首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The removal by crab shell of mixed heavy metal ions in aqueous solution   总被引:12,自引:0,他引:12  
In order to examine the inhibition effect of other heavy metal ions on the removal by crab shell of heavy metal ions in aqueous solutions, three ions (Pb(2+), Cd(2+), Cr(3+)) were used in single, binary and ternary systems. In single heavy metal ion systems, the removals of Cr(3+) and Pb(2+) were much higher than that of Cd(2+). In binary heavy metal ions systems, Cd(2+) did not affect Pb(2+) removal while Cr(3+) had a severe inhibition effect on the removal of Pb(2+). Cd(2+) removal was slightly affected by the presence of Pb(2+); however, it was severely affected by the presence of Cr(3+). The inhibitory effect of Cd(2+) on Cr(3+) was relatively lower than that of Pb(2+).  相似文献   

2.
It is not clear how different spatial compartments in the neuron are affected during epileptiform activity. In the present study we have examined the spatial and temporal profiles of depolarization induced changes in the intracellular Ca(2+) concentration in the dendrites of cultured autaptic hippocampal pyramidal neurons rendered epileptic experimentally by treatment with kynurenate (2 mM) and Mg(2+) (11.3 mM) in culture (treated neurons). This was examined with simultaneous somatic patch-pipette recording and Ca(2+) imaging experiments using the Ca(2+) indicator Oregon Green 488 BAPTA-1. Neurons stimulated by depolarization under whole-cell voltage clamp conditions revealed Ca(2+) entry at localized sites in the dendrites. Ca(2+) transients were observed even in the presence of NMDA and AMPA receptor antagonists suggesting that the opening of voltage gated calcium channels primarily triggered the local Ca(2+) changes. Peak Ca(2+) transients in the dendrites of treated neurons were larger compared to the signals recorded from the control neurons. Dendritic Ca(2+) transients in treated neurons showed a distance dependent scaling. Estimation of dendritic local Ca(2+) diffusion coefficients indicated higher values in the treated neurons and a higher availability of free Ca(2+). Simulation studies of Ca(2+) dynamics in these localized dendritic compartments indicate that local Ca(2+) buffering and removal mechanisms may be affected in treated neurons. Our studies indicate that small dendritic compartments are rendered more vulnerable to changes in intracellular Ca(2+) following induction of epileptiform activity. This can have important cellular consequences including local membrane excitability through mechanisms that remain to be elucidated.  相似文献   

3.
The carboxylic acid ionophore monensin, known as an electroneutral Na(+) ionophore, an anticoccidial agent, and a growth-promoting feed additive in agriculture, is shown to be highly efficient as an ionophore for Pb(2+) and to be highly selective for Pb(2+) compared with other divalent cations. Monensin transports Pb(2+) by an electroneutral mechanism in which the complex PbMonOH is the transporting species. Electrogenic transport via the species PbMon(+) may also be possible. Monensin catalyzed Pb(2+) transport is little affected by Ca(2+), Mg(2+), or K(+) concentrations that are encountered in living systems. Na(+) is inhibitory, but its effectiveness at 100 mm does not exceed approximately 50%. The poor activity of monensin as an ionophore for divalent cations other than Pb(2+) is consistent with the pattern of complex formation constants observed in the mixed solvent 80% methanol/water. This pattern also explains why Ca(2+), Mg(2+), and K(+) are ineffective as inhibitors of Pb(2+) transport, but it does not fully explain the actions of Na(+), where kinetic features of the transport mechanism may also be important. When given to rats at 100 ppm in feed together with Pb(2+) at 100 ppm in drinking water, monensin reduces Pb accumulation in several organs and tissues. It also accelerates the excretion of Pb that was accumulated previously and produces this effect without depleting the organs of zinc or copper. Monensin, used alone or in combination with other agents, may be useful for the treatment of Pb intoxication.  相似文献   

4.
The yeast Rhodotorula glutinis was examined for its ability to remove Pb(2+) from aqueous solution. Within 10 min of contact, Pb(2+) sorption reached nearly 80% of the total Pb(2+) sorption. The optimum initial pH value for removal of Pb(2+ )was 4.5-5.0. The percentage sorption increased steeply with the biomass concentration up to 2 g/l and thereafter remained more or less constant. Temperature in the range 15-45 degrees C did not show any significant difference in Pb(2+ )sorption by R. glutinis. The light metal ions such as Na(+), K(+), Ca(2+), and Mg(2+) did not significantly interfere with the binding. The Langmuir sorption model provided a good fit throughout the concentration range. The maximum Pb(2+ )sorption capacity q(max) and Langmuir constant b were 73.5 mg/g of biomass and 0.02 l/mg, respectively. The mechanism of Pb(2+) removal by R. glutinis involved biosorption by direct biosorptive interaction with the biomass through ion exchange and precipitation by phosphate released from the biomass.  相似文献   

5.
An inhibitor protein of synaptic plasma membrane (Ca2+ + Mg2+)-ATPase was purified to apparent homogeneity from rat cerebrum by a molecular weight cut followed by chromatography of cytosol proteins with molecular weights between 10 000 and 3500 on DEAE-Sephadex at pH 5.2. The inhibitor could be partially inactivated by proteinases and dithiothreitol, but was heat-stable. Gel filtration gave a molecular weight of about 6000. Like the (Ca2+ + Mg2+)-ATPase inhibitor protein isolated from erythrocytes, the inhibitor from brain contains a characteristic high proportion of glutamic acid (36%) and glycine (37%) residues. Synaptic plasma membrane Mg2+-ATPase and microsomal membrane (Ca2+ + Mg2+)-ATPase did not respond to the inhibitor. Synaptic plasma membrane and erythrocyte membrane (Ca2+ + Mg2+)-ATPases, however, were affected. Inhibitory influence on synaptic membrane (Ca2+ + Mg2+)-ATPase was reversible, since inhibition could be relieved upon removal of inhibitor from saturable sites on the membrane. The inhibitor is not a calmodulin-binding protein, since the concentration of calmodulin for half-maximal activation of the ATPase was unaffected by its presence. Mode of inhibition of the (Ca2+ + Mg2+)-ATPase by the inhibitor was non-competitive.  相似文献   

6.
This study is concerned with the regulation of intracellular-free Mg2+ concentration ([Mg2+]i) in the smooth muscle of guinea pig taenia caeci. To assess an interaction of Ca2+ on the Na(+)-dependent Mg(2+)- extrusion mechanism (Na(+)-Mg2+ exchange), effects of Na+ removal (N- methyl-D-glucamine substitution) were examined in Ca(2+)-containing solutions. As changes in pHi in Na(+)-free solutions perturb estimation of [Mg2+]i using the single chemical shift only of the beta-ATP peak in 31P NMR (nuclear magnetic resonance) spectra, [Mg2+]i and pHi were concomitantly estimated from the chemical shifts of the gamma- and beta- peaks. When extracellular Na+ was substituted with N-methyl-D- glucamine, [Mg2+]i was reversibly increased. This increase in [Mg2+]i was eliminated in Mg(2+)-free solutions and enhanced in excess Mg2+ solutions. ATP content fluctuated little during removal and readmission of Na+, indicating that [Mg2+]i changes were not induced by Mg2+ release from ATP, and that Mg(2+)-extruding system would not be inhibited by fuel restriction. A slow acidification in Na(+)-free solutions and transient alkalosis by a readmission of Na+ were observed regardless of the extracellular Mg2+ concentration. When the extracellular Ca2+ concentration was increased from normal (2.4 mM) to 12 mM, only a marginal increase in [Mg2+]i was caused by Na+ removal, whereas a similar slow acidosis was observed, indicating that extracellular Ca2+ inhibits Mg2+ entry, and that the increase in [Mg2+]i is negligible through competition between Mg2+ and Ca2+ in intracellular sites. These results imply that Na(+)-Mg2+ exchange is the main mechanism to maintain low [Mg2+]i even under physiological conditions.  相似文献   

7.
Conditions were developed in the absence of Ca(2+) for purification, delipidation, and long term stabilization of octaethylene glycol monododecyl ether (C(12)E(8))-solubilized sarcoplasmic reticulum Ca(2+)-ATPase with tightly bound Mg(2+) and F(-), an analog for the phosphoenzyme intermediate without bound Ca(2+). The Ca(2+)-ATPase activity to monitor denaturation was assessed after treatment with 20 mm Ca(2+) to release tightly bound Mg(2+)/F(-). The purification and delipidation was successfully achieved with Reactive Red-agarose affinity chromatography. The solubilized Mg(2+)/F(-)-bound Ca(2+)-ATPase was very rapidly denatured at pH 8, but was perfectly stabilized at pH 6 against denaturation for over 20 days at 4 degrees C even without exogenously added phospholipid and at a high C(12)E(8)/enzyme weight ratio (10:1). The activity was not restored unless the enzyme was treated with 20 mm Ca(2+), showing that tightly bound Mg(2+)/F(-) was not released during the long term incubation. The perfect stability was attained with or without 0.1 mm dithiothreitol, but inactivation occurred with a half-life of 10 days in the presence of 1 mm dithiothreitol, possibly due to reduction of a specific disulfide bond(s). The remarkable stability is likely conferred by intimate gathering of cytoplasmic domains of Ca(2+)-ATPase molecule induced by tight binding of Mg(2+)/F(-). The present study thus reveals an essential property of the Mg(2+)/F(-)/Ca(2+)-ATPase complex, which will likely provide clues to understanding structure of the Ca(2+)-released form of phosphoenzyme intermediate at an atomic level.  相似文献   

8.
Rough endoplasmic reticulum membranes, purified from isolated rat pancreatic acini stimulated by carbachol, had a decreased Ca2+ content and increased (Ca2+ + Mg2+)-ATPase activity. Ca2+ was regained and ATPase activity reduced to control levels only after blockade by atropine. The (Ca2+ + Mg2+)-ATPase was activated by free Ca2+ (half-maximal at 0.17 microM; maximal at 0.7 microM) over the concentration range which occurs in the cell cytoplasm. Pretreatment with EGTA, at a high concentration (5 mM), inhibited ATPase activity which, our results suggest, was due to removal of a bound activator such as calmodulin. The rate of (Ca2+ + Mg2+)-ATPase actively declined during the 10-min period over which maximal active accumulation of Ca2+ by membrane vesicles occurs. In the presence of ionophore A23187, which released actively accumulated Ca2+ and stimulated the (Ca2+ + Mg2+)-ATPase, this time-dependent decline in activity was not observed. Our data provide evidence that the activity of the Ca2+-transporting ATPase of the rough endoplasmic reticulum is regulated by both extra and intravesicular Ca2+ and is consistent with a direct role of this enzyme in the release and uptake of Ca2+ during cholinergic stimulation of pancreatic acinar cells.  相似文献   

9.
Crab shell particles were used as a biosorbent to remove lead from aqueous solutions. The equilibrium isotherm showed that crab shell particles took up lead to the extent of 1300 mg Pb g−1 crab shell. The optimum pH range for maximum lead removal was increased to 5·5–11·0 compared to the shell-free control pH of 8·5–11·0. pH values of solutions with crab shell material added were increased spontaneously to about 10 as a result of the CaCO3 present, which formed complexes with lead according to pH. Electron spectroscopy, Fourier transform infrared spectrometry, scanning electron microscopy and X-ray diffraction results confirmed that -NHCOCH3 and CO32 were involved in binding of lead. In addition, the removal of lead occurred mainly through dissolution of CaCO3 followed by precipitation of Pb3(CO3)2(OH)2 and PbCO3 near the surface of crab shell. Micro precipitates formed were then adsorbed to the chitin on the surface of the crab shell particles.  相似文献   

10.
Mucoid exopolysaccharide (MEP) obtained from Pseudomonas aeruginosa 579 was suspended in 10 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) pH 7.2 containing 0.1-10.0 mM of CaCl2.2H2O or MgCl2.4H2O. MEP treated with HEPES or < 5.0 mM of the Ca2+ or Mg2+ salts remained soluble and bound tobramycin in an equilibrium dialysis bioassay. MEP treated with 5.0 or 10.0 mM of the Ca2+ or Mg2+ salts did not bind tobramycin. Five and 10 mM Ca(2+)-treated MEP precipitated but Mg(2+)-treated MEP did not. Pseudomonas aeruginosa 579 biofilms formed using a defined growth medium having < 1 mM Ca2+ or Mg2+ were treated for 1 h with 10 mM HEPES +/- 5.0 mM CaCl2.2H2O or MgCl2.4H2O, prior to an 8-h exposure to HEPES, or the defined growth medium, +/- 125 micrograms/mL of tobramycin. The tobramycin kill kinetics for the HEPES-, Mg(2+)-, and Ca(2+)-treated biofilms were similar and gradual from T = 0-6 h. The viability of the HEPES- and Mg(2+)-treated populations declined sharply (from 6 to 8 h). Bacteria dispersed from the MEP in control biofilms at 0 and 8 h did not grow in the presence of 7.81 micrograms/mL of tobramycin. Thus, binding of tobramycin of P. aeruginosa 579 MEP may not be as influential to the impediment of tobramycin diffusion as is the steric hindrance imposed by the Ca2+ condensation of the polymer.  相似文献   

11.
The adenosine-triphosphatase activity of desensitized actomysin   总被引:3,自引:3,他引:0       下载免费PDF全文
1. A simple procedure involving repeated washings of actomyosin, extracted as the complex from myofibrils (natural actomyosin) at ionic strength less than 0.002, is described for the preparation of a desensitized actomyosin. 2. The Mg(2+)-activated adenosine triphosphatase of natural actomyosin was markedly inhibited by ethylenedioxybis(ethyleneamino)tetra-acetic acid, whereas that of the desensitized actomyosin was unaffected. 3. The activity of the Ca(2+)-activated adenosine triphosphatase of natural actomyosin was generally lower than that of the Mg(2+)-activated adenosine triphosphatase, whereas in the desensitized actomyosin the difference between the activities was considerably less. In both natural and desensitized actomyosin the adenosine-triphosphatase activities in the presence of Mg(2+) were similar. 4. The conversion of the natural into the desensitized actomyosin was accompanied by the removal of a protein fraction containing the factors responsible for the sensitivity to ethylenedioxybis(ethyleneamino)tetra-acetic acid and for modifying the Ca(2+)-activated adenosine triphosphatase. When added to a desensitized actomyosin this fraction effected a reversal to the natural form. The recombination was facilitated by increasing the ionic strength of the medium. The two factors showed different stabilities to heat and tryptic digestion.  相似文献   

12.
Treatment of Madin-Darby canine kidney (MDCK) cells with the peptide hormone angiotensin II (Ang II) results in an increase in the concentrations of cytosolic free calcium ([Ca(2+)](i)) and sodium ([Na(+)](i)) with a concomitant decrease in cytosolic free Mg(2+) concentration ([Mg(2+)](i)). In the present study we demonstrate that this hormone-induced decrease in [Mg(2+)](i) is independent of [Ca(2+)](i) but dependent on extracellular Na(+). [Mg(2+)](i), [Ca(2+)](i), and [Na(+)](i) were measured in Ang II-stimulated MDCK cells by fluorescence digital imaging using the selective fluoroprobes mag-fura-2AM, fura-2AM, and sodium-binding benzofuran isophthalate (acetoxymethyl ester), respectively. Ang II decreased [Mg(2+)](i) and increased [Na(+)](i) in a dose-dependent manner. These effects were inhibited by irbesartan (selective AT(1) receptor blocker) but not by PD123319 (selective AT(2) receptor blocker). Imipramine and quinidine (putative inhibitors of the Na(+)/Mg(2+) exchanger) and removal of extracellular Na(+) abrogated Ang II-mediated [Mg(2+)](i) effects. In cells pretreated with thapsigargin (reticular Ca(2+)-ATPase inhibitor), Ang II-stimulated [Ca(2+)](i) transients were attenuated (p < 0.01), whereas agonist-induced [Mg(2+)](i) responses were unchanged. Clamping the [Ca(2+)](i) near 50 nmol/liter with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) inhibited Ang II-induced [Ca(2+)](i) increases but failed to alter Ang II-induced [Mg(2+)](i) responses. Benzamil, a selective blocker of the Na(+)/Ca(2+) exchanger, inhibited [Na(+)](i) but not [Mg(2+)](i) responses. Our data demonstrate that in MDCK cells, AT(1) receptors modulate [Mg(2+)](i) via a Na(+)-dependent Mg(2+) transporter that is not directly related to [Ca(2+)](i). These data support the notion that rapid modulation of [Mg(2+)](i) is not simply a result of Mg(2+) redistribution from intracellular buffering sites by Ca(2+) and provide evidence for the existence of a Na(+)-dependent, hormonally regulated transporter for Mg(2+) in renally derived cells.  相似文献   

13.
Green crab (Scylla serrata) alkaline phosphatase (EC 3.1.3.1) is a metalloenzyme, which catalyzes the nonspecific hydrolysis of phosphate monoesters. The present paper deals with the study of the effect of some kinds of metal ions on the enzyme. The positive monovalent alkali metal ions (Li(+), Na(+) and K(+)) have no effect on the enzyme; positive bivalent alkaline-earth metal ions (Mg(2+), Ca(2+) and Ba(2+)) and transition metal ions (Mn(2+), Co(2+), Ni(2+) and Cd(2+)) activate the enzyme; heavy metal ions (Hg(2+), Ag(+), Bi(2+), Cu(2+) and Zn(2+)) inhibit the enzyme. The activation of magnesium ion on the enzyme appears to be a partial noncompetitive type. The kinetic model has been set up and a new plot to determine the activation constant of Mg(2+) was put forward. From the plot, we can easily determine the activation constant (K(a)) value and the activation ratio of Mg(2+) on the enzyme. The inhibition effects of Cu(2+) and Hg(2+) on the enzyme are of noncompetitive type. The inhibition constants have been determined. The inhibition effect of Hg(2+) is stronger than that of Cu(2+).  相似文献   

14.
Internodal cells of three species of Characeae, Nitella flexilis, Nitella axilliformis and Chara corallina, were analyzed for the contents of Ca(2+ )and Mg(2+) in the cytoplasm. To avoid contamination of Ca(2+) from the cell wall and vacuole, the vacuolar sap was replaced with a sorbitol solution containing Sr(2+) by the vacuolar perfusion method after the cell had been treated with Sr(2+). No significant difference in the cytoplasmic content of Mg(2+) was found among three species of Characeae, but significant differences in the cytoplasmic content of Ca(2+) were observed among them. The cytoplasmic Ca(2+) content of N. flexilis was 2.0 times that of N. axilliformis and 3.3 times that of C. corallina. The cytoplasmic drop was furthermore separated into two fractions: a chloroplast-free fraction and a chloroplast fraction. In the chloroplast-free fraction the Ca(2+) content of N. flexilis was 2.3 times that of C. corallina and 2.0 times that of N. axilliformis, while the Mg(2+) content was the same among the three species. In the chloroplast fraction N. flexilis contained about seven times more Ca(2+) and about two times more Mg(2+) than C. corallina. The difference in the cytoplasmic Ca(2+ )content was discussed in relation to the difference in the capacity for the hydration-induced Ca(2+) release existing among the three species.  相似文献   

15.
It was shown using enzyme-linked immunosorbent assay (ELISA) that titers of antibodies against human myelin basic protein (hMBP) in systemic lupus erythematosus (SLE) patients 4.2-fold higher than in healthy individuals, but 2.1-fold lower than in patients with multiple sclerosis (MS). Approximately 86% electrophoretically and immunologically homogeneous SLE immunoglobulin Gs (IgGs) purified using several affinity resins including Sepharose with immobilized hMBP specifically hydrolyze only hMBP but not many other tested proteins. Several rigid criteria were applied to show that the hMBP-hydrolyzing activity is an intrinsic property of SLE IgGs but not from healthy donors. In contrast to MS IgGs, abzymes from SLE patients are more sensitive to ethylenediaminetetraacetic acid and less sensitive to specific inhibitors of serine-like proteases. We present the first evidence demonstrating a significant diversity of different fractions of SLE IgGs in their affinity for hMBP-Sepharose, the ability of IgGs to hydrolyze hMBP at different optimal pHs (5-10) and be activated by different metal ions: Ca(2+) > Mg(2+) ≥ Co(2+) ≥ Fe(2+) ≥ Ni(2+) ≥ Zn(2+) ≥ Cu(2+) ≥ Mn(2+) . Combinations of Ca(2+) + Mg(2+) and Ca(2+) + Co(2) lead to a significant increase in the antibody proteolytic activity as compared with Ca(2+) , Co(2+) , or Mg(2+) ions taken separately. Our findings suggest that the immune systems of individual SLE similar to MS patients can generate a variety of anti-hMBP abzymes with different catalytic properties, which can attack hMBP of myelin-proteolipid shell of axons and play an important role in pathogenesis not only MS but also SLE patients.  相似文献   

16.
The effects of Mg(2+) on reactive oxygen species (ROS) and cell Ca(2+) during reoxygenation of hypoxic rat cardiomyocytes were studied. Oxidation of 2',7'-dichlorodihydrofluorescein (DCDHF) to dichlorofluorescein (DCF) and of dihydroethidium (DHE) to ethidium (ETH) within cells were used as markers for intracellular ROS levels and were determined by flow cytometry. DCDHF/DCF is sensitive to H(2)O(2) and nitric oxide (NO), and DHE/ETH is sensitive to the superoxide anion (O(2)(-).), respectively. Rapidly exchangeable cell Ca(2+) was determined by (45)Ca(2+) uptake. Cells were exposed to hypoxia for 1 h and reoxygenation for 2 h. ROS levels, determined as DCF fluorescence, were increased 100-130% during reoxygenation alone and further increased 60% by increasing extracellular Mg(2+) concentration to 5 mM at reoxygenation. ROS levels, measured as ETH fluorescence, were increased 16-24% during reoxygenation but were not affected by Mg(2+). Cell Ca(2+) increased three- to fourfold during reoxygenation. This increase was reduced 40% by 5 mM Mg(2+), 57% by 10 microM 3,4-dichlorobenzamil (DCB) (inhibitor of Na(+)/Ca(2+) exchange), and 75% by combining Mg(2+) and DCB. H(2)O(2) (25 and 500 microM) reduced Ca(2+) accumulation by 38 and 43%, respectively, whereas the NO donor S-nitroso-N-acetyl-penicillamine (1 mM) had no effect. Mg(2+) reduced hypoxia/reoxygenation-induced lactate dehydrogenase (LDH) release by 90%. In conclusion, elevation of extracellular Mg(2+) to 5 mM increased the fluorescence of the H(2)O(2)/NO-sensitive probe DCF without increasing that of the O(2)(-).-sensitive probe ETH, reduced Ca(2+) accumulation, and decreased LDH release during reoxygenation of hypoxic cardiomyocytes. The reduction in LDH release, reflecting the protective effect of Mg(2+), may be linked to the effect of Mg(2+) on Ca(2+) accumulation and/or ROS levels.  相似文献   

17.
In contrast to most systems in which oocyte activation is triggered by the fertilizing sperm, Sicyonia ingentis oocytes are activated by seawater Mg2+ during spawning. S. ingentis oocytes were spawned into Mg(2+)-free seawater and microinjected with the fluorescent Ca2+ indicator Fluo-3 to study the effects of added Mg2+ on intracellular Ca2+ levels. The Mg2+ induced a wave of fluorescence across the oocyte that traveled at a speed of 13 +/- 3 microns/sec. Extracellular Ca2+ was not required for induction of the wave. Treatment with Ca2+ ionophore in Mg(2+)-free medium or a localized injection (0.3% oocyte volume) of 3-5 microM Ca2+ also initiated the wave; injection of 250 mM Mg2+ (up to 1.5% oocyte volume) had no effect. Microinjection of 750 microM EGTA (final) suppressed the Mg(2+)-induced wave, while an identical concentration of EDTA had no inhibitory effect. Subsequent to the initial Mg(2+)-induced intracellular Ca2+ increase, a second Ca2+ increase was observed at approximately 15 min postspawning; the timing of this second increase appeared to be independent of when the Mg(2+)-induced wave was initiated, thus an event associated with spawning may be involved. While oocytes in normal seawater were monospermic, those in Mg(2+)-free seawater were polyspermic, suggesting a role for the Mg(2+)-induced Ca2+ wave in regulating sperm entry into the oocyte.  相似文献   

18.
The stimulation of the alpha(1)-adrenergic receptor with phenylephrine results in the significant extrusion of Mg(2+) from the rat heart and cardiomyocytes. Phenylephrine-induced Mg(2+) extrusion is prevented by the removal of extracellular Ca(2+) or by the presence of Ca(2+)-channel blockers such as verapamil, nifedipine, or (+)BAY-K8644. Mg(2+) extrusion is almost completely inhibited by PD98059 (a MAP kinase inhibitor). The simultaneous addition of 5mM Ca(2+) and phenylephrine increases the extrusion of Mg(2+) from perfused hearts and cardiomyocytes. This Mg(2+) extrusion is inhibited by more than 90% when the hearts are preincubated with PD98059. ERKs are activated by perfusion with either phenylephrine or 5mM Ca(2+). This ERK activation is inhibited by PD98059. Overall, these results suggest that stimulating the cardiac alpha(1)-adrenergic receptor by phenylephrine causes the extrusion of Mg(2+) via the Ca(2+)-activated, Na(+)-dependent transport pathway, and the ERKs assists in Mg(2+) transport in the heart.  相似文献   

19.
The light-dependent K conductance of hyperpolarizing Pecten photoreceptors exhibits a pronounced outward rectification that is eliminated by removal of extracellular divalent cations. The voltage-dependent block by Ca(2+) and Mg(2+) that underlies such nonlinearity was investigated. Both divalents reduce the photocurrent amplitude, the potency being significantly higher for Ca(2+) than Mg(2+) (K(1/2) approximately 16 and 61 mM, respectively, at V(m) = -30 mV). Neither cation is measurably permeant. Manipulating the concentration of permeant K ions affects the blockade, suggesting that the mechanism entails occlusion of the permeation pathway. The voltage dependency of Ca(2+) block is consistent with a single binding site located at an electrical distance of delta approximately 0.6 from the outside. Resolution of light-dependent single-channel currents under physiological conditions indicates that blockade must be slow, which prompted the use of perturbation/relaxation methods to analyze its kinetics. Voltage steps during illumination produce a distinct relaxation in the photocurrent (tau = 5-20 ms) that disappears on removal of Ca(2+) and Mg(2+) and thus reflects enhancement or relief of blockade, depending on the polarity of the stimulus. The equilibration kinetics are significantly faster with Ca(2+) than with Mg(2+), suggesting that the process is dominated by the "on" rate, perhaps because of a step requiring dehydration of the blocking ion to access the binding site. Complementary strategies were adopted to investigate the interaction between blockade and channel gating: the photocurrent decay accelerates with hyperpolarization, but the effect requires extracellular divalents. Moreover, conditioning voltage steps terminated immediately before light stimulation failed to affect the photocurrent. These observations suggest that equilibration of block at different voltages requires an open pore. Inducing channels to close during a conditioning hyperpolarization resulted in a slight delay in the rising phase of a subsequent light response; this effect can be interpreted as closure of the channel with a divalent ion trapped inside.  相似文献   

20.
The effect of Mg(2+) on the process of Ca(2+) release from the caged Ca(2+) compound DM-nitrophen (NP) was studied in vitro by steady light UV photolysis of NP in the presence of Ca(2+) and Mg(2+). Ca(2+) release during photolysis and its relaxation/recovery after photolysis were monitored with the Ca(2+)-sensitive dye fura-2. Mg(2+) speeds the photorelease of Ca(2+) during photolysis and slows the relaxation of Ca(2+) to new steady-state levels after photolysis. Within the context of a model describing NP photolysis, we determined the on and off rates of Mg(2+) binding to unphotolyzed NP (k(on) = 6.0 x 10(4) M(-1) s(-1); k(off) = 1.5 x 10(-1) s(-1)). Furthermore, to fully account for the slow postphotolysis kinetics of Ca(2+) in the presence of Mg(2+) we were forced to add an additional photoproduct to the standard model of NP photolysis. The additional photoproduct is calculated to have a Ca(2+) affinity of 13.3 microM and is hypothesized to be produced by the photolysis of free or Mg(2+)-bound NP; photolysis of Ca(2+)-bound NP produces the previously documented 3 mM Ca(2+) affinity photoproduct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号