more mature than those of groups PLGL-RGD and PLGL. There was no significant difference between groups PLGL-RGD-NGF and autograft. CONCLUSIONS: PLGL-RGD-NGF nerve conduits are more effective in regenerating nerves than both PLGL-RGD nerve conduits and PLGL nerve conduits. The effect is as good as that of an autograft. This work established the platform for further development of the use of PLGL-RGD-NGF nerve conduits for clinical nerve repair.  相似文献   

15.
The successful removal of damaged myelin sheaths during Wallerian degeneration (WD) is essential for ensuring structural remodelling and functional recovery following traumatic peripheral nerve injury (PNI). Recent studies have established that autophagy involves myelin phagocytosis and cellular homoeostasis, and its disorder impairs myelin clearance. Based on the role of basic fibroblast growth factor (bFGF) on exerting neuroprotection and angiogenesis during nerve tissue regeneration, we now explicitly focus on the issue about whether the therapeutic effect of bFGF on supporting nerve regeneration is closely related to accelerate the autophagic clearance of myelin debris during WD. Using sciatic nerve crushed model, we found that bFGF remarkedly improved axonal outgrowth and nerve reconstruction at the early phase of PNI (14 days after PNI). More importantly, we further observed that bFGF could enhance phagocytic capacity of Schwann cells (SCs) to engulf myelin debris. Additionally, this enhancing effect is accomplished by autophagy activation and the increase of autophagy flux by immunoblotting and immune-histochemical analyses. Taken together, our data suggest that the action of bFGF on modulating early peripheral nerve regeneration is closely associated with myelin debris removal by SCs, which might result in SC-mediated autophagy activation, highlighting its insight molecular mechanism as a neuroprotective agent for repairing PNI.  相似文献   

16.
17.
The sometimes dramatic and permanent functional deficits that result from severe peripheral nerve injuries provide compelling incentives to identify exogenous agents that may expedite axonal regrowth and avoid prolonged denervation of end organs. The purpose of this study was to identify, whether the regular systemic administration of tacrolimus (FK506) or cyclosporin A (CsA) would influence the speed and efficiency of nerve regeneration through short nerve grafts. A total of 35 Buffalo rats each received a 2-cm posterior tibial nerve graft and were randomized to one of three experimental groups. Group I animals were left untreated, group II received daily CsA (5 mg/kg intraperitoneally), and group III received daily FK506 (1 mg/kg intraperitoneally). Walking tracks were obtained starting 3 weeks after graft placement and continuing biweekly for the next 7 weeks. FK506-treated animals fully recovered hindlimb function 7 days earlier than CsA-treated animals or untreated control animals. Regenerated nerves from one-half of each treatment group were harvested for histomorphometric analysis at 7 weeks, shortly after recovery was complete in the FK506-treatment group but not in the other two groups, and once again at 10.5 weeks when recovery of function had stabilized in all groups. At 7 weeks, FK506-treated animals had significantly greater fiber density and percentage of neural tissue per nerve and a significantly larger population of mature, myelinated fibers in comparison with either CsA-treated or untreated animals. The authors concluded that the daily, systemic administration of low-dose FK506 facilitates peripheral nerve recovery and regeneration after nerve grafting.  相似文献   

18.
Abstract

The aim of this study is to develop a nanofibrous polymeric nerve conduit with Schwann cells (SCs) and to evaluate its efficiency on the promotion of functional and locomotive activities in rats. The conduits were implanted into a 30-mm gap in the sciatic nerves of the rats. Four months after surgery, the rats were monitored and evaluated by behavioral analyses such as toe out angle, toe spreading analysis, walking track analysis, extensor postural thrust, open-field analysis, swimming test and nociceptive function, four months post surgery. Four months post-operatively, the results from behavioral analyses demonstrated that in the grafted groups especially in the grafted group with SCs, the rat sciatic nerve trunk had been reconstructed with functional recovery such as walking, swimming and recovery of nociceptive function. This study proves the feasibility of artificial conduit with SCs for nerve regeneration by bridging a longer defect in the rat model.  相似文献   

19.
Pituitary adenylate cyclase-activating polypeptide (PACAP) has been reported as a strong neurotrophic factor in the various sites of nervous system. The facial nerve injury is one of the common problems in patients at the Otolaryngology since the nerve damage could occur easily due to the anatomical characteristics. Once it happens, the regeneration is little observed and functional recovery is poor. Thus, we investigated that PACAP might have some influence for regeneration after the facial nerve transaction in the guinea pig. PACAP treatment accelerated time for the appearance of compound muscle action potentials (CMAP) after the nerve transaction (first appeared at 1 versus 2 weeks in control) and shortened the latency at 4 weeks. The number of myelinated fibers increased at 4 weeks. Histochemical demonstration of GAP-43, a growth cone protein, was observed at the injury area at 2-4 days. PACAP increased the level of glial cell line-derived neurotrophic factor (GDNF), a neurotrophin, in facial target muscles at 1 day-4 weeks. These data indicated that PACAP promotes the regeneration factors and increases the possibility of functional recovery following the facial nerve injury.  相似文献   

20.
Although a variety of electrophysiological and morphological tests are available for studying nerve regeneration in animals, these endpoints do not necessarily correlate with the return of muscle function. Recent efforts have focused on the assessment of function as the endpoint of nerve regeneration. One of the best known of these tests is the sciatic function index in rats. For rabbits, the toe-spreading reflex has been suggested as a valuable index of peroneal function. We examined the reliability and sensitivity of the toe-spreading reflex in a study of nerve regeneration of the peroneal nerve in 10 New Zealand White rabbits. Eleven weeks after the transection and immediate suturing of the peroneal nerve in both hind legs (at two slightly different sites), a toe-spreading reflex could always be elicited on that side where the level of the severed nerve was closer to the dependent muscles. Also on this hind leg the muscle weight of the peroneal target muscles was significantly higher (P = 0.031) than on the contralateral side, which corresponds well to the results of the toe-spreading reflex. The toe-spreading reflex is an excellent and sensitive indicator of the onset of motor recovery in the peroneal nerve-dependent muscles of rabbits. Even small differences in the localization of lesions in both hind legs can be differentiated with this test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号