首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mycoparasitism of fungal plant pathogens by Trichoderma species is a complex process that involves the production and coordinated secretion of cell-wall degrading enzymes. Genes implicated in mycoparasitism by Trichoderma atroviride contain motifs in the promoter region, designated MYRE1-MYRE4, that are proposed to act as binding sites for a global inducer of the mycoparasitic response. The aim of our study was to establish whether these motifs also were present in Trichoderma hamatum and whether the presence of these motifs could predict co-expression when T. hamatum was confronted by a pathogen. Using a combination of targeted, degenerate and inverse PCR, homologues of the mycoparasitism-related genes ech42 (chit42), prb1 and lam1.3 (xbg1.3-110), which encode an endochitinase, proteinase, and β-1,3-glucanase, respectively, were cloned and sequenced from T. hamatum. Alignment of the promoter regions of the three genes revealed identical regions in the chit42 and prb1 promoters, which were 6-9 base pairs in length and conserved in position. Specifically, the regulator y motifs MYRE1-MYRE4 were fully conserved, together with a fifth motif, identified by this research. A substrate assay designed to investigate the response of these genes from T. harzianum and T. hamatum to a simple carbon source (glycerol) showed that, in contrast to chit42 and prb1, xbg1.3-110 was not expressed. Further comparison of the expression patterns of these three genes between T. harzianum and T. hamatum using the glycerol substrate assay showed that no chit42 or prb1 expression could be detected in T. harzianum when it was grown under the same conditions as T. hamatum. This showed that the response of these genes to glycerol was species specific and that a single expression pattern for these genes was not common to all Trichoderma species. Confrontation assays were used to investigate the response of the three T. hamatum genes to the more complex substrate posed by the fungal pathogen Sclerotinia sclerotiorum. Once again gene expression analysis showed that both chit42 and prb1 were co-expressed and moderately induced during confrontation against Sclerotinia sclerotiorum. Although xbg1.3-110 previously had been implicated in mycoparasitism by T. harzianum, this study detected no xbg1.3-110 expression during confrontation between T. hamatum and S. sclerotiorum. These findings show that the MYRE1-MYRE4 together with MYRE5 are present in two species of Trichoderma, T. atroviride and T. hamatum and that the presence of these motifs could predict co-expression in response to two carbon sources.  相似文献   

2.
3.
The pentatomid predator P. bioculatus responded by positive odour-conditioned anemotaxis when exposed to airborne volatiles emitted by potato plants damaged by Colorado potato beetle larvae, whereas intact potato plants and non-feeding larvae as odour sources failed to elicit anemotaxis. Walking tracks of adult predators had higher values of straightness and upwind fixation when odours emanating from mechanically damaged plants were encountered than tracks registered in response to air carrying volatiles from intact plants, but these parameters returned to control values within 1–2 h after damage was caused. In contrast, air led over plants damaged by beetle larvae elicited orientation responses at least 3 hours after feeding damage ceased. The combination of chemical data on headspace composition, olfactory sensitivity established in electro-antennogram studies and behavioural data presented here imply a role of sesquiterpenoid plant volatiles as odorous cues eliciting attraction of this predator to damaged potato plants.  相似文献   

4.
AIMS: To evaluate the antagonistic activity of Fusarium oxysporum nonpathogenic fungal strain S6 against the phytopathogenic fungus Sclerotinia sclerotiorum and to identify the antifungal compounds involved. METHODS AND RESULTS: The antagonistic activity of Fusarium oxysporum strain S6 was determined in vitro by dual cultures. The metabolite responsible for the activity was isolated by chromatographic techniques, purified and identified by spectroscopic methods as cyclosporine A. The antifungal activity against the pathogen was correlated with the presence of this metabolite by a dilution assay and then quantified. Cyclosporine A caused both growth inhibition and suppression of sclerotia formation. In a greenhouse assay, a significant increase in the number of surviving soybean (Glycine max) plants was observed when S. sclerotiorum and F. oxysporum (S6) were inoculated together when compared with plants inoculated with S. sclerotiorum alone. CONCLUSION: Fusarium oxysporum (S6) may be a good fungal biological control agent for S. sclerotiorum and cyclosporine A is the responsible metabolite involved in its antagonistic activity in vitro. SIGNIFICANCE AND IMPACT OF THE STUDY: Cyclosporine A has not been previously described as an inhibitor of S. sclerotiorum. Its minimum inhibitory concentration (MIC) of 0.1 microg disc(-1) makes it suitable to use as a biofungicide. In vivo experiments showed that F. oxysporum (S6) is a good candidate for the biocontrol of S. sclerotiorum in soybean.  相似文献   

5.
Menendez AB  Godeas A 《Mycopathologia》1998,142(3):153-160
Two experiments of biological control of Sclerotinia sclerotiorum, one in the greenhouse and the other in the field, were carried out with soybean and Trichoderma harzianum as host and antagonist, respectively. Significant control of disease was achieved in both experiments, but there were no significant differences in plant growths. In the greenhouse, the application of T. harzianum as alginate capsules, increased the survival of soybean plants more than 100% with respect to the disease treatment. In the field, T. harzianum treated plants survived 40% more than those from the disease treatment, showing a similar survival level to control plants. Besides, a significant reduction (62.5%) in the number of germinated sclerotia was observed in the Trichoderma treated plot. Chitinase and 1,3-β- glucanase activities were detected when T. harzianum was grown in a medium containing Sclerotinia sclerotiorum cell walls as sole carbon source. In addition, electrophoretic profiles of proteins induced in T. harzianum showed quantitative differences between major bands obtained in the media induced by S. sclerotiorum cell walls and that containing glucose as a sole carbon source. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Carrot psyllid, Trioza apicalis, is a serious pest of carrot in Northern Europe, as it can significantly damage young carrot seedlings in a period as short as 3 days. This study was conducted to investigate effects of carrot psyllid feeding at different plant growth stages on carrot yield and to assess changes in content of sugars, phenolics and related compounds in carrot roots resulting from the psyllid feeding. In addition, reflectance of carrot leaves was measured to assess the intensity of discolouration in damaged leaves. Results showed that carrot yield was significantly reduced by a 3‐day carrot psyllid feeding period when the seedlings were exposed to psyllids at 1‐ or 2‐leaf stage. However, at 4‐leaf stage feeding by one carrot psyllid did not reduce yield. Sucrose concentration in the damaged roots was significantly decreased, whereas concentrations of some phenolic compounds were significantly increased. The reflectance of leaves of damaged carrots differed significantly from those of undamaged control leaves. These observations indicate that carrot psyllid damage has potential to lower not only the carrot yield, but also the carrot crop quality. No phytoplasma was detected in the carrots exposed to psyllids, but recently, T. apicalis has been associated with ‘Candidatus Liberibacter solanacearum’. The role of carrot psyllid feeding and the psyllid‐associated bacterium in the damage formation are discussed.  相似文献   

7.
The ability to parasitise Sclerotinia sclerotiorum and the effect on apothecia production was evaluated for the following antagonists: Trichoderma harzianum; Trichoderma koningii; Gliocladium roseum and Chaetomium globosum. Plastic trays were filled with of steam-sterilized soil. Each one of them was infested with sclerotia of S. sclerotiorum and the culture of the antagonists. The trays were kept in a greenhouse and after 30, 60 and 90 days, evaluations were made. The rates of carpogenic germination, myceliogenic germination, mycoparasitism and destruction were evaluated. To assess carpogenic germination, the sclerotia were put in a growth chamber over moistened filter paper at 20 -/+ 2 degrees C and 12 light hours. The rates of myceliogenic germination and mycoparasitism were evaluated on Petri dishes with 2% APD. Antagonists effect on carpogenic germination was observed one month after the start of the assay. In the evaluation made at 60 and 90 days, T. harzianum; T. koningii and G. roseum kept inhibitory properties. Such inhibition was not observed in the trays containing C. globosum. In the evaluations made at 30 days, mycoparasitism rate was high in the trays with T. harzianum; T. koningii and G. roseum. G. roseum and T. harzianum destroy S. sclerotiorum sclerotia.  相似文献   

8.
Sclerotinia sclerotiorum is a highly aggressive pathogen that causes great economic losses, especially in temperate climates. Several biological control agents are available, but actinobacteria have seldom been used to control this fungus. Our objective was to evaluate the efficiency and ultrastructural effects of the secondary metabolites produced by the ant-associated actinobacterium Propionicimonas sp. ENT-18 in controlling the sclerotia of S. sclerotiorum. We demonstrated total inhibition of sclerotia treated with 62.5 μg/10 μl of an ethyl acetate extract of compounds produced by ENT-18, and calculated an LC50 of 1.69 μg/sclerotia. Histological and ultrastructural analysis indicated that the cells of the treated sclerotia were severely damaged, suggesting direct action of the biomolecule(s) produced by the actinobacterium ENT-18 on the cell structure of the medullae and rind cell wall. This is the first report demonstrating a novel property of Propionicimonas sp.—antifungal activity against S. sclerotiorum.  相似文献   

9.
10.
Wheat, Triticum aestivum L., varietal resistance to the lesser grain borer, Rhyzopertha dominica (F), was evaluated in hard spring wheat produced in 2001 and 2002 (Bozeman, Moccasin, and Huntley, MT). We tested the hypothesis that seed coat factors, not the endosperm, cause feeding resistance to R. dominica and that this resistance is genetic, not affected by agronomic conditions. Using a rapid, intensive feeding bioassay (frass production), we found, with one exception, no significant difference in resistance to R. dominica, among sound kernels of hard red wheat, comparing all locations and cultural conditions (irrigated versus dryland production). The most significantly resistant samples as indicated by lowest feeding activity (measured by lowest frass production) were 'Amidon' produced at Moccasin under dryland conditions and Amidon produced at Huntley under irrigated conditions. As with previous studies done in our laboratory, sound kernels of all hard wheat varieties from these new crop year studies (2001, 2002) were attacked. When subsamples of these varieties from the same locations and cultural conditions as the previous test were first subjected to a heavy infestation of Plodia interpunctella (Hübner) and then to the same age adult R. dominica, damage was significantly greater. Each kernel chosen for this test had been equally damaged by P. interpunctella larvae, germ consumed, endosperm not damaged, but fully exposed behind germ, no other damage. This collaborative damage caused feeding damage by R. dominica to increase 2- to 7.5-fold (as measured by R. dominica frass production). Particularly notable was 'McNeal' that switched from one of the most resistant varieties to the most fed upon, when the endosperm was exposed by P. interpunctella larvae. Therefore, we confirmed that at least one factor conferring resistance in McNeal is located in the kernel pericarp.  相似文献   

11.
Summary Sclerotinia sclerotiorum (Lib.) D By. was grown in stationary liquid mineral-salts medium, pH 4.3, containing various carbon sources and the weight of mycelia and sclerotia was determined at regular intervals. When grown on various glucose concentrations (0–24 g of C/l), more sclerotia were produced at 8–12 g of C/l. Sclerotia were not usually formed in shake cultures. The ability of the fungus to use other carbon sources for growth and sclerotium formation was tested at 12 g of C/l in the stationary mineral-salts medium. The highest weights of mycelia and sclerotia occurred with raffinose, sucrose, maltose, lactose, d-mannose, d-glucose, d-fructose or l-arabinose. Good growth but decreased sclerotium production were found on cellobiose and d-xylose. Reduced or poor growth, a long lag period and few or no sclerotia occurred on trehalose, melibiose, l-sorbose, l-rhamnose, d-ribose, d-arabinose, l-xylose or 8 polyols. No growth was observed with erythritol or i-inositol. A combination of glucose plus trehalose or polyols resulted in increased growth and the formation of sclerotia. Organic acids supported little or no growth and no sclerotia were produced. Generally culture filtrates which supported growth and formation of sclerotia became acid (about pH 3.5). The pH of the culture filtrate usually increased slowly during the growth period when the fungus grew poorly and no sclerotia were formed. The alcoholsoluble sugars and polyols present in culture filtrates, mycelia and sclerotia were determined by paper and thin-layer chromatography. Regardless of the carbon source, mannitol was usually present in culture filtrates. The occurrence of other compounds in the filtrates depended on the carbon source. Trehalose, mannitol and usually small quantities of glucose or fructose were present in mycelia and sclerotia from all carbon sources. Galactitol or pentitols occurred in mycelia and sclerotia when the fungus grew on galactose and oligosaccharides containing galactose or the corresponding pentose, sugars. Acid hydrolyzates of the alcohol-insoluble fraction of mycelia or sclerotia contained glucose, smaller amounts of galactose and mannose and traces of ribose and rhamnose.  相似文献   

12.
Studies were conducted to determine the effects of soil moisture (9, 16 or 24% w/w) and temperature (5, 15, 20 or 25°C) on the control of sclerotia of Sclerotinia sclerotiorum by five fungal agents in sterile and natural field soil. All five biocontrol agents were effective in reducing the survival of sclerotia of S. sclerotiorum in sterile soil under dry (9% moisture) or wet (24% moisture) conditions at 20°C, but only Coniothyrium minitans was effective in natural soil. Coniothyrium minitans was the most effective in reducing sclerotial viability at the temperature range of 15–25°C. Trichoderma virens was effective against sclerotia of S. sclerotiorum to a lesser extent than C. minitans , and in non-autoclaved soil, it performed best at 25°C. Although Epicoccum purpurascens , Talaromyces flavus and Trichothecium roseum were effective against sclerotia of S. sclerotiorum in some instances, they were less effective than C. minitans and T. virens . Sclerotia of S. sclerotiorum conditioned for myceliogenic germination were more vulnerable to attack by the biocontrol agents than dormant sclerotia. The implications are discussed with respect to enhancement of biological control of crop diseases caused by S. sclerotiorum in different geographic regions.  相似文献   

13.
Herbivorous insects may be informed about the presence of competitors on the same host plant by a variety of cues. These cues can derive from either the competitor itself or the damaged plant. In the mustard leaf beetle Phaedon cochleariae (Coleoptera, Chrysomelidae), adults are known to be deterred from feeding and oviposition by the exocrine glandular secretion of conspecific co-occurring larvae. We hypothesised that the exocrine larval secretion released by feeding larvae may adsorb to the surface of Chinese cabbage leaves, and thus, convey the information about their former or actual presence. Further experiments tested the influence of leaves damaged by conspecific larvae, mechanically damaged leaves, larval frass and regurgitant on the oviposition and feeding behaviour of P. cochleariae. Finally, the effect of previous conspecific herbivory on larval development and larval host selection was assessed. Our results show that (epi)chrysomelidial, the major component of the exocrine secretion from P. cochleariae larvae, was detectable by GC-MS in surface extracts from leaves upon which larvae had fed. However, leaves exposed to volatiles of the larval secretion were not avoided by female P. cochleariae for feeding or oviposition. Thus, we conclude that secretion volatiles did not adsorb in sufficient amounts on the leaf surface to display deterrent activity towards adults. By contrast, gravid females avoided to feed and lay their eggs on leaves damaged by second-instar larvae for three days when compared to undamaged leaves. Mechanical damage of leaves and treatment of artificially damaged leaves with larval frass or regurgitant did not affect oviposition and feeding of P. cochleariae. Since no adverse effects of previous herbivory on larval development were detected, we suggest that female P. cochleariae avoid Chinese cabbage leaves damaged by feeding larvae for other reasons than escape from competition or avoidance of direct negative effects that result from consuming induced plant material.  相似文献   

14.
为阐明转cry1Ab/cry1Ac基因水稻对大螟Sesamia inferens (Walker)作用的生理生化机制, 本研究用转cry1Ab/cry1Ac基因水稻茎秆饲喂大螟3龄和5龄幼虫, 采用酶活性测定方法研究了取食转Bt水稻对大螟幼虫体内3种保护酶SOD(superoxide dismutase)、 CAT(catalase)和POD(peroxidase)活性的影响。结果表明, 大螟3龄幼虫在取食转基因水稻24 h后SOD活性与对照相比提高了43.44%, 48 h后降至最低值; 在取食24 h后POD值达到最高值, 其酶活性比对照升高了29.22%, 最终在取食48 h后降至最低值, 并显著低于对照; 在取食转基因水稻4 h后, CAT活性升高了30.33%, 在取食48 h后, 与对照相比, CAT活性降低了27.01%; 5龄幼虫取食4 h后SOD活性显著高于对照水平, 36 h后降至最低值, 与对照相比, 活性下降了31.62%; 在取食8 h后POD活性达到最高值, 与对照相比, 升高了73.20%, 36 h后酶活性降至最低值; 在取食之初4 h CAT活性达到最高值, 与对照相比, 其值升高了75.73%, 在取食48 h后, 其活性与对照相比减少了7.55%。3龄幼虫与5龄幼虫相比, 对Bt的抗性水平较低, 自身防卫能力较差。结果说明, 在取食初期, 试虫体内保护酶活性升高, 以抵御Bt毒蛋白对虫体的伤害作用, 随着取食时间的延长, 保护酶活性迅速降低, 从而干扰虫体正常的代谢过程, 导致虫体出现中毒症状, 致使昆虫死亡。  相似文献   

15.
The use of genetically modified (Bt) crops expressing lepidopteran-specific Cry proteins derived from the soil bacterium Bacillus thuringiensis is an effective method to control the polyphagous pest Helicoverpa armigera. As H. armigera potentially develops resistance to Cry proteins, Bt crops should be regarded as one tool in integrated pest management. Therefore, they should be compatible with biological control. Bioassays were conducted to understand the interactions between a Cry2Aa-expressing chickpea line, either a susceptible or a Cry2A-resistant H. armigera strain, and the entomopathogenic fungus Metarhizium anisopliae. In a first concentration-response assay, Cry2A-resistant larvae were more tolerant of M. anisopliae than susceptible larvae, while in a second bioassay, the fungus caused similar mortalities in the two strains fed control chickpea leaves. Thus, resistance to Cry2A did not cause any fitness costs that became visible as increased susceptibility to the fungus. On Bt chickpea leaves, susceptible H. armigera larvae were more sensitive to M. anisopliae than on control leaves. It appeared that sublethal damage induced by the B. thuringiensis toxin enhanced the effectiveness of M. anisopliae. For Cry2A-resistant larvae, the mortalities caused by the fungus were similar when they were fed either food source. To examine which strain would be more likely to be exposed to the fungus, their movements on control and Bt chickpea plants were compared. Movement did not appear to differ among larvae on Bt or conventional chickpeas, as indicated by the number of leaflets damaged per leaf. The findings suggest that Bt chickpeas and M. anisopliae are compatible to control H. armigera.  相似文献   

16.
Feeding experiments with larvae of Spodoptera littoralis were performed with leaves from cotton plants subjected to damage and from undamaged plants. In the experiments, four different time intervals (1, 3, 7, and 14 days) after damage induction and two different levels (high and low) of herbivore damage were tested. Seven days after damage induction larvae fed less on the young top leaves from damaged plants for both levels of damage. At the high damage level, the larvae fed less on leaves from the damaged plants after just three days, and this effect still remained 14 days after damage infliction. When mature leaves from the middle of the plant were compared, no difference between treatments was observed.Two plant sizes were tested, small plants with 4–5 true leaves and large plants with 8–10 true leaves. In small plants the induced changes affecting larval feeding were found mainly in the youngest leaf at the top of the plant, while in large plants the induced effects were found in both the youngest and the second youngest leaves.In plants subjected to artificial damage, larvae fed less on top leaves of the damaged plants when compared to leaves from undamaged plants. When leaves from plants that had been artificially damaged were directly compared with leaves from plants damaged by herbivores, larvae fed more on the youngest leaves from artificially damaged plants when the plants were large. In small plants no significant difference was found when comparing artificial and herbivore damage.  相似文献   

17.
Sclerotinia sclerotiorum survived in infected seeds of white beans as dormant mycelium in testa and cotyledons. The rate of survival averaged 85 to 89% and did not change appreciably over a 3-year period. When the infected bean seeds were sown in soil or sand, 88 to 100% failed to germinate. The seeds that failed to germinate, depending on the severity of seed infection, were rotted by S. sclerotiorum. In place of each seed, 3 to 6 sclerotia were formed. A low percentage of these sclerotia germinated carpogenically with or without preconditioning, (2.5 and 11.5% respectively). Myceliogenic germination of sclerotia with and without preconditioning was 35.5% and 70.5% on water agar and 81.0% and 93.0% on glucose agar, respectively. Both, preconditioning and nonpreconditioned sclerotia which were scattered on soil surface could germinate myceliogenically and infect bean leaves by contact. It is therefore, concluded that dormant mycelia in the infected seeds play an important role notonly in dissemination of the fungus but also in epidemiology of the disease.  相似文献   

18.
【目的】小金蝠蛾Thitarodes xiaojinensis是冬虫夏草菌Ophiocordyceps sinensis的寄主昆虫,生活于高海拔、高寒地区,低温适应性强,但在室温下(25~27℃)不能正常存活。本研究检测了热胁迫(27℃)对小金蝠蛾幼虫消化酶及抗氧化系统的影响,以期揭示小金蝠蛾室温不耐受的生理机制。【方法】小金蝠蛾8龄幼虫分两组进行处理:高温组于27℃下饲养,对照组于16℃下饲养。处理24 h后观察虫体状态,并解剖,取中肠及血淋巴。透射电镜观察中肠细胞线粒体结构,分别测定中肠总蛋白酶和糖基水解酶活性,血淋巴丙二醛(MDA)含量,以及血淋巴保护酶系中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)的活性。【结果】两组幼虫中肠总蛋白酶及糖基水解酶活性均随反应温度(16~37℃)升高而增强。协方差分析显示,高温组幼虫酶活性极显著低于对照组(P<0.01)。然而,高温组幼虫在27℃下的酶活性与对照组幼虫在16℃下的酶活性无显著差异(P<0.05)。热胁迫下虫体血淋巴中丙二醛含量显著升高(P<0.05),提示出现了氧化损伤。透射电镜结果显示,高温组中肠细胞线粒体肿胀,膜受损,嵴排列混乱,结构破坏。对活性氧起清除作用的3种保护酶中,仅POD活性显著升高(P<0.05),SOD和CAT活性均无显著变化(P>0.05)。【结论】消化酶活性的变化可能不是小金蝠蛾室温不耐受的重要因素;氧化损伤是其热胁迫下不能正常存活的一个重要原因。  相似文献   

19.
Abstract. 1. The effect of previous damage on the suitability of willow ( Mix bubylonicu and S.ulbu 'Tristis') leaves as food for the imported willow leaf beetle, Plugiodera versicoloru Laich. (Coleoptera: Chrysomelidae), was evaluated by feeding adults and larvae leaves from damaged and undamaged branchlets.
2. Females had lower fecundity when fed leaves from artificially damaged branchlets of S.ufba 'Tristis'. A similar result was obtained when beetles ate leaves from naturally damaged branchlets of S.babylonica .
3. Feeding preference tests suggest that the reductions in leaf suitability were not due to adults avoiding damaged leaves as a food source.
4. PZugiodera versicolora larvae required longer to develop and attained a lower adult weight when fed leaves from damaged branchlets.
5. Changes in leaf suitability brought about by herbivore feeding may affect the seasonal abundance of P.versicoloru on its willow hosts.  相似文献   

20.
We investigated the potential of two natural enemies of Heliothis virescens (F.) (Noctuidae) to affect its rate of adaptation to tobacco containing Bacillus thuringiensis Berliner toxin. Larval fitness of two laboratory strains of H. virescens, one adapted to B. thuringiensis toxin and one not adapted, was compared on toxic and nontoxic plants, in the presence of the parasitoid Campoletis sonorensis (Cameron) (Ichneumonidae) or the entomopathogenic fungus Nomuraea rileyi (Farlow) Samson. By exposing larvae to plants and enemies for no more than 24 h, we focussed on the behavioral rather than physiological component of their interaction with toxic plants and natural enemies. Parasitism of H. virescens larvae by C. sonorensis during exposure periods of 1–4 h was lower on toxic plants than nontoxic plants and was lower for nonadapted larvae than for toxin-adapted larvae. Decreased larval feeding damage on toxic versus nontoxic plants, and by nonadapted versus adapted larvae, may explain differences in parasitism, because C. sonorensis locates host larvae using cues from damaged plants. Effects of plant toxicity and larval strain on H. virescens survival were numerically consistent with effects on parasitism, but they were not statistically significant. When mean larval survival is used to estimate fitness of the nonadapted genotype relative to the toxin-adapted genotype, we find that C. sonorensis is expected to delay adaptation to toxic plants. Percent infection by N. rileyi of H. virescens larvae exposed to fungus-treated plants for 24 h was greater when plants were toxic, and was greater for nonadapted larvae than toxin-adapted larvae. There were corresponding decreases in larval survival on toxic compared to nontoxic plants, and of nonadapted compared to adapted larvae. Interaction of effects of plant line and larval strain on survival was significant in the presence of fungus, but not in the absence of fungus, which indicates that the effect of toxic plants on the relative fitness of toxin-adapted and nonadapted larvae was mediated by fungus. As in the interaction with C. sonorensis, behavior of larvae on plants may explain differences in susceptibility to N. rileyi. Because nonadapted larvae moved more than toxin-adapted larvae on toxic plants, nonadapted larvae may have been more likely to encounter a lethal dose of conidia. In contrast with C. sonorensis, N. rileyi, which decreased the fitness of the nonadapted genotype relative to the adapted genotype, is expected to accelerate adaptation to toxic plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号