首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the effect of growth factors, inflammatory and anti-inflammatory cytokines on the macrophage colony-stimulating factor (M-CSF) secretion by cultured human bone marrow stromal cells. Their production of M-CSF cultured in serum-free medium is enhanced in a time-dependent manner in response to tumour necrosis factor (TNF-)alpha and interleukin (IL-)4 but not to IL-1, IL-3, IL-6, IL-7, IL-10, SCF, granulocyte-macrophage colony-stimulating factor (GM-CSF), G-CSF, bFGF and transforming growth factor (TGF-)beta. The co-addition of IL-4 and TNF-alpha has a greater than additive effect on the secretion of M-CSF suggesting that they act synergistically. The anti-inflammatory molecules IL-10 and TGF-beta have no effect on the TNF-alpha-induced M-CSF synthesis by marrow stromal cells. In conclusion TNF-alpha and IL-4 are potent stimulators of the M-CSF synthesis by human bone marrow stromal cells, a result of importance regarding the role of M-CSF in the proliferation/differentiation of mononuclear-phagocytic cells and the role of marrow stromal cells as regulators of marrow haematopoiesis.  相似文献   

2.
The ability of purified human macrophage colony-stimulating factor (M-CSF) to accelerate the formation of stromal cells from murine bone marrow cells was investigated. The liquid culture of the marrow cells with M-CSF resulted in the formation of monolayers of macrophages on day 7. When the M-CSF was removed on that day and the residual adherent cells were cultured in the absence of M-CSF for an additional 7 days, many colonies appeared with cells that were morphologically distinguishable from M-CSF-derived macrophages. The appearance of the colonies was dependent on the concentration of M-CSF used at the beginning of the culture. Each colony was isolated as a single clone and analyzed. All clones were negative for esterase staining. These cells did not express M-CSF receptor mRNA and did not show a mitogenic response to M-CSF. On the contrary, these cells could be stimulated to proliferate by fibroblast growth factor and platelet-derived growth factor. The polymerase chain reaction analysis of these cells demonstrated constitutive expression of mRNA for M-CSF, stem cell factor, and interleukin (IL)-1, but not IL-3. Some clones expressed mRNA for granulocyte/M-CSF and IL-6. We also examined the ability of the cells to maintain murine bone marrow high proliferative potential colony-forming cells (HPP-CFC) in a coculture system. Most of the clones showed a significant increase in total HPP-CFC numbers after 2 weeks of coculture, although the extent of stimulation differed among clones. These results suggested that the colonies established by M-CSF were composed of functional stromal cells that were phenotypically different from macrophages. J. Cell. Physiol. 173:1–9, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
Although interleukin-1 (IL-1) has been implicated in the pathogenesis of inflammatory osteolysis, the means by which it recruits osteoclasts and promotes bone destruction are largely unknown. Recently, a cytokine-driven, stromal cell-free mouse osteoclastogenesis model was established. A combination of macrophage colony stimulating factor (M-CSF) and receptor activator of NFkappaB ligand (RANKL) was proven to be sufficient in inducing differentiation of bone marrow hematopoietic precursor cells to bone-resorbing osteoclasts in the absence of stromal cells or osteoblasts. This study utilizes this model to examine the impact of human IL-1beta on in vitro osteoclastogenesis of bone marrow progenitor cells. We found that osteoclast precursor cells failed to undergo osteoclastogenesis when treated with IL-1 alone. In contrast, IL-1 dramatically up-regulated osteoclastogenesis by 2.5- to 4-folds in the presence of RANKL and M-CSF. The effect can be significantly blocked by IL-1 receptor antagonist (p < 0.01). Tumor necrosis factor-alpha (TNF-alpha) was undetectable in the culture medium of differentiating osteoclasts induced by IL-1. Adding exogenous TNF-alpha neutralizing antibody had no influence on the IL-1-induced effect as well. These results show that in the absence of stromal cells, IL-1 exacerbates osteoclastogenesis by cooperating with RANKL and M-CSF, while TNF-alpha is not involved in this IL-1-stimulated osteoclast differentiation pathway.  相似文献   

4.
The growth of primitive murine hematopoietic progenitors, high proliferative potential colony-forming cells (HPP-CFC), has been reported to be improved in low O2 tension cultures. In this report we investigated the growth of HPP-CFC stimulated by combinations of interleukin (IL)-1, IL-6, kit-ligand (KL), granulocyte (G) colony-stimulating factor (CSF), macrophage-CSF (M-CSF), granulocyte-macrophage-CSF (GM-CSF) and IL-3 in clonal cultures incubated at 7% or 21% O2 tension. Neither the numbers of HPP-CFC colonies nor the number of cells per HPP-CFC colony differed significantly between cultures grown under 7% or 21% O2 tension. The mean number of cells per HPP-CFC colony was found to range from 3.9 x 10(4) to 2.2 x 10(5). The smallest HPP-CFC colonies were stimulated by the cytokine combination IL-1 + IL-6 + KL, whereas the largest colonies were stimulated by a combination of all seven cytokines tested. The growth of erythroid colonies from murine or human bone marrow did, however, show some enhancement when cultured at a lower O2 tension. These results demonstrate that the growth of murine HPP-CFC was not compromised when cultured at ambient O2 concentration.  相似文献   

5.
We attempted to characterize the phenotype of cells which initiate fibroblastic stromal cell formation (stroma-initiating cells: SICs), precursor cells for fibroblastic stromal cells, based on the expression of cell surface antigens. First, we stained adult murine bone marrow cells with several monoclonal antibodies and separated them by magnetic cell sorting. SICs were abundant in the c-kit(+), Sca-1(+), CD34(+), VCAM-1(+), c-fms(+), and Mac-1(-) populations. SICs were recovered in the lineage-negative (Lin(-)) cells but not the Lin(+) cells. When macrophage colony-stimulating factor (M-CSF) was absent from the culture medium, no stromal colony appeared among the populations enriched in SICs. Based on these findings, the cells negative for lineage markers and positive for c-fms (M-CSF receptor) were further divided on the basis of the expression of c-kit, VCAM-1, Sca-1 or CD34 with a fluorescence-activated cell sorter. SICs were found to be enriched in the Lin(-)c-fms(+)c-kit(low) cells and Lin(-)c-fms(+)VCAM-1(+) cells but not in Lin(-)c-fms(+)Sca-1(+) cells and Lin(-)c-fms(+)CD34(low) cells. As a result, the SICs were found to be present at highest frequency in Lin(-)c-fms(+)c-kit(low)VCAM-1(+) cells: a mean of 64% of the SICs in the Lin(-) cells were recovered in the population. In morphology and several characteristics, the stromal cells derived from Lin(-)c-fms(+)c-kit(low)VCAM-1(+) cells resembled fibroblastic cells. The number of Lin(-)c-fms(+)c-kit(low)VCAM-1(+) cells in bone marrow of mice injected with M-CSF was higher than that in control mice. In this study, we identified SICs as Lin(-)c-fms(+)c-kit(low)VCAM-1(+) cells and demonstrated that M-CSF had the ability to increase the cell population in vivo.  相似文献   

6.
This study reports that TNF-alpha is a potent mitogen for human bone marrow sternal cells in vitro (assessed by [(3)H]-thymidine incorporation into DNA and cell counts). In contrast, cytokines such as IL-1alpha, IL-1beta, IL-2, IL-3, IL-4, IL-6, LIF, SCF, M-CSF, G-CSF and GM-CSF had no effect. The effect of TNF-alpha on the growth of human bone marrow stromal cells could be of importance during inflammatory processes which take place in the marrow, for example marrow fibrosis.  相似文献   

7.
在无外源刺激条件征,我室所建小鼠胎肝基质细胞系MFLC可自发分泌多处类型细胞因子,其中IL-6及化学趋化因了水平较高,GM-CSF较低,但示检测到IL-3及IL-7活性,引细胞上清对小鼠骨髓造血干细胞有明显的促集落形成效应。并呈现剂量依赖关系,所形成的集落以CFU-GMM及CFU-GM为主,此细胞上清还促进5-Fu耐受小鼠骨髓造血干细胞的集落形成,提示上清中存在SCF样活性成份。上述结果表明,MF  相似文献   

8.
Interleukin-1 (IL-1) is one of the most potent bone-resorbing factors involved in bone loss associated with inflammation. We previously reported that IL-1 prolonged the survival of multinucleated osteoclast-like cells (OCLs) formed in cocultures of murine osteoblasts/stromal cells and bone marrow cells via the prevention of spontaneously occurring apoptosis. It was reported that macrophage colony-stimulating factor (M-CSF/CSF-1) prolongs the survival of OCLs without the help of osteoblasts/stromal cells. The present study was conducted to determine whether IL-1 also directly induces the multinucleation and activation of OCLs. Mononuclear osteoclast-like cells (prefusion osteoclasts; pOCs) were purified using the "disintegrin" echistatin from cocultures of murine osteoblastic cells (MB 1.8 cells) and bone marrow cells. Both IL-1 and M-CSF prolonged the survival and induced the multinucleation of pOCs through their respective receptors. However, actin ring formation (a functional marker of osteoclasts) by multinucleated cells was observed in the pOC cultures treated with IL-1, but not those treated with M-CSF. We previously reported that enriched multinucleated OCLs as well as pOCs placed on bone/dentine slices formed few resorption pits, but their pit-forming activity was greatly increased by the addition of osteoblasts/stromal cells. Here, pit-forming activity of both pOCs and enriched OCLs placed on dentine slices was induced by adding IL-1, even in the absence of osteoblasts/stromal cells. M-CSF failed to induce pit-forming activity in pOC and enriched OCL cultures. These results indicate that IL-1 induces the multinucleation and bone-resorbing activity of osteoclasts even in the absence of osteoblasts/stromal cells.  相似文献   

9.
The effects of granulocyte-macrophage colony stimulating factor (GM-CSF), macrophage colony stimulating factor (M-CSF), and interleukin 3 (IL3) on osteoclast formation were tested by incubation of murine hemopoietic cells on plastic coverslips and bone slices with GM-CSF, M-CSF, or IL3, with or without 1,25(OH)2 vitamin D3 (1,25(OH)2D3). Osteoclastic differentiation was detected after incubation by scanning electron microscopical examination of bone slices for evidence of osteoclastic excavations, and by autoradiographic assessment of cells for 1,25(OH)2D3-calcitonin (CT) binding. The differentiation of CT-receptor-positive cells preceded bone resorption, but the number that developed correlated with the extent of bone resorption (r = 0.88). M-CSF and GM-CSF substantially reduced bone resorption and CT-receptor-positive cell formation. The degree of inhibition of bone resorption could not be attributed to effects on the function of mature cells, since M-CSF inhibits resorption by such cells only by 50%, and GM-CSF has no effect. GM-CSF inhibited the development of mature function (bone resorption) to a greater extent than it inhibited CT-receptor-positive cell formation. Since CT-receptor expression antedated resorptive function, this suggests that GM-CSF resulted in the formation of reduced numbers of relatively immature osteoclasts. This suggests that it may exert a restraining effect on the maturation of cells undergoing osteoclastic differentiation in response to 1,25(OH)2D3. Conversely, IL3, which also has no effect on mature osteoclasts, by itself induced CT-receptor expression but not bone resorption; in combination with 1,25(OH)2D3 it induced a threefold increase in bone resorption and CT-receptor-positive cells compared with cultures incubated with 1,25(OH)2D3 alone. IL3 did not induce CT-receptors in peritoneal macrophages, blood monocytes, or J 774 cells. The results suggest that IL3 induces only partial maturation of osteoclasts, which is augmented or completed by additional factors such as 1,25(OH)2D3.  相似文献   

10.
在无外源刺激条件下,我室所建小鼠胎肝基质细胞系MFLC可自发分泌多种类型细胞因子,其中IL-6及化学趋化因子水平较高,GM-CSF水平较低,但未检测到IL-3及IL-7活性。此细胞上清对小鼠骨髓造血干细胞有明显的促集落形成效应,并呈现剂量依赖关系,所形成的集落以CFU-GMM及CFU-GM为主;此细胞上清还促进5-Fu耐受小鼠骨髓造血干细胞的集落形成,提示上清中存在SCF样活性成份。上述结果表明,MFLC的建立有利于分析干细胞在胎肝内如何向pro-T细胞分化发育的机理并有利于阐明细胞因子网络调节在其中的作用。  相似文献   

11.
12.
Steel factor (SF) (also called stem cell factor, mast cell growth factor, or c-kit ligand) is a recently cloned hemopoietic growth factor that is produced by bone marrow stromal cells, fibroblasts, and hepatocytes. In both mouse and man it acts synergistically with several colony stimulating factors, including interleukin-3 (IL-3) and granulocyte macrophage-colony stimulating factor (GM-CSF), to induce the proliferation and differentiation of primitive hemopoietic precursor cells. In order to study its mechanism of action and to explore the molecular basis for its synergistic activity we have examined the proteins that become tyrosine phosphorylated in response to SF, IL-3, and GM-CSF. We report herein that SF, but not IL-3 or GM-CSF, dramatically stimulates the tyrosine phosphorylation of the product of the recently discovered proto-oncogene, vav, in two SF-responsive human cell lines, M07E and TF-1. Although phosphorylation is very rapid, reaching maximal levels within 2 min at 37 degrees C, co-immunoprecipitation studies suggest that c-kit may either not associate directly with p95vav or bind to it with very low affinity. Nonetheless, our data suggest that c-kit may utilize p95vav to mediate downstream signaling in hemopoietic cells.  相似文献   

13.
14.
Bone marrow stromal cells regulate marrow haematopoiesis by secreting growth factors such as macrophage colony stimulating factor (M-CSF) that regulates the proliferation, differentiation and several functions of cells of the mononuclear-phagocytic lineage. By using a specific ELISA we found that their constitutive secretion of M-CSF is enhanced by tumour necrosis factor-alpha (TNF-alpha). The lipid mediator prostaglandin E2 (PGE2) markedly reduces in a time- and dose-dependent manner the constitutive and TNF-alpha-induced M-CSF synthesis by bone marrow stromal cells. In contrast, other lipid mediators such as 12-HETE, 15-HETE, leukotriene B4, leukotriene C4 and lipoxin A4 have no effect. EP2/EP4 selective agonists (11-deoxy PGE1 and 1-OH PGE1) and EP2 agonist (19-OH PGE2) inhibit M-CSF synthesis by bone marrow stromal cells while an EP1/EP3 agonist (sulprostone) has no effect. Stimulation with PGE2 induces an increase of intracellular cAMP levels in bone marrow stromal cells. cAMP elevating agents (forskolin and cholera toxin) mimic the PGE2-induced inhibition of M-CSF production. In conclusion, PGE2 is a potent regulator of M-CSF production by human bone marrow stromal cells, its effects being mediated via cAMP and PGE receptor EP2/EP4 subtypes.  相似文献   

15.
We have studied stromal cell function in naive or interleukin-1 (IL-1)-stimulated (100 pg/ml) long-term marrow cultures (LTC) from 12 normal donors and 21 patients with severe aplastic anemia (AA). Conditioned media (CM) from normal LTC contained levels of erythroid burst-promoting activity (BPA) and granulocyte/macrophage (GM) colony-stimulating activity (CSA) comparable to those previously described (Migliaccio et al., [1990] Blood, 75:305-312). The addition of IL-1 to these cultures increased the level of CSA and, specifically, of granulocyte colony-stimulating factor (G-CSF) released. Anti-GM-CSF antibody neutralized BPA and CSA in normal naive LTC CM but only the CSA in the CM from IL-1-stimulated LTC. Since the concentrations of GM-CSF, as detected with a specific immunoassay, did not increase after IL-1 treatment, these data suggest that IL-1-stimulated cultures contain an unidentified growth factor having BPA. CM from AA stromal cells contained levels of CSA comparable to those observed in normal stromal cell CM but had significantly lower levels of BPA. Neither anti-GM-CSF nor anti-IL-3 antibodies neutralized the BPA in AA stromal cell CM. This activity may be related to that found in the CM of IL-1-treated normal stromal cells. In nearly 50% of stromal cell cultures of AA patients, addition of IL-1 failed to increase the BPA, CSA, or G-CSF. The presence of an inhibitor in naive or IL-1-treated AA stromal cell CM was excluded by adding the CM to IL-3-stimulated cultures. These findings suggest that G-CSF and GM-CSF genes are differentially regulated in the marrow microenvironment. Furthermore, a marrow microenvironment, deficient in BPA production and, in some cases, unresponsive to IL-1 could contribute to marrow failure in some patients with AA.  相似文献   

16.
During pathological bone loss, factors that are both stimulatory and inhibitory for osteoclast differentiation are over-expressed. Despite the presence of inhibitory factors, osteoclast differentiation is significantly enhanced to bring about bone loss. To examine the hypothesis that stimulatory growth factors overcome the effects of inhibitory factors, we have examined the ability of IGF-I, IGF-II, IL-6, LIF, and TNF-alpha to overcome osteoclast differentiation inhibition by GM-CSF in vitro. Osteoclast numbers were significantly elevated by treatment with IGF-I, IGF-II, IL-6, LIF, or TNF-alpha alone whereas GM-CSF treatment of stromal cell and osteoclast co-cultures inhibited osteoclast formation. IL-6, LIF, or TNF-alpha, individually overcame GM-CSF inhibition whereas neither IGF-I nor IGF-II treatment overcame GM-CSF inhibition. Interestingly, GM-CSF addition with either IL-6 or TNF-alpha increased osteoclast numbers beyond that seen with either IL-6 or TNF-alpha alone. Combined treatment with TNF-alpha and IL-6 showed a significant increase in osteoclast numbers with GM-CSF addition. Examination of the impacts of these growth factors individually or in combinations on stromal cell M-CSF, RANKL, and OPG expression revealed a complex pattern involving alterations in the ratio of RANKL to OPG and/or M-CSF expression as candidate mechanisms of action.  相似文献   

17.
Mesenchymal stem cells (MSCs) are a population of pluripotent cells within the bone marrow microenvironment defined by their ability to differentiate into cells of the osteogenic, chondrogenic, tendonogenic, adipogenic, and myogenic lineages. We have developed methodologies to isolate and culture-expand MSCs from human bone marrow, and in this study, we examined the MSC's role as a stromal cell precursor capable of supporting hematopoietic differentiation in vitro. We examined the morphology, phenotype, and in vitro function of cultures of MSCs and traditional marrow-derived stromal cells (MDSCs) from the same marrow sample. MSCs are morphologically distinct from MDSC cultures, and flow cytometric analyses show that MSCs are a homogeneous cell population devoid of hematopoietic cells. RT-PCR analysis of cytokine and growth factor mRNA in MSCs and MDSCs revealed a very similar pattern of mRNAs including IL-6, -7, -8, -11, -12, -14, and -15, M-CSF, Flt-3 ligand, and SCF. Steady-state levels of IL-11 and IL-12 mRNA were found to be greater in MSCs. Addition of IL-1α induced steady-state levels of G-CSF and GM-CSF mRNA in both cell preparations. In contrast, IL-1α induced IL-1α and LIF mRNA levels only in MSCs, further emphasizing phenotypic differences between MSCs and MDSCs. In long-term bone marrow culture (LTBMC), MSCs maintained the hematopoietic differentiation of CD34+ hematopoietic progenitor cells. Together, these data suggest that MSCs represent an important cellular component of the bone marrow microenvironment. J. Cell. Physiol. 176:57–66, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Hierarchical down-modulation of hemopoietic growth factor receptors   总被引:31,自引:0,他引:31  
F Walker  N A Nicola  D Metcalf  A W Burgess 《Cell》1985,43(1):269-276
Granulocytes and macrophages can be produced in vitro when progenitor cells from mouse bone marrow are stimulated by any of four distinct colony stimulating factors, Multi-CSF (IL-3), GM-CSF, G-CSF, and M-CSF (CSF-1). At 0 degrees C the four CSFs do not cross-compete for binding to bone marrow cells, indicating that each has a specific cell surface receptor. However, at 21 degrees C or 37 degrees C, Multi-CSF inhibits binding of the other three CSFs and GM-CSF inhibits binding of G-CSF and M-CSF. Rather than competing directly for receptor binding, the binding of Multi-CSF, GM-CSF, or G-CSF to their own receptor induces the down-modulation (and thus activation) of other CSF receptors at 37 degrees C. The pattern and potency of down-modulation activity exhibited by each type of CSF parallels the pattern and potency of its biological activity. We propose a model in which the biological interactions of the four CSFs are explained by their ability to down-modulate and activate lineage-specific receptors.  相似文献   

19.
Hematopoietic cells maintained for long periods on primary cultures of bone marrow stromal cells formed cobblestone colonies (Dexter's long-term bone marrow culture, LTBC). These stably maintained hematopoietic cells (for 4 months) were transferred to a coculture on an established spleen stromal cell line (MSS62), and maintained under stromal cell layer, where they retained their invasive ability in the restricted space between the stromal cell layer and culture substratum (DFC culture). DFC contained lineage-negative (Lin-), c-Kit+, Sca-1- cells and spontaneously produced Mac-1+, Gr-1+ cells. DFC could not grow in the absence of MSS62 stromal cells, although, GM-CSF, IL-3, or IL-7 stimulated its growth. Production of granulocyte and monocytic cells was maintained by GM-CSF or IL-3 while it was decreased by IL-7. RT-PCR analysis showed that the IL-7 responsive cell population expressed early lymphoid markers (Ikaros, Pax-5, Oct-2, Rag-1, TdT, IL-7R and Imu), while lacking expression of receptors for G-CSF (G-CSFR) and for M-CSF (M-CSFR), or myeloperoxidase (MPO). These results suggested that DFC simultaneously contained lymphoid-committed progenitors and myeloid-committed progenitors, and that cytokines may expand their responding progenitor cells under the influence of signals provided by the stromal cells. Such a stromal cell-dependent culture system may be useful to analyze the switching mechanism from constitutive to inducible hematopoiesis in vitro.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号