首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Degradation of unwanted proteins is important in protein quality control cooperating with the dynein/dynactin-mediated trafficking along the acetylated microtubule (MT) network. Proteins associated directly/indirectly with tubulin/MTs play crucial roles in both physiological and pathological processes. Our studies focus on the interrelationship of the tubulin deacetylase HDAC6, the MT-associated TPPP/p25 with its deacetylase inhibitory potency and the hub dynein light chain DYNLL/LC8, constituent of dynein and numerous other protein complexes. In this paper, evidence is provided for the direct interaction of DYNLL/LC8 with TPPP/p25 and HDAC6 and their assembly into binary/ternary complexes with functional potency. The in vitro binding data was obtained with recombinant proteins and used for mathematical modelling. These data and visualization of their localizations by bimolecular fluorescence complementation technology and immunofluorescence microscopy in HeLa cells revealed the promoting effect of TPPP/p25 on the interaction of DYNLL/LC8 with both tubulin and HDAC6. Localization of the LC8-2-TPPP/p25 complex was observed on the MT network in contrast to the LC8-2-HDAC6 complex, which was partly translocated to the nucleus. LC8-2 did not influence directly the acetylation of the MT network. However, the binding of TPPP/p25 to a new binding site of DYNLL/LC8, outside the canonical binding groove, counteracted the TPPP/p25-derived hyperacetylation of the MT network. Our data suggest that multiple associations of the regulatory proteins of the MT network could ensure fine tuning in the regulation of the intracellular trafficking process either by the complexation of DYNLL/LC8 with new partners or indirectly by the modulation of the acetylation level of the MT network.  相似文献   

2.
Barbar E 《Biochemistry》2008,47(2):503-508
The operations within a living cell depend on the collective activity of networks of proteins, sometimes termed "interactomes". Within these networks, most proteins interact with few partners, while a small proportion of proteins, called hubs, participate in a large number of interactions and play a central role in organizing these interactomes. LC8 was first discovered as an essential component of the microtubule-based molecular motor dynein and as such is involved in fundamental processes, including retrograde vesicular trafficking, ciliary/flagellar motility, and cell division. More recently, evidence has accumulated that LC8 also interacts with proteins that are not clearly connected with dynein or microtubule-based transport, including some with roles in apoptosis, viral pathogenesis, enzyme regulation, and kidney development. Here, we introduce the idea that LC8 is a hub protein essential in diverse protein networks, and its function as a dynein light chain is but one of many. We further propose that the crucial regulatory roles of LC8 in various systems are due to its ability to promote dimerization of partially disordered proteins.  相似文献   

3.
LC8 dynein light chain (DYNLL) is a highly conserved eukaryotic hub protein with dozens of binding partners and various functions beyond being a subunit of dynein and myosin Va motor proteins. Here, we compared the kinetic and thermodynamic parameters of binding of both mammalian isoforms, DYNLL1 and DYNLL2, to two putative consensus binding motifs (KXTQTX and XG(I/V)QVD) and report only subtle differences. Peptides containing either of the above motifs bind to DYNLL2 with micromolar affinity, whereas a myosin Va peptide (lacking the conserved Gln) and the noncanonical Pak1 peptide bind with K(d) values of 9 and 40 μM, respectively. Binding of the KXTQTX motif is enthalpy-driven, although that of all other peptides is both enthalpy- and entropy-driven. Moreover, the KXTQTX motif shows strikingly slower off-rate constant than the other motifs. As most DYNLL partners are homodimeric, we also assessed the binding of bivalent ligands to DYNLL2. Compared with monovalent ligands, a significant avidity effect was found as follows: K(d) values of 37 and 3.5 nM for a dimeric myosin Va fragment and a Leu zipper dimerized KXTQTX motif, respectively. Ligand binding kinetics of DYNLL can best be described by a conformational selection model consisting of a slow isomerization and a rapid binding step. We also studied the binding of the phosphomimetic S88E mutant of DYNLL2 to the dimeric myosin Va fragment, and we found a significantly lower apparent K(d) value (3 μM). We conclude that the thermodynamic and kinetic fine-tuning of binding of various ligands to DYNLL could have physiological relevance in its interaction network.  相似文献   

4.
LC8 dynein light chain (now termed DYNLL1 and DYNLL2 in mammals), a dimeric 89 amino acid protein, is a component of the dynein multi-protein complex. However a substantial amount of DYNLL1 is not associated to microtubules and it can thus interact with dozens of cellular and viral proteins that display well-defined, short linear motifs. Using DYNLL1 as bait in a yeast two-hybrid screen of a human heart library we identified ATMIN, an ATM kinase-interacting protein, as a DYNLL1-binding partner. Interestingly, ATMIN displays at least 18 SQ/TQ motifs in its sequence and DYNLL1 is known to bind to proteins with KXTQT motifs. Using pepscan and yeast two-hybrid techniques we show that DYNLL1 binds to multiple SQ/TQ motifs present in the carboxy-terminal domain of ATMIN. Recombinant expression and purification of the DYNLL1-binding region of ATMIN allowed us to obtain a polypeptide with an apparent molecular mass in gel filtration close to 400 kDa that could bind to DYNLL1 in vitro. The NMR data-driven modelled complexes of DYNLL1 with two selected ATMIN peptides revealed a similar mode of binding to that observed between DYNLL1 and other peptide targets. Remarkably, co-expression of mCherry-DYNLL1 and GFP-ATMIN mutually affected intracellular protein localization. In GFP-ATMIN expressing-cells DNA damage induced efficiently nuclear foci formation, which was partly impeded by the presence of mCherry-DYNLL1. Thus, our results imply a potential cellular interference between DYNLL1 and ATMIN functions.  相似文献   

5.
Dyneins across eukaryotes: a comparative genomic analysis   总被引:1,自引:0,他引:1  
Dyneins are large minus-end-directed microtubule motors. Each dynein contains at least one dynein heavy chain (DHC) and a variable number of intermediate chains (IC), light intermediate chains (LIC) and light chains (LC). Here, we used genome sequence data from 24 diverse eukaryotes to assess the distribution of DHCs, ICs, LICs and LCs across Eukaryota. Phylogenetic inference identified nine DHC families (two cytoplasmic and seven axonemal) and six IC families (one cytoplasmic). We confirm that dyneins have been lost from higher plants and show that this is most likely because of a single loss of cytoplasmic dynein 1 from the ancestor of Rhodophyta and Viridiplantae, followed by lineage-specific losses of other families. Independent losses in Entamoeba mean that at least three extant eukaryotic lineages are entirely devoid of dyneins. Cytoplasmic dynein 2 is associated with intraflagellar transport (IFT), but in two chromalveolate organisms, we find an IFT footprint without the retrograde motor. The distribution of one family of outer-arm dyneins accounts for 2-headed or 3-headed outer-arm ultrastructures observed in different organisms. One diatom species builds motile axonemes without any inner-arm dyneins (IAD), and the unexpected conservation of IAD I1 in non-flagellate algae and LC8 (DYNLL1/2) in all lineages reveals a surprising fluidity to dynein function.  相似文献   

6.
The mitochondrial pathway of apoptosis is regulated by the interplay between the members of Bcl-2 family. Within this family, BH3-only proteins are the sensors of apoptotic stimuli and can trigger apoptosis either by inhibiting the anti-apoptotic Bcl-2-family proteins or by directly activating the effectors Bax and Bak. An expanding body of research suggests that a number of non-Bcl-2 proteins can also interact with Bcl-2 proteins and contribute to the decision of cell fate. Dynein light chain (LC8, DYNLL or DLC), a hub protein and a dimerizing engine has been proposed to regulate the pro-apoptotic activity of two BH3-only proteins, Bim and Bmf. Our recent work has provided insight into the mechanisms through which DLC1 (DYNLL1) modulates Bim activity. Here we discuss the present day understanding of Bim-DLC interaction and endeavor to evaluate this interaction in the light of information from studies of DLC with other binding partners.  相似文献   

7.
The NIMA family protein kinases Nek9/Nercc1 and the highly similar Nek6 and Nek7 form a signaling module activated in mitosis, when they are involved in the control of spindle organization and function. Here we report that Nek9, the module upstream kinase, binds to DYNLL/LC8, a highly conserved protein originally described as a component of the dynein complex. LC8 is a dimer that interacts with different proteins and has been suggested to act as a dimerization hub promoting the organization and oligomerization of partially disorganized partners. We find that the interaction of LC8 with Nek9 depends on a (K/R)XTQT motif adjacent to the Nek9 C-terminal coiled coil motif, results in Nek9 multimerization, and increases the rate of Nek9 autoactivation. LC8 binding to Nek9 is regulated by Nek9 activity through the autophosphorylation of Ser(944), a residue immediately N-terminal to the (K/R)XTQT motif. Remarkably, LC8 binding interferes with the interaction of Nek9 with its downstream partner Nek6 as well as with Nek6 activation, thus controlling both processes. Our work sheds light into the control of signal transduction through the module formed by Nek9 and Nek6/7 and uncovers a novel manner in which LC8 can regulate partner physiology by interfering with protein complex formation. We suggest that this and other LC8 functions can be specifically regulated by partner phosphorylation.  相似文献   

8.
9.
The homodimeric light chains LC8 and Tctex-1 are integral parts of the microtubule motor cytoplasmic dynein, as they directly associate with dynein intermediate chain IC and various cellular cargoes. These light chains appear to regulate assembly of the dynein complex by binding to and promoting dimerization of IC. In addition, both LC8 and Tctex-1 play roles in signaling, apoptosis, and neuronal development that are independent of their function in dynein, but it is unclear how these various activities are modulated. Both light chains undergo specific phosphorylation, and here we present biochemical and NMR analyses of phosphomimetic mutants that indicate how phosphorylation may regulate light chain function. For both LC8 and Tctex-1, phosphorylation promotes dissociation from IC while retaining their binding activity with other non-dynein proteins. Although LC8 and Tctex-1 are homologs having a common fold, their reduced affinity for IC upon phosphorylation arises by different mechanisms. In the case of Tctex-1, phosphorylation directly masks the IC binding site at the dimer interface, whereas for LC8, phosphorylation dissociates the dimer and indirectly eliminates the binding site. This modulation of the monomer-dimer equilibrium by phosphorylation provides a novel mechanism for discrimination among LC8 binding partners.  相似文献   

10.
The highly conserved LC8/DYNLL family proteins were originally identified in axonemal dyneins and subsequently found to function in multiple enzyme systems. Genomic analysis uncovered a third member (LC10) of this protein class in Chlamydomonas. The LC10 protein is extracted from flagellar axonemes with 0.6 M NaCl and cofractionates with the outer dynein arm in sucrose density gradients. Furthermore, LC10 is specifically missing only from axonemes of those strains that fail to assemble outer dynein arms. Previously, the oda12-1 insertional allele was shown to lack the Tctex2-related dynein light chain LC2. The LC10 gene is located approximately 2 kb from that of LC2 and is also completely missing from this mutant but not from oda12-2, which lacks only the 3' end of the LC2 gene. Although oda12-1 cells assemble outer arms that lack only LC2 and LC10, this strain exhibits a flagellar beat frequency that is consistently less than that observed for strains that fail to assemble the entire outer arm and docking complex (e.g., oda1). These results support a key regulatory role for the intermediate chain/light chain complex that is an integral and highly conserved feature of all oligomeric dynein motors.  相似文献   

11.
BCL2L11/BIM     
In response to toxic stimuli, BCL2L11 (also known as BIM), a BH3-only protein, is released from its interaction with dynein light chain 1 (DYNLL1 also known as LC8) and can induce apoptosis by inactivating anti-apoptotic BCL2 proteins and by activating BAX-BAK1. Recently, we discovered that BCL2L11 interacts with BECN1 (Beclin 1), and that this interaction is facilitated by DYNLL1. BCL2L11 recruits BECN1 to microtubules by bridging BECN1 and DYNLL1, thereby inhibiting autophagy. In starvation conditions, BCL2L11 is phosphorylated by MAPK8/JNK and this phosphorylation abolishes the BCL2L11-DYNLL1 interaction, allowing dissociation of BCL2L11 and BECN1, thereby ameliorating autophagy inhibition. This finding demonstrates a novel function of BIM beyond its roles in apoptosis, highlighting the crosstalk between autophagy and apoptosis, and suggests that BCL2L11’s dual effects in inhibiting autophagy and promoting apoptosis may have important roles in disease pathogenesis.  相似文献   

12.
The cytoplasmic dynein 1 cargo binding domain is formed by five subunits including the intermediate chain and the DYNLT, DYNLL, and DYNLRB light chain families. Six isoforms of the intermediate chain and two isoforms of each of the light chain families have been identified in mammals. There is evidence that different subunit isoforms are involved in regulating dynein function, in particular linking dynein to different cargoes. However, it is unclear how the subunit isoforms are assembled or if there is any specificity to their interactions. Co-immunoprecipitation using DYNLT-specific antibodies reveals that dynein complexes with DYNLT light chains also contain the DYNLL and DYNLRB light chains. The DYNLT light chains, but not DYNLL light chains, associate exclusively with the dynein complex. Yeast two-hybrid and co-immunoprecipitation assays demonstrate that both members of the DYNLT family are capable of forming homodimers and heterodimers. In addition, both homodimers of the DYNLT family bind all six intermediate chain isoforms. However, DYNLT heterodimers do not bind to the intermediate chain. Thus, whereas all combinations of DYNLT light chain dimers can be made, not all of the possible combinations of the isoforms are utilized during the assembly of the dynein complex.  相似文献   

13.
14.
15.
The tumor suppressor protein p53 is known to undergo cytoplasmic dynein-dependent nuclear translocation in response to DNA damage. However, the molecular link between p53 and the minus end-directed microtubule motor dynein complex has not been described. We report here that the 8-kDa light chain (LC8) of dynein binds to p53-binding protein 1 (53BP1). The LC8-binding domain was mapped to a short peptide segment immediately N-terminal to the kinetochore localization region of 53BP1. The LC8-binding domain is completely separated from the p53-binding domain in 53BP1. Therefore, 53BP1 can potentially act as an adaptor to assemble p53 to the dynein complex. Unlike other known LC8-binding proteins, 53BP1 contains two distinct LC8-binding motifs that are arranged in tandem. We further showed that 53BP1 can directly associate with the dynein complex. Disruption of the interaction between LC8 and 53BP1 in vivo prevented DNA damage-induced nuclear accumulation of p53. These data illustrate that LC8 is able to function as a versatile acceptor to link a wide spectrum of molecular cargoes to the dynein motor.  相似文献   

16.
Cytoplasmic dynein is the multisubunit protein complex responsible for many microtubule-based intracellular movements. Its cargo binding domain consists of dimers of five subunits: the intermediate chains, the light intermediate chains, and the Tctex1, Roadblock, and LC8 light chains. The intermediate chains have a key role in the dynein complex. They bind the three light chains and the heavy chains, which contain the motor domains, but little is known about how the two intermediate chains interact. There are six intermediate chain isoforms, and it has been hypothesized that different isoforms may regulate specific dynein functions. However, there are little data on the potential combinations of the intermediate chain isoforms in the dynein complexes. We used co-immunoprecipitation analyses to demonstrate that all combinations of homo- and heterodimers of the six intermediate chains are possible. Therefore the formation of dynein complexes with different combinations of isoforms is not limited by interaction between the various intermediate chains. We further sought to identify the domain necessary for the dimerization of the intermediate chains. Analysis of a series of truncation and deletion mutants showed that a 61-amino-acid region is necessary for dimerization of the intermediate chain. This region does not include the N-terminal coiled-coil, the C-terminal WD repeat domain, or the three different binding sites for the Tctex1, LC8, and Roadblock light chains. Analytical gel filtration and covalent cross-linking of purified recombinant polypeptides further demonstrated that the intermediate chains can dimerize in vitro in the absence of the light chains.  相似文献   

17.
Using proteomic and immunochemical techniques, we have identified the light and intermediate chains (IC) of outer arm dynein from sperm axonemes of the ascidian Ciona intestinalis. Ciona outer arm dynein contains six light chains (LC) including a leucine-rich repeat protein, Tctex1- and Tctex2-related proteins, a protein similar to Drosophila roadblock and two components related to Chlamydomonas LC8. No LC with thioredoxin domains is included in Ciona outer arm dynein. Among the five ICs in Ciona, three are orthologs of those in sea urchin dynein: two are WD-repeat proteins and the third one, unique to metazoan sperm flagella, contains both thioredoxin and nucleoside diphosphate kinase modules. The remaining two Ciona ICs have extensive coiled coil structure and show sequence similarity to outer arm dynein docking complex protein 2 (DC2) that was first identified in Chlamydomonas flagella. We recently identified a third DC2-like protein with coiled coil structure, Ci-Axp66.0 that is also associated in substoichiometric amounts with Ciona outer arm dynein. In addition, Oda5p, a component of an additional complex required for assembly of outer arm dynein in Chlamydomonas flagella, also groups with this family of DC2-like proteins. Thus, the assembly of outer arm dynein onto doublet microtubules involves multiple coiled-coil proteins related to DC2.  相似文献   

18.
Recent data from multiple laboratories indicate that upon infection, many different families of viruses hijack the dynein motor machinery and become transported in a retrograde manner towards the cell nucleus. In certain cases, one of the dynein light chains, LC8, is involved in this interaction. Using a library of overlapping dodecapeptides synthesized on a cellulose membrane (pepscan technique) we have analyzed the interaction of the dynein light chain LC8 with 17 polypeptides of viral origin. We demonstrate the strong binding of two herpesvirus polypeptides, the human adenovirus protease, vaccinia virus polymerase, human papillomavirus E4 protein, yam mosaic virus polyprotein, human respiratory syncytial virus attachment glycoprotein, human coxsackievirus capsid protein and the product of the AMV179 gene of an insect poxvirus to LC8. Our data corroborate the manipulation of the dynein macromolecular complex of the cell during viral infection and point towards the light chain LC8 as one of the most frequently used targets of virus manipulation.  相似文献   

19.
20.
The cytoplasmic dynein motor generates pulling forces to center and orient the mitotic spindle within the cell. During this positioning process, dynein oscillates from one pole of the cell cortex to the other but only accumulates at the pole farthest from the spindle. Here, we show that dynein light chain 1 (DYNLL1) is required for this asymmetric cortical localization of dynein and has a specific function defining spindle orientation. DYNLL1 interacted with a spindle-microtubule–associated adaptor formed by CHICA and HMMR via TQT motifs in CHICA. In cells depleted of CHICA or HMMR, the mitotic spindle failed to orient correctly in relation to the growth surface. Furthermore, CHICA TQT motif mutants localized to the mitotic spindle but failed to recruit DYNLL1 to spindle microtubules and did not correct the spindle orientation or dynein localization defects. These findings support a model where DYNLL1 and CHICA-HMMR form part of the regulatory system feeding back spindle position to dynein at the cell cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号