首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Components of excitation-contraction (EC)-coupling were compared at 37 degrees C and 22 degrees C to determine whether hypothermia altered the gain of EC coupling in guinea pig ventricular myocytes. Ca(2+) concentration (fura-2) and cell shortening (edge detector) were measured simultaneously. Hypothermia increased fractional shortening (8.3 +/- 1.7 vs. 2.6 +/- 0.3% at 37 degrees C), Ca(2+) transients (157 +/- 33 vs. 35 +/- 5 nM at 37 degrees C), and diastolic Ca(2+) (100 +/- 9 vs. 60 +/- 6 nM at 37 degrees C) in field-stimulated myocytes (2 Hz). In experiments with high-resistance microelectrodes, the increase in contractions and Ca(2+) transients was accompanied by a twofold increase in action potential duration (APD). When voltage-clamp steps eliminated changes in APD, cooling still increased contractions and Ca(2+) transients. Hypothermia increased sarcoplasmic reticulum (SR) Ca(2+) stores (83 +/- 17 at 37 degrees C to 212 +/- 50 nM, assessed with caffeine) and increased fractional SR Ca(2+) release twofold. In contrast, peak Ca(2+) current was much smaller at 22 degrees C than at 37 degrees C (1.3 +/- 0.4 and 3.5 +/- 0.7 pA/pF, respectively). In cells dialyzed with sodium-free pipette solutions to inhibit Ca(2+) influx via reverse-mode Na(+)/Ca(2+) exchange, hypothermia still increased contractions, Ca(2+) transients, SR stores, and fractional release but decreased the amplitude of Ca(2+) current. The rate of SR Ca(2+) release per unit Ca(2+) current, a measure of EC-coupling gain, was increased sixfold by hypothermia. This increase in gain occurred regardless of whether cells were dialyzed with sodium-free solutions. Thus an increase in EC-coupling gain contributes importantly to positive inotropic effects of hypothermia in the heart.  相似文献   

3.
Caffeine and excitation-contraction coupling in the guinea pig taenia coli   总被引:5,自引:2,他引:5  
The effects of caffeine (0.2–10 mM) on the electrical and mechanical activities of guinea pig taenia coli were investigated with the double sucrose-gap method. Caffeine evoked a small tension with a latency of 20–30 sec, then phasic contraction developed and finally relaxation. The initial tension development also appeared in the Na-free solution without any marked changes in the membrane potential and membrane resistance. The phasic contraction disappeared in the Na-free solution. The relaxation in the presence of caffeine was accompanied by depolarization block of the spike generation. The minimum concentration of Ca ion needed to evoke the tension development by the caffeine was 10-7 M. Caffeine also potentiated the twitch tension below a concentration of 5 mM either in the Na-free solution or at low temperature (5°C). NO3 - and Br- showed a similar response to caffeine on the potentiation of the twitch tension at low temperature.  相似文献   

4.
The effect of extracellular Cl (Cl-o) removal on contractions evoked by a selective muscarinic agonist, cis-2-methyl-4-dimethylaminomethyl 1,3-dioxolane methiodide (CD), and high K+ depolarizations in the isolated guinea pig ileal longitudinal muscle was studied. The replacement of Cl-o with impermeant anions, such as isethionate (Ise-), was found to selectively inhibit a portion of the initial phasic response to K+ and CD, leaving the secondary and sustained tonic responses unchanged. In Ca2+-free solutions, the loss of contractile responses to high K+ was faster and more pronounced in Cl--free compared with Cl--containing solutions. Furthermore, the uptake of Ca2+, as represented by 45Ca2+, from the saline solution was delayed and reduced in Ise--containing Cl-o-free solutions. Replacement of Cl-o with other impermeant anions, such as gluconate and methylsulphate, had a similar action on contractile activity as for Ise-replacement. Cl-o replacement with permeant anions, such as nitrate, however, did not significantly inhibit the phasic response and sometimes increased the tonic response to K+. These results indicate that there is a Cl-o-dependent Ca2+ pool in the guinea pig ileal longitudinal muscle and we speculate that this Cl-o-dependent Ca2+ pool is associated with membrane structures, such as calveolae, which would thus offer a degree of protection to depletion by removal of extracellular Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
In guinea pig taenia coli, the nitric oxide (NO) donor sodium nitroprusside (SNP, 1 microM) reduced the carbachol-stimulated increases in muscle force in parallel with a decrease in intracellular Ca(2+) concentration ([Ca(2+)](i)). A decrease in the myosin light chain phosphorylation was also observed that was closely correlated with the decrease in [Ca(2+)](i). With the patch-clamp technique, 10 microM SNP decreased the peak Ba(2+) current, and this effect was blocked by an inhibitor of soluble guanylate cyclase. Carbachol (10 microM) induced an inward current, and this effect was markedly inhibited by SNP. SNP markedly increased the depolarization-activated outward K(+) currents, and this current was completely blocked by 0.3 micorM iberiotoxin. SNP (1 microM) significantly increased cGMP content without changing cAMP content. Decreased Ca(2+) sensitivity by SNP of contractile elements was not prominent in the permeabilized taenia, which was consistent with the [Ca(2+)](i)-force relationship in the intact tissue. These results suggest that SNP inhibits myosin light chain phosphorylation and smooth muscle contraction stimulated by carbachol, mainly by decreasing [Ca(2+)](i), which resulted from the combination of the inhibition of voltage-dependent Ca(2+) channels, the inhibition of nonselective cation currents, and the activation of Ca(2+)-activated K(+) currents.  相似文献   

6.
Mathematical and computational modeling of cardiac excitation-contraction coupling has produced considerable insights into how the heart muscle contracts. With the increase in biophysical and physiological data available, the modeling has become more sophisticated with investigations spanning in scale from molecular components to whole cells. These modeling efforts have provided insight into cardiac excitation-contraction coupling that advanced and complemented experimental studies. One goal is to extend these detailed cellular models to model the whole heart. While this has been done with mechanical and electophysiological models, the complexity and fast time course of calcium dynamics have made inclusion of detailed calcium dynamics in whole heart models impractical. Novel methods such as the probability density approach and moment closure technique which increase computational efficiency might make this tractable.  相似文献   

7.
Ultrastructure, molecular composition and electrophysiological properties of cardiac myocytes and functional characteristics of the fish heart suggest that cycling of extracellular Ca(2+) is generally more important than intracellular cycling of Ca(2+) stores of the sarcoplasmic reticulum (SR) in activating contraction of fish cardiac myocytes. This is especially true for the ventricle. However, prominent species-specific differences exist in cardiac excitation-contraction coupling and in the relative roles of extracellular and intracellular Ca(2+) sources among the teleostean fish. In fact, in some fish species (tunas, burbot) the SR of atrial myocytes, under certain circumstances, may act as the major source of systolic Ca(2+). These interspecific differences are obviously an outcome of evolutionary adaptation to different habitats and modes of activity in these habitats. There is also substantial intraspecific variation in the SR Ca(2+)-release-to-SL-Ca(2+) influx ratio depending on acute and chronic temperature changes. Consequently excitation-contraction coupling of the fish cardiac myocytes is not a fixed entity, but rather a highly variable and malleable process that enables fish to have an appropriate cardiac scope to exploit a diverse range of environments.  相似文献   

8.
心肌细胞的兴奋 收缩偶联 (ECC)本质上是胞膜上的电压门控L 型钙通道 (LCCs)和胞内ryanodine受体 (RyRs)之间通过钙诱导钙释放 (CICR)机制进行沟通进而引发肌细胞收缩的过程。最近的研究进一步揭示了微观水平上LCCs和RyRs之间的信息联系。在钙偶联位点 (couplons)上 ,LCCs因膜去极化而随机开放 ,在局部产生高强度的钙脉冲 (即钙小星 ,Ca2 sparklet) ,作用于邻近肌质网终末池上的RyRs。钙偶联位点通过由钙小星随机激活的RyRs(即钙释放通道 )以钙火花 (Ca2 spark)的形式释放钙。这些钙在全细胞水平上总和即形成钙瞬变 (Ca2 transient)。因此 ,钙小星触发钙火花就构成了ECC中的基本事件。本文重点阐述LCCs和RyRs分子间的信号转导机制 ,也即从微观水平上探讨CICR及ECC的形成机制。  相似文献   

9.
The roles of the Ca2+-mobilising messenger inositol 1,4,5-trisphosphate (InsP3) in heart are unclear, although many hormones activate InsP3 production in cardiomyocytes and some of their inotropic, chronotropic and arrhythmogenic effects may be due to Ca2+ release mediated by InsP3 receptors (InsP3Rs) [1-3]. In the present study, we examined the expression and subcellular localisation of InsP3R isoforms, and investigated their potential role in modulating excitation-contraction coupling (EC coupling). Western, PCR and InsP3-binding analysis indicated that both atrial and ventricular myocytes expressed mainly type II InsP3Rs, with approximately sixfold higher levels of InsP3Rs in atrial cells. Co-immunostaining of atrial myocytes with antibodies against type II ryanodine receptors (RyRs) and type II InsP3Rs revealed that the latter were arranged in the subsarcolemmal space where they largely co-localised with the junctional RyRs. Stimulation of quiescent or electrically paced atrial myocytes with a membrane-permeant InsP3 ester, which enters cells and directly activates InsP3Rs, caused the appearance of spontaneous Ca2+-release events. In addition, in paced cells, the InsP3 ester evoked an increase in the amplitudes of action potential-evoked Ca2+ transients. These data indicate that atrial cardiomyocytes express functional InsP3Rs, and that these channels could modulate EC coupling.  相似文献   

10.
This study investigated cardiac excitation-contraction coupling at 37 degrees C in transgenic mice with cardiac-specific overexpression of human beta2-adrenergic receptors (TG4 mice). In field-stimulated myocytes, contraction was significantly greater in TG4 compared with wild-type (WT) ventricular myocytes. In contrast, when duration of depolarization was controlled with rectangular voltage clamp steps, contraction amplitudes initiated by test steps were the same in WT and TG4 myocytes. When cells were voltage clamped with action potentials simulating TG4 and WT action potential configurations, contractions were greater with long TG4 action potentials and smaller with shorter WT action potentials, which suggests an important role for action potential configuration. Interestingly, peak amplitude of L-type Ca2+ current (I(Ca-L)) initiated by rectangular test steps was reduced, although the voltage dependencies of contractions and currents were not altered. To explore the basis for the altered relation between contraction and I(Ca-L), Ca2+ concentrations were measured in myocytes loaded with fura 2. Diastolic concentrations of free Ca2+ and amplitudes of Ca2+ transients were similar in voltage-clamped myocytes from WT and TG4 mice. However, sarcoplasmic reticulum (SR) Ca2+ content assessed with the rapid application of caffeine was elevated in TG4 cells. Increased SR Ca2+ was accompanied by increased frequency and amplitudes of spontaneous Ca2+ sparks measured at 37 degrees C with fluo 3. These observations suggest that the gain of Ca(2+)-induced Ca2+ release is increased in TG4 myocytes. Increased gain counteracts the effects of decreased amplitude of I(Ca-L) in voltage-clamped myocytes and likely contributes to increased contraction amplitudes in field-stimulated TG4 myocytes.  相似文献   

11.
We have examined the distribution of ryanodine receptors, L-type Ca(2+) channels, calsequestrin, Na(+)/Ca(2+) exchangers, and voltage-gated Na(+) channels in adult rat ventricular myocytes. Enzymatically dissociated cells were fixed and dual-labeled with specific antibodies using standard immunocytochemistry protocols. Images were deconvolved to reverse the optical distortion produced by wide-field microscopes equipped with high numerical aperture objectives. Every image showed a well-ordered array of fluorescent spots, indicating that all of the proteins examined were distributed in discrete clusters throughout the cell. Mathematical analysis of the images revealed that dyads contained only ryanodine receptors, L-type Ca(2+) channels, and calsequestrin, and excluded Na(+)/Ca(2+) exchangers and voltage-gated Na(+) channels. The Na(+)/Ca(2+) exchanger and voltage-gated Na(+) channels were distributed largely within the t-tubules, on both transverse and axial elements, but were not co-localized. The t-tubule can therefore be subdivided into at least three structural domains; one of coupling (dyads), one containing the Na(+)/Ca(2+) exchanger, and one containing voltage-gated Na(+) channels. We conclude that if either the slip mode conductance of the Na(+) channel or the reverse mode of the Na(+)/Ca(2+) exchanger are to contribute to the contractile force, the fuzzy space must extend outside of the dyad.  相似文献   

12.
Sorcin is a penta-EF hand Ca2+-binding protein that associates with both cardiac ryanodine receptors and L-type Ca2+ channels and has been implicated in the regulation of intracellular Ca2+ cycling. To better define the function of sorcin, we characterized transgenic mice in which sorcin was overexpressed in the heart. Transgenic mice developed normally with no evidence of cardiac hypertrophy and no change in expression of other calcium regulatory proteins. In vivo hemodynamics revealed significant reductions in global indices of contraction and relaxation. Contractile abnormalities were also observed in isolated adult transgenic myocytes, along with significant depression of Ca2+ transient amplitudes. Whole cell ICa density and the time course of activation were normal in transgenic myocytes, but the rate of inactivation was significantly accelerated. These effects of sorcin on L-type Ca2+ currents were confirmed in Xenopus oocyte expression studies. Finally, we examined the expression of sorcin in normal and failing hearts from spontaneous hypertensive heart failure rats. In normal myocardium, sorcin extensively co-localized with ryanodine receptors at the Z-lines, whereas in myopathic hearts the degree of co-localization was markedly disrupted. Together, these data indicate that sorcin modulates intracellular Ca2+ cycling and Ca2+ influx pathways in the heart.  相似文献   

13.
Transgenic mice that overexpress human type 1 angiotensin II receptor (AT(1)R) in the heart develop cardiac hypertrophy. Previously, we have shown that in 6-mo AT(1)R mice, which exhibit significant cardiac remodeling, fractional shortening is decreased. However, it is not clear whether altered contractility is attributable to AT(1)R overexpression or is secondary to cardiac hypertrophy/remodeling. Thus the present study characterized the effects of AT(1)R overexpression on ventricular L-type Ca(2+) currents (I(CaL)), cell shortening, and Ca(2+) handling in 50-day and 6-mo-old male AT(1)R mice. Echocardiography showed there was no evidence of cardiac hypertrophy in 50-day AT(1)R mice but that fractional shortening was decreased. Cellular experiments showed that cell shortening, I(CaL), and Ca(v)1.2 mRNA expression were significantly reduced in 50-day and 6-mo-old AT(1)R mice compared with controls. In addition, Ca(2+) transients and caffeine-induced Ca(2+) transients were reduced whereas the time to 90% Ca(2+) transient decay was prolonged in both age groups of AT(1)R mice. Western blot analysis revealed that sarcoplasmic reticulum Ca(2+)-ATPase and Na(+)/Ca(2+) exchanger protein expression was significantly decreased in 50-day and 6-mo AT(1)R mice. Overall, the data show that cardiac contractility and the mechanisms that underlie excitation-contraction coupling are altered in AT(1)R mice. Furthermore, since the alterations in contractility occur before the development of cardiac hypertrophy, it is likely that these changes are attributable to the increased activity of the renin-angiotensin system brought about by AT(1)R overexpression. Thus it is possible that AT(1)R blockade may help maintain cardiac contractility in individuals with heart disease.  相似文献   

14.
The skeletal and cardiac muscle dihydropyridine receptors (DHPRs) differ with respect to their rates of channel activation and in the means by which they control Ca2+ release from the sarcoplasmic reticulum (Adams, B.A., and K.G. Beam. 1990. FASEB J. 4:2809-2816). We have examined the functional properties of skeletal (SkEIIIK) and cardiac (CEIIIK) DHPRs in which a highly conserved glutamate residue in the pore region of repeat III was mutated to a positively charged lysine residue. Using expression in dysgenic myotubes, we have characterized macroscopic ionic currents, intramembrane gating currents, and intracellular Ca2+ transients attributable to these two mutant DHPRs. CEIIIK supported very small inward Ca2+ currents at a few potentials (from -20 to +20 mV) and large outward cesium currents at potentials greater than +20 mV. SkEIIIK failed to support inward Ca2+ flux at any potential. However, large, slowly activating outward cesium currents were observed at all potentials greater than + 20 mV. The difference in skeletal and cardiac Ca2+ channel activation kinetics was conserved for outward currents through CEIIIK and SkEIIIK, even at very depolarized potentials (at +100 mV; SkEIIIK: tau(act) = 30.7 +/- 1.9 ms, n = 11; CEIIIK: tau(act) = 2.9 +/- 0.5 ms, n = 7). Expression of SkEIIIK in dysgenic myotubes restored both evoked contractions and depolarization-dependent intracellular Ca(2+) transients with parameters of voltage dependence (V(0.5) = 6.5 +/- 3.2 mV and k = 9.3 +/- 0.7 mV, n = 5) similar to those for the wild-type DHPR (Garcia, J., T. Tanabe, and K.G. Beam. 1994. J. Gen. Physiol. 103:125-147). However, CEIIIK-expressing myotubes never contracted and failed to exhibit depolarization-dependent intracellular Ca2+ transients at any potential. Thus, high Ca2+ permeation is required for cardiac-type excitation-contraction coupling reconstituted in dysgenic myotubes, but not skeletal-type. The strong rectification of the EIIIK channels made it possible to obtain measurements of gating currents upon repolarization to -50 mV (Qoff) following either brief (20 ms) or long (200 ms) depolarizing pulses to various test potentials. For SkEIIIK, and not CEIIK, Qoff was significantly (P < 0.001) larger after longer depolarizations to +60 mV (121.4 +/- 2.0%, n = 6). The increase in Qoff for long depolarizations exhibited a voltage dependence similar to that of channel activation. Thus, the increase in Q(off) may reflect a voltage sensor movement required for activation of L-type Ca2+ current and suggests that most DHPRs in skeletal muscle undergo this voltage-dependent transition.  相似文献   

15.
The neonate mammalian heart is phenotypically different from the adult heart in many respects. Understanding these phenotypic differences are a fundamental component of understanding the mechanisms of congenital heart disease and its treatment. Differences in excitation-contraction (E-C) coupling of the neonatal heart from that of the adult include less reliance on intercellular sources of Ca(2+) such as that from sarcoplasmic reticulum (SR). Electron micrographs indicate that these immature cardiomyocytes lack transverse tubules and the SR is sparse. This paper focuses on the changes in the phenotype of E-C coupling during ontogeny in the mammalian heart and the molecular mechanisms underlying these changes.  相似文献   

16.
We studied the effects of osmotic swelling on the components of excitation-contraction coupling in ventricular myocytes. Myocyte volume rapidly increased 30% in hyposmotic (0.6T) solution and was constant thereafter. Cell shortening transiently increased 31% after 4 min in 0.6T but then decreased to 68% of control after 20 min. In parallel, the L-type Ca(2+) current (I(Ca-L)) transiently increased 10% and then declined to 70% of control. Similar biphasic effects on shortening were observed under current clamp. In contrast, action potential duration was unchanged at 4 min but decreased to 72% of control after 20 min. Ca(2+) transients were measured with fura 2-AM. The emission ratio with excitation at 340 and 380 nm (f(340)/f(380)) decreased by 12% after 3 min in 0.6T, whereas shortening and I(Ca-L) increased at the same time. After 8 min, shortening, I(Ca-L), and the f(340)/f(380) ratio decreased 28, 25, and 59%, respectively. The results suggest that osmotic swelling causes biphasic changes in I(Ca-L) that contribute to its biphasic effects on contraction. In addition, swelling initially appears to reduce the Ca(2+) transient initiated by a given I(Ca-L), and later, both I(Ca-L) and the Ca(2+) transient are inhibited.  相似文献   

17.
The effects of short (1 min) and long (7-10 min) exposure to hyposmotic solution on excitation-contraction coupling in rat ventricular myocytes were studied. After short exposure, the action potential duration at 90% repolarization (APD(90)), the intracellular Ca(2+) concentration ([Ca(2+)](i)) transient amplitude, and contraction increased, whereas the L-type Ca(2+) current (I(Ca, L)) amplitude decreased. Fractional sarcoplasmic reticulum (SR) Ca(2+) release increased but SR Ca(2+) load did not. After a long exposure, I(Ca,L), APD(90), [Ca(2+)](i) transient amplitude, and contraction decreased. The abbreviation of APD(90) was partially reversed by 50 microM DIDS, which is consistent with the participation of Cl(-) current activated by swelling. After 10-min exposure to hyposmotic solution in cells labeled with di-8-aminonaphthylethenylpyridinium, t-tubule patterning remained intact, suggesting the loss of de-t-tubulation was not responsible for the fall in I(Ca,L). After long exposure, Ca(2+) load of the SR was not increased, and swelling had no effect on the site-specific phosphorylation of phospholamban, but fractional SR Ca(2+) release was depressed. The initial positive inotropic response to hyposmotic challenge may be accounted for by enhanced coupling between Ca(2+) entry and release. The negative inotropic effect of prolonged exposure can be accounted for by shortening of the action potential duration and a fall in the I(Ca,L) amplitude.  相似文献   

18.
Acidosis in cardiac myocytes is a major factor in the reduced inotropy that occurs in the ischemic heart. During acidosis, diastolic calcium concentration and the amplitude of the calcium transient increase, while the strength of contraction decreases. This has been attributed to the inhibition by protons of calcium uptake and release by the sarcoplasmic reticulum, to a rise of intracellular sodium caused by activation of sodium-hydrogen exchange, decreased calcium binding affinity to Troponin-C, and direct effects on the contractile machinery. The relative contributions and concerted action of these effects are, however, difficult to establish experimentally. We have developed a mathematical model to examine altered calcium-handling mechanisms during acidosis. Each of the alterations was incorporated into a dynamical model of pH regulation and excitation-contraction coupling to predict the time courses of key ionic species during acidosis, in particular intracellular pH, sodium and the calcium transient, and contraction. This modeling study suggests that the most significant effects are elevated sodium, inhibition of sodium-calcium exchange, and the direct interaction of protons with the contractile machinery; and shows how the experimental data on these contributions can be reconciled to understand the overall effects of acidosis in the beating heart.  相似文献   

19.
The intracellular calcium ([Ca2+]i) transient in adult rat heart cells was examined using the fluorescent calcium indicator fluo-3 and a laser scanning confocal microscope. We find that the electrically evoked [Ca2+]i transient does not rise at a uniform rate at all points within the cell during the [Ca2+]i transient. These spatial non-uniformities in [Ca2+]i are observed immediately upon depolarization and largely disappear by the time the peak of the [Ca2+]i transient occurs. Importantly, some of the spatial non-uniformity in [Ca2+]i varies randomly in location from beat to beat. Analysis of the spatial character of the non-uniformities suggests that they arise from the stochastic nature of the activation of SR calcium-release channels. The non-uniformities in [Ca2+]i are markedly enhanced by low concentrations of Cd2+, suggesting that activation of L-type calcium channels is the primary source of activator calcium for the calcium transient. In addition, the pattern of calcium release in these conditions was very similar to the spontaneous calcium sparks that are observed under resting conditions and which are due to spontaneous calcium release from the SR. The spatial non-uniformity in the evoked [Ca2+]i transient under normal conditions can be explained by the temporal and spatial summation of a large number of calcium sparks whose activation is a stochastic process. The results are discussed with respect to a stochastic local control model for excitation-contraction (E-C) coupling, and it is proposed that the fundamental unit of E-C coupling consists of one dihydropyridine receptor activating a small group of ryanodine receptors (possibly four) in a square packing model.  相似文献   

20.
In atrial myocytes, the sarcoplasmic reticulum (SR) has an essential role in regulating the force of contraction as a consequence of its involvement in excitation-contraction coupling (ECC). Nicotinic acid adenine dinucleotide phosphate (NAADP) is a Ca2+ mobilizing messenger that acts to release Ca2+ from an acidic store in mammalian cells. The photorelease of NAADP in atrial myocytes increased Ca2+ transient amplitude with no effect on accompanying action potentials or the L-type Ca2+ current. NAADP-AM, a cell permeant form of NAADP, increased Ca2+ spark amplitude and frequency. The effect on Ca2+ spark frequency could be prevented by bafilomycin A1, a vacuolar H+-ATPase inhibitor, or by disruption of lysosomes by GPN. Bafilomycin prevented staining of acidic stores with LysoTracker red by increasing lysosomal pH. NAADP-AM also produced an increase in the lysosomal pH, as detected by a reduction in LysoSensor green fluorescence. These effects of NAADP were associated with an increase in the amount of caffeine-releasable Ca2+ in the SR and may be regulated by β-adrenoceptor stimulation with isoprenaline. These observations are consistent with a role for NAADP in regulating ECC in atrial myocytes by releasing Ca2+ from an acidic store, which enhances SR Ca2+ release by increasing SR load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号