首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ubiquinone (or coenzyme Q) is a lipid component of the respiratory chain in the inner mitochondrial membrane, in which it functions in electron transport. Recent reports show that ubiquinone and ubiquinone biosynthetic enzymes are present in both mitochondrial and nonmitochondrial membranes of cells (Kalen, A., Appelkvist, E.-L., Chojnacki, T., and Dallner, G. (1990) J. Biol. Chem. 265, 1158-1164) although the functions that ubiquinone may play outside of the mitochondrion are not understood. To study coenzyme Q synthesis and function we cloned the 3,4-dihydroxy-5-hexaprenylbenzoate (DHHB) methyltransferase gene by functional complementation of a yeast coenzyme Q mutant strain, defective in the COQ3 gene (Tzagoloff, A., and Dieckmann, C. L. (1990) Microbiol. Rev. 54, 211-225). This gene restores both coenzyme Q synthesis in the mutant strain and the ability to grow on media containing glycerol, a nonfermentable substrate. A one-step in situ gene replacement with the cloned DHHB methyltransferase DNA directs integration to the yeast COQ3 locus on chromosome XV of Saccharomyces cerevisiae, establishing that the COQ3 locus encodes the DHHB methyltransferase structural gene. The predicted amino acid sequence of the yeast DHHB methyltransferase contains a methyltransferase consensus sequence and shows a 40% identity with an open reading frame of Escherichia coli, the gyrA5' hypothetical protein. This open reading frame is adjacent to the gyrA gene and close to the mapped location of the ubiG gene at 48 min on the E. coli chromosome. These results suggest that the E. coli gyrA5' open reading frame encodes a methyltransferase and may correspond to the ubiG gene, which is required for ubiquinone biosynthesis.  相似文献   

2.
3.
The COQ3 gene in Saccharomyces cerevisiae encodes an O-methyltransferase required for two steps in the biosynthetic pathway of ubiquinone (coenzyme Q, or Q). This enzyme methylates an early Q intermediate, 3,4-dihydroxy-5-polyprenylbenzoic acid, as well as the final intermediate in the pathway, converting demethyl-Q to Q. This enzyme is also capable of methylating the distinct prokaryotic early intermediate 2-hydroxy-6-polyprenyl phenol. A full-length cDNA encoding the human homologue of COQ3 was isolated from a human heart cDNA library by sequence homology to rat Coq3. The clone contained a 933-base pair open reading frame that encoded a polypeptide with a great deal of sequence identity to a variety of eukaryotic and prokaryotic Coq3 homologues. In the region between amino acids 89 and 255 in the human sequence, the rat and human homologues are 87% identical, whereas human and yeast are 35% identical. When expressed in multicopy, the human construct rescued the growth of a yeast coq3 null mutant on a nonfermentable carbon source and restored coenzyme Q biosynthesis, although at lower levels than that of wild type yeast. In vitro methyltransferase assays using farnesylated analogues of intermediates in the coenzyme Q biosynthetic pathway as substrates showed that the human enzyme is active with all three substrates tested.  相似文献   

4.
A cDNA encoding farnesyl diphosphate synthase, an enzyme that synthesizes C15 isoprenoid diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate, was cloned from an Arabidopsis thaliana cDNA library by complementation of a mutant of Saccharomyces cerevisiae deficient in this enzyme. The A. thaliana cDNA was also able to complement the lethal phenotype of the erg20 deletion yeast mutant. As deduced from the full-length 1.22 kb cDNA nucleotide sequence, the polypeptide contains 343 amino acids and has a relative molecular mass of 39689. The predicted amino acid sequence presents about 50% identity with the yeast, rat and human FPP synthases. Southern blot analyses indicate that A. thaliana probably contains a single gene for farnesyl diphosphate synthase.  相似文献   

5.
Coq5 catalyzes the only C-methylation involved in the biosynthesis of coenzyme Q (Q or ubiquinone) in humans and yeast Saccharomyces cerevisiae. As one of eleven polypeptides required for Q production in yeast, Coq5 has also been shown to assemble with the multi-subunit complex termed the CoQ-synthome. In humans, mutations in several COQ genes cause primary Q deficiency, and a decrease in Q biosynthesis is associated with mitochondrial, cardiovascular, kidney and neurodegenerative diseases. In this study, we characterize the human COQ5 polypeptide and examine its complementation of yeast coq5 point and null mutants. We show that human COQ5 RNA is expressed in all tissues and that the COQ5 polypeptide is associated with the mitochondrial inner membrane on the matrix side. Previous work in yeast has shown that point mutations within or adjacent to conserved COQ5 methyltransferase motifs result in a loss of Coq5 function but not Coq5 steady state levels. Here, we show that stabilization of the CoQ-synthome within coq5 point mutants or by over-expression of COQ8 in coq5 null mutants permits the human COQ5 homolog to partially restore coq5 mutant growth on respiratory media and Q6 content. Immunoblotting against the human COQ5 polypeptide in isolated yeast mitochondria shows that the human Coq5 polypeptide migrates in two-dimensional blue-native/SDS-PAGE at the same high molecular mass as other yeast Coq proteins. The results presented suggest that human and Escherichia coli Coq5 homologs expressed in yeast retain C-methyltransferase activity but are capable of rescuing the coq5 yeast mutants only when the CoQ-synthome is assembled.  相似文献   

6.
The tRNA of most organisms contain modified adenines called cytokinins. Situated next to the anticodon, they have been shown to influence translational fidelity and efficiency. The enzyme that synthesizes cytokinins on pre-tRNA, tRNA isopentenyltransferase (EC 2.5.1.8), has been studied in micro-organisms like Escherichia coli and Saccharomyces cerevisiae, and the corresponding genes have been cloned. We here report the first cloning and functional characterization of a homologous gene from a plant, Arabidopsis thaliana. Expression in S. cerevisiae showed that the gene can complement the anti-suppressor phenotype of a mutant that lacks MOD5, the intrinsic tRNA isopentenyltransferase gene. This was accompanied by the reintroduction of isopentenyladenosine in the tRNA. The Arabidopsis gene is constitutively expressed in seedling tissues.  相似文献   

7.
8.
AnArabidopsis thaliana cDNA was isolated by complementation of theEscherichia coli mutant strain BW535 (xth, nfo, nth), which is defective in DNA base excision repair pathways. This cDNA partially complements the methyl methane sulfonate (MMS) sensitive phenotype of BW535. It also partially corrects the UV-sensitive phenothpe ofE. coli AB1886 (uvrA) and restores its ability to reactivate UV-irradiated phage. It has an insert of ca. 1.3 kb with an open reading frame of 1047 bp (predicting a protein with a molecular mass of 36 kDa). This cDNA presents a high homology to a stress related gene from two species ofFusarium (sti35) and to genes whose products participate in the thiamine biosynthesis pathway,THI4, fromSaccharomyces cerevisiae andnmt2 fromSchizosaccharomyces pombe. TheArabidopsis predicted polypeptide has homology to several protein motifs: amino-terminal chloroplast transit peptide, dinucleotide binding site, DNA binding and bacterial DNA polymerases. The auxotrophy for thiamine in the yeastthi4::URA3 disruption strain is complemented by theArabidopsis gene. Thus, the cloned gene, namedthi1, is likely to function in the biosynthesis of thiamine in plants. The data presented in this work indicate thatthi1 may also be involved in DNA damage tolerance in plant cells.Depto. de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo  相似文献   

9.
Mutations in the Caenorhabditis elegans gene clk-1 have a major effect on slowing development and increasing life span. The Saccharomyces cerevisiae homolog COQ7 encodes a mitochondrial protein involved in ubiquinone biosynthesis and, hence, is required for respiration and gluconeogenesis. In this study, RT-PCR and 5′ RACE were used to isolate both human and mouse clk-1/COQ7 homologs. Human CLK-1 was mapped to Chr 16(p12–13.1) by Radiation Hybrid (RH) and fluorescence in situ hybridization (FISH) methods. The number and location of human CLK1 introns were determined, and the location of introns II and IV are the same as in C. elegans. Northern blot analysis showed that three different isoforms of CLK-1 mRNA are present in several tissues and that the isoforms differ in the amount of expression. The functional equivalence of human CLK-1 to the yeast COQ7 homolog was tested by introducing either a single or multicopy plasmid containing human CLK-1 cDNA into yeast coq7 deletion strains and assaying for growth on a nonfermentable carbon source. The human CLK-1 gene was able to functionally complement yeast coq7 deletion mutants. The protein similarities and the conservation of function of the CLK-1/clk-1/COQ7 gene products suggest a potential link between the production of ubiquinone and aging. Received: 15 March 1999 / Accepted 11 June 1999  相似文献   

10.
DDL1 encodes a mitochondrial phospholipase A1 involved in acyl chain remodeling of mitochondrial phospholipids and degradation of cardiolipin in Saccharomyces cerevisiae. The deletion of DDL1 leads to respiratory growth defects. To elucidate the physiological role of DDL1, we screened for genes that, when overexpressed, suppress the respiratory growth defect of the DDL1 deletion mutant. Introduction of COQ8, COQ9, or COQ5, which are involved in coenzyme Q (CoQ) synthesis, using a multicopy vector suppressed the respiratory growth defect of the DDL1 deletion mutant. In contrast, introduction of COQ8 using a multicopy vector did not accelerate the growth of the deletion mutants of TAZ1 or CLD1, which encode an acyltransferase or phospholipase A2, respectively, involved in the remodeling of cardiolipin. These results suggest genetic interactions between the mitochondrial phospholipase A1 gene and the genes involved in CoQ synthesis.  相似文献   

11.
We have characterized a second nuclear gene (tufM) in Arabidopsis thaliana that encodes a eubacterial-like protein synthesis elongation factor Tu (EF-Tu). This gene does not closely resemble the previously described Arabidopsis nuclear tufA gene, which encodes the plastid EF-Tu, and does not contain sequence elements found in all cyanobacterial and plastid tufA genes. However, the predicted amino acid sequence includes an N-terminal extension which resembles an organellar targeting sequence and shares three unique sequence elements with mitochondrial EF-Tu's, from Saccharomyces cerevisiae and Homo sapiens, suggesting that this gene encodes the Arabidopsis mitochondrial EF-Tu. Consistent with this interpretation, the gene is expressed at a higher level in flowers than in leaves. Phylogenetic analysis confirms the mitochondrial character of the sequence and indicates that the human, yeast, and Arabidopsis tufM genes have undergone considerably more sequence divergence than their cytoplasmic counterparts, perhaps reflecting a cross-compartmental acceleration of gene evolution for components of the mitochondrial translation apparatus. As previously observed for tufA, the tufM gene is present in one copy in Arabidopsis but in several copies in other species of crucifers.  相似文献   

12.
Coenzyme Q (Q or ubiquinone) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail and is required for mitochondrial electron transport. In the yeast Saccharomyces cerevisiae, Q is synthesized by the products of 11 known genes, COQ1–COQ9, YAH1, and ARH1. The function of some of the Coq proteins remains unknown, and several steps in the Q biosynthetic pathway are not fully characterized. Several of the Coq proteins are associated in a macromolecular complex on the matrix face of the inner mitochondrial membrane, and this complex is required for efficient Q synthesis. Here, we further characterize this complex via immunoblotting and proteomic analysis of tandem affinity-purified tagged Coq proteins. We show that Coq8, a putative kinase required for the stability of the Q biosynthetic complex, is associated with a Coq6-containing complex. Additionally Q6 and late stage Q biosynthetic intermediates were also found to co-purify with the complex. A mitochondrial protein of unknown function, encoded by the YLR290C open reading frame, is also identified as a constituent of the complex and is shown to be required for efficient de novo Q biosynthesis. Given its effect on Q synthesis and its association with the biosynthetic complex, we propose that the open reading frame YLR290C be designated COQ11.  相似文献   

13.
Two distinct cDNAs encoding protein synthesis initiation factor 4A (eIF-4A) were isolated from an Arabidopsis thaliana cDNA library and sequenced. The deduced amino acid sequences from the two cDNAs were compared to eIF-4A from tobacco, mouse and Saccharomyces cerevisiae. The putative ATP-binding sites and RNA helicase motifs were identified.  相似文献   

14.
This paper presents the first example of a complete gene sequence coding for and expressing a biologically functional human tRNA methyltransferase: the hTRM1 gene product tRNA(m22G)dimethyltransferase. We isolated a human cDNA (1980 bp) made from placental mRNA coding for the full-length (659 amino acids) human TRM1 polypeptide. The sequence was fairly similar to Saccharomyces cerevisiae Trm1p, to Caenorhabditis elegans TRM1p and to open reading frames (ORFs) found in mouse and a plant (Arabidopsis thaliana) DNA. The human TRM1 gene was expressed at low temperature in Escherichia coli as a functional recombinant protein, able to catalyze the formation of dimethylguanosine in E.coli tRNA in vivo. It targeted solely position G26 in T7 transcribed spliced and unspliced human tRNATyr in vitro and in yeast trm1 mutant tRNA. Thus, the human TRM1 protein is a tRNA(m22G26)dimethyltransferase. Compared with yeast Trm1p, hTRM1p has a C-terminal protrusion of ~90 amino acids which shows similarities to a mouse protein related to RNA splicing. A deletion of these 90 C-terminal amino acids left the modification activity in vitro intact. Among point mutations in the hTRM1 gene, only those located in conserved regions of hTRM1p completely eliminated modification activity.  相似文献   

15.
The mitochondrial intermediate peptidase ofSaccharomyces cerevisiae(YMIP) is a component of the yeast mitochondrial protein import machinery critically involved in the biogenesis of the oxidative phosphorylation (OXPHOS) system. This leader peptidase removes specific octapeptides from the amino terminus of nuclear-encoded OXPHOS subunits and components of the mitochondrial genetic apparatus. To address the biologic role of the human peptidase [MIPEP gene, HMIP polypeptide], we have initiated its molecular and functional characterization. A full-length cDNA was isolated by screening a human liver library using a rat MIP (RMIP) cDNA as a probe. The encoded protein contained a typical mitochondrial leader peptide and showed 92 and 54% homology to RMIP and YMIP, respectively. A survey of human mitochondrial protein precursors revealed that, similar to YMIP, HMIP is primarily involved in the maturation of OXPHOS-related proteins. Northern analysis showed that the MIPEP gene is differentially expressed in human tissues, with the highest levels of expression in the heart, skeletal muscle, and pancreas, three organ systems that are frequently affected in OXPHOS disorders. Using fluorescencein situhybridization, the MIPEP locus was assigned to 13q12. This information offers the possibility of testing the potential involvement of HMIP in the pathophysiology of nuclear-driven OXPHOS disorders.  相似文献   

16.
It is believed that phosphatidylinositol (PI) metabolism plays a central role in signalling pathways in both animals and higher plants. PI is synthesized from CDP-diacylglycerol (CDP-DG) and myo-inositol by phosphatidylinositol synthase (PI synthase, EC 2.7.8.11). Here we report the identification of a plant cDNA (AtPIS1) encoding a 26 kDa PI synthase from Arabidopsis thaliana. The plant enzyme as deduced from its cDNA sequence shares 35–41% identical amino acids with PI synthases from Saccharomyces cerevisiae and mammals. AtPIS1 functionally complements a mutant of S. cerevisiae with a lesion in PI synthase, and recombinant AtPIS1 protein present in yeast membranes strongly depends on the two principal substrates, myo-inositol and CDP-DG, and requires Mg2+ ions for full activity.  相似文献   

17.
AtJ1, a mitochondrial homologue of theEscherichia coli DnaJ protein   总被引:1,自引:0,他引:1  
The nucleotide sequence of a cDNA clone fromArabidopsis thaliana ecotype Columbia was determined, and the corresponding amino sequence deduced. The open reading frame encodes a protein, AtJ1, of 368 residues with a molecular mass of 41 471 Da and an isoelectric point of 9.2. The predicted sequence contains regions homologous to the J- and cysteine-rich domains ofEscherichia coli DnaJ, but the glycine/phenylalanine-rich region is not present. Based upon Southern analysis,Arabidopsis appears to have a singleatJ1 structural gene. A single species of mRNA, of 1.5 kb, was detected whenArabidopsis poly(A)+ RNA was hybridized with theatJ1 cDNA. The function ofatJ1 was tested by complementation of adnaJ deletion mutant ofE. coli, allowing growth in minimal medium at 44°C. The AtJ1 protein was expressed inE. coli as a fusion with the maltose binding protein. This fusion protein was purified by amylose affinity chromatography, then cleaved by digestion with the activated factor X protease. The recombinant AtJ1 protein was purified to electrophoretic homogeneity.In vitro, recombinant AtJ1 stimulated the ATPase activity of bothE. coli DnaK and maize endosperm cytoplasmic Stress70. The deduced amino acid sequence of AtJ1 contains a potential mitochondrial targeting sequence at the N-terminus. Radioactive recombinant AtJ1 was synthesized inE. coli and purified. When the labeled protein was incubated with intact pea cotyledon mitochondria, it was imported and proteolytically processed in a reaction that depended upon an energized mitochondrial membrane.Abbreviations MBP maltose binding protein - PCR polymerase chain reaction - Stress70c the cytosolic member of the 70 kDA family of stress-related proteins  相似文献   

18.
Primary ubiquinone (co‐enzyme Q) deficiency results in a wide range of clinical features due to mitochondrial dysfunction. Here, we analyse and characterize two mutations in the ubiquinone biosynthetic gene COQ7. One mutation from the only previously identified patient (V141E), and one (L111P) from a 6‐year‐old girl who presents with spasticity and bilateral sensorineural hearing loss. We used patient fibroblast cell lines and a heterologous expression system to show that both mutations lead to loss of protein stability and decreased levels of ubiquinone that correlate with the severity of mitochondrial dysfunction. The severity of L111P is enhanced by the particular COQ7 polymorphism (T103M) that the patient carries, but not by a mitochondrial DNA mutation (A1555G) that is also present in the patient and that has been linked to aminoglycoside‐dependent hearing loss. We analysed treatment with the unnatural biosynthesis precursor 2,4‐dihydroxybenzoate (DHB), which can restore ubiquinone synthesis in cells completely lacking the enzymatic activity of COQ7. We find that the treatment is not beneficial for every COQ7 mutation and its outcome depends on the extent of enzyme activity loss.  相似文献   

19.
Using an Arabidopsis thaliana expressed sequence tag with sequence similarity to human lysosomal α-glucosidase as a probe, a potato cDNA was isolated. The cDNA encodes a polypeptide with an Mr value of 105,400 and the most significant matches of the deduced amino acid sequence are with members of family 31 of glucosyl transferase. The potato cDNA was expressed in a strain of Saccharomyces cerevisiae that is deficient in maltase activity and unable to grow using maltose as a carbon source (ABYSMAL81). Expression of the potato cDNA in the mutant yeast strain restores its ability to use maltose as a carbon source for growth. Additionally, α-glucosidase activity could be measured in extracts of the yeast cells following complementation. A range of maltodextrins were substrates for this activity. The steady-state expression level of the potato α-glucosidase gene was low in most tissues examined, the highest levels occurring in sprouting tubers and source leaves.  相似文献   

20.
An Arabidopsis thaliana cDNA clone, AtTPS1, that encodes a trehalose-6-phosphate synthase was isolated. The identity of this protein is supported by both structural and functional evidence. On one hand, the predicted sequence of the protein encoded by AtTPS1 showed a high degree of similarity with trehalose-6-phosphate synthases of different organisms. On the other hand, expression of the AtTPS1 cDNA in the yeast tps1 mutant restored its ability to synthesize trehalose and suppressed its growth defect related to the lack of trehalose-6-phosphate. Genomic organization and expression analyses suggest that AtTPS1 is a single-copy gene and is expressed constitutively at very low levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号