首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The products of arachidonic acid metabolism are key mediators of inflammatory responses in the central nervous system, and yet we do not know the mechanisms of their regulation. The phospholipase A(2) enzymes are sources of cellular arachidonic acid, and the enzymes cyclooxygenase-2 (COX-2) and microsomal PGE synthase-1 (mPGES-1) are essential for the synthesis of inflammatory PGE(2) in the brain. These studies seek to determine the function of cytosolic phospholipase A(2)alpha (cPLA(2)alpha) in inflammatory PGE(2) production in the brain. We wondered whether cPLA(2)alpha functions in inflammation to produce arachidonic acid or to modulate levels of COX-2 or mPGES-1. We investigated these questions in the brains of wild-type mice and mice deficient in cPLA(2)alpha (cPLA(2)alpha(-/-)) after systemic administration of LPS. cPLA(2)alpha(-/-) mice had significantly less brain COX-2 mRNA and protein expression in response to LPS than wild-type mice. The reduction in COX-2 was most apparent in the cells of the cerebral blood vessels and the leptomeninges. The brain PGE(2) concentration of untreated cPLA(2)alpha(-/-) mice was equal to their wild-type littermates. After LPS treatment, however, the brain concentration of PGE(2) was significantly less in cPLA(2)alpha(-/-) than in cPLA(2)alpha(+/+) mice (24.4 +/- 3.8 vs. 49.3 +/- 11.6 ng/g). In contrast to COX-2, mPGES-1 RNA levels increased equally in both mouse genotypes, and mPGES-1 protein was unaltered 6 h after LPS. We conclude that cPLA(2)alpha regulates COX-2 levels and modulates inflammatory PGE(2) levels. These results indicate that cPLA(2)alpha inhibition is a novel anti-inflammatory strategy that modulates, but does not completely prevent, eicosanoid responses.  相似文献   

3.
Arachidonic acid is a precursor for biosynthesis of eicosanoids, including prostaglandins, thromboxanes, leukotrienes, and lipoxins. Cytosolic phospholipase A(2) (cPLA(2)) plays a key role in the release of arachidonic acid as the substrate of cyclooxygenase-1 (COX-1) or COX-2. We found that the level of cPLA(2) mRNA was markedly elevated in the polyps and correlated with the polyp size in the small intestine of the Apc(delta)(716) knockout mouse, a model for human familial adenomatous polyposis. To determine the role of cPLA(2) in intestinal tumorigenesis, we then introduced a cPLA(2) gene mutation into Apc(delta)(716) mice. In the compound mutant mice, the size of the small intestinal polyps was reduced significantly, although the numbers remained unchanged. These results provide direct genetic evidence that cPLA(2) plays a key role in the expansion of polyps in the small intestine rather than in the initiation process. In contrast, colonic polyps were not affected in either size or number. Interestingly, group X sPLA(2) was constitutively expressed in the colon at much higher levels than in the small intestine. These results suggest that in the colon, group X sPLA(2) supplies arachidonic acid in both the normal epithelium and the polyps even in the absence of cPLA(2).  相似文献   

4.
Brain lipid metabolism in the cPLA2 knockout mouse   总被引:3,自引:0,他引:3  
We examined brain phospholipid metabolism in mice in which the cytosolic phospholipase A(2) (cPLA(2,) Type IV, 85 kDa) was knocked out (cPLA(2)(-/-) mice). Compared with controls, these mice demonstrated altered brain concentrations of several phospholipids, reduced esterified linoleate, arachidonate, and docosahexaenoate in choline glycerophospholipid, and reduced esterified arachidonate in phosphatidylinositol. Unanesthetized cPLA(2)(-/-) mice had reduced rates of incorporation of unlabeled arachidonate from plasma and from the brain arachidonoyl-CoA pool into ethanolamine glycerophospholipid and choline glycerophospholipid, but elevated rates into phosphatidylinositol. These differences corresponded to altered turnover and metabolic loss of esterified brain arachidonate. These results suggests that cPLA(2) is necessary to maintain normal brain concentrations of phospholipids and of their esterified polyunsaturated fatty acids. Reduced esterified arachidonate and docosahexaenoate may account for the resistance of the cPLA(2)(-/-) mouse to middle cerebral artery occlusion, and should influence membrane fluidity, neuroinflammation, signal transduction, and other brain processes.  相似文献   

5.
The enzymatic properties of cytosolic phospholipase A(2)gamma (cPLA(2)gamma), an isoform of 85-kDa group IV cPLA(2)alpha (cPLA(2)alpha) were studied in vitro and when the enzyme was expressed in cells. cPLA(2)gamma expressed in Sf9 cells is associated with membrane. Membranes isolated from [(3)H]arachidonic acid-labeled Sf9 cells expressing cPLA(2)gamma, constitutively release [(3)H]arachidonic acid. The membrane-associated activity is inhibited by the group IV PLA(2) inhibitor methylarachidonyl fluorophosphonate, but not effectively by the group VI PLA(2) inhibitor (E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one. cPLA(2)gamma has higher lysophospholipase activity than PLA(2) activity. Purified His-cPLA(2)gamma does not exhibit phospholipase A(1) activity, but sequentially hydrolyzes fatty acid from the sn-2 and sn-1 positions of phosphatidylcholine. cPLA(2)gamma overexpressed in HEK293 cells is constitutively active in isolated membranes, releasing large amounts of oleic, arachidonic, palmitic, and stearic acids; however, basal fatty acid release from intact cells is not increased. cPLA(2)gamma overexpressed in lung fibroblasts from cPLA(2)alpha-deficient mice is activated by mouse serum resulting in release of arachidonic, oleic, and palmitic acids, whereas overexpression of cPLA(2)alpha results primarily in arachidonic acid release.  相似文献   

6.
Group IVA cytosolic phospholipase A(2) (cPLA(2)α), which preferentially cleaves arachidonic acid from phospholipids, plays a role in apoptosis and tissue injury. Downstream signals in response to tumor necrosis factor (TNF)-α, a mediator of myocardial ischemia-reperfusion (I/R) injury, involve cPLA(2)α activation. This study examined the potential role of cPLA(2)α and its mechanistic link with TNF-α in myocardial I/R injury using cPLA(2)α knockout (cPLA(2)α(-/-)) mice. Myocardial I/R was created with 10-wk-old male mice by 1 h ligation of the left anterior descending coronary artery, followed by 24 h of reperfusion. As a result, compared with wild-type (cPLA(2)α(+/+)) mice, cPLA(2)α(-/-) mice had a 47% decrease in myocardial infarct size, preservation of echocardiographic left ventricle (LV) function (%fractional shortening: 14 vs. 21%, respectively), and lower content of leukotriene B(4) and thromboxane B(2) (62 and 50% lower, respectively) in the ischemic myocardium after I/R. Treatment with the TNF-α inhibitor (soluble TNF receptor II/IgG1 Fc fusion protein, sTNFR:Fc) decreased myocardial I/R injury and LV dysfunction in cPLA(2)α(+/+) mice but not cPLA(2)α(-/-) mice. sTNFR:Fc also suppressed cPLA(2)α phosphorylation in the ischemic myocardium after I/R of cPLA(2)α(+/+) mice. Similarly, sTNFR:Fc exerted protective effects against hypoxia-reoxygenation (H/R)-induced injury in the cultured cardiomyocytes from cPLA(2)α(+/+) mice but not cPLA(2)α(-/-) cardiomyocytes. H/R and TNF-α induced cPLA(2)α phosphorylation in cPLA(2)α(+/+) cardiomyocytes, which was reversible by sTNFR:Fc. In cPLA(2)α(-/-) cardiomyocytes, TNF-α induced apoptosis and release of arachidonic acid to a lesser extent than in cPLA(2)α(+/+) cardiomyocytes. In conclusion, disruption of cPLA(2)α attenuates myocardial I/R injury partly through inhibition of TNF-α-mediated pathways.  相似文献   

7.
Ueno N  Murakami M  Kudo I 《FEBS letters》2000,475(3):242-246
We performed reconstitution analyses of functional interaction between phospholipase A(2) (PLA(2)) and phospholipase D (PLD) enzymes. Cotransfection of HEK293 cells with cytosolic (cPLA(2)) or type IIA secretory (sPLA(2)-IIA) PLA(2) and PLD(2), but not PLD(1), led to marked augmentation of stimulus-induced arachidonate release. Interleukin-1-stimulated arachidonate release was accompanied by prostaglandin E(2) production via cyclooxygenase-2, the expression of which was augmented by PLD(2). Conversely, activation of PLD(2), not PLD(1), was facilitated by cPLA(2) or sPLA(2)-IIA. Thus, our results revealed functional crosstalk between signaling PLA(2)s and PLD(2) in the regulation of various cellular responses in which these enzymes have been implicated.  相似文献   

8.
Ischemic stroke is caused by obstruction of blood flow to the brain, resulting in energy failure that initiates a complex series of metabolic events, ultimately causing neuronal death. One such critical metabolic event is the activation of phospholipase A2 (PLA2), resulting in hydrolysis of membrane phospholipids and release of free fatty acids including arachidonic acid, a metabolic precursor for important cell-signaling eicosanoids. PLA2 enzymes have been classified as calcium-dependent cytosolic (cPLA2) and secretory (sPLA2) and calcium-independent (iPLA2) forms. Cardiolipin hydrolysis by mitochondrial sPLA2 disrupts the mitochondrial respiratory chain and increases production of reactive oxygen species (ROS). Oxidative metabolism of arachidonic acid also generates ROS. These two processes contribute to formation of lipid peroxides, which degrade to reactive aldehyde products (malondialdehyde, 4-hydroxynonenal, and acrolein) that covalently bind to proteins/nucleic acids, altering their function and causing cellular damage. Activation of PLA2 in cerebral ischemia has been shown while other studies have separately demonstrated increased lipid peroxidation. To the best of our knowledge no study has directly shown the role of PLA2 in lipid peroxidation in cerebral ischemia. To date, there are very limited data on PLA2 protein by Western blotting after cerebral ischemia, though some immunohistochemical studies (for cPLA2 and sPLA2) have been reported. Dissecting the contribution of PLA2 to lipid peroxidation in cerebral ischemia is challenging due to multiple forms of PLA2, cardiolipin hydrolysis, diverse sources of ROS arising from arachidonic acid metabolism, catecholamine autoxidation, xanthine oxidase activity, mitochondrial dysfunction, activated neutrophils coupled with NADPH oxidase activity, and lack of specific inhibitors. Although increased activity and expression of various PLA2 isoforms have been demonstrated in stroke, more studies are needed to clarify the cellular origin and localization of these isoforms in the brain, their responses in cerebral ischemic injury, and their role in oxidative stress.  相似文献   

9.
Phospholipase A2(s) (PLA2(s)) are a family of enzymes that is present in a variety of mammalian and nonmammalian sources. Phagocytic cells contain cytosolic PLA2 (cPLA2) as well as several types of secreted PLA2, all of which have the potential to produce proinflammatory lipid mediators. The role of the predominant form of cPLA2 present in neutrophils is cPLA2alpha was studied by many groups. By modulating its expression in a variety of phagocytes it was found that it plays a major role in formation of eicosanoids. In addition, it was reported that cPLA2alpha also regulates the NADPH oxidase activation. The specificity of its effect on the NADPH oxidase is evident by results demonstrating that the differentiation process as well as other phagocytic functions are normal in cPLA2alpha-deficient PLB cell model. The novel dual subcellular localization of cPLA2alpha in different compartments, in the plasma membranes and in the nucleus, provides a molecular mechanism for the participation of cPLA2alpha in different processes (stimulation of NADPH oxidase and formation of eicosanoids) in the same cells.  相似文献   

10.
Brain tissue contains multiple forms of intracellular phospholipase A(2) (PLA(2)) activity that differ from each other in many ways including their response to specific inhibitors. The systemic administration of kainic acid to rats produces a marked increase in cPLA(2) activity in neurons and astrocytes. This is associated with increased lipid peroxidation as evidenced by accumulation of 4-hydroxynonenal (4-HNE) modified proteins. The present study describes the effect of specific inhibitors of Ca(2+)-dependent or Ca(2+)-independent PLA(2) on kainite-induced excitotoxic injury in rat hippocampal slices. Specific inhibitors of Ca(2+)-dependent PLA(2) prevented the decrease of a neuronal marker, GluR1, and increase in cPLA(2) and 4-HNE immunoreactivities in slices treated with kainate. This shows that cPLA(2) plays an important role in kainite-induced neurotoxicity and that cPLA(2) inhibitors can be used to protect hippocampal slices from damage induced by kainate.  相似文献   

11.
We provide novel evidence that human melanoma cell lines (M10, M14, SK-MEL28, SK-MEL93, 243MEL, 1074MEL, OCM-1, and COLO38) expressed, at mRNA and protein levels, either Ca(2+)-independent phospholipase A(2) (iPLA(2)) or cytosolic phospholipase A(2) (cPLA(2)) and its phosphorylated form. Normal human melanocytes contained the lowest levels of both PLA(2)s. Cyclooxygenase-1 and -2 (COX-1 and COX-2) were also expressed in cultured tumor cells as measured by Western blots. The most pronounced overexpression of iPLA(2) and COX-1 was found in two melanoma-derived cells, M14 and COLO38. Normal human melanocytes and the M10 melanoma cell line displayed no COX-2 expression. Using subcellular fractionation, Western blot and confocal microcopy analyses, in paradigmatic SK-MEL28 and SK-MEL93 cells we showed that iPLA(2), COX-1 and even cPLA(2) were equally located in the cytosol, membrane structures and perinuclear region while COX-2 was preferentially associated with the cytosol. Specific inhibitors of these three enzymes significantly reduced the basal proliferation rate either in melanocytes or in melanoma cell lines. These results, coupled with the inhibition of the cell proliferation by electroporation of melanoma cells with cPLA(2) or COX-2 antibodies, demonstrate that a possible correlation between PLA(2)-COX expression and tumor cell proliferation in the melanocytic system does exist. In addition, the high expression level of both PLA(2)s and COXs suggests that eicosanoids modulate cell proliferation and tumor invasiveness.  相似文献   

12.
Cytosolic phospholipase A(2)alpha (cPLA(2)alpha; type IVA), an essential initiator of stimulus-dependent arachidonic acid (AA) metabolism, underwent caspase-mediated cleavage at Asp(522) during apoptosis. Although the resultant catalytically inactive N-terminal fragment, cPLA(2)(1-522), was inessential for cell growth and the apoptotic process, it was constitutively associated with cellular membranes and attenuated both the A23187-elicited immediate and the interleukin-1-dependent delayed phases of AA release by several phospholipase A(2)s (PLA(2)s) involved in eicosanoid generation, without affecting spontaneous AA release by PLA(2)s implicated in phospholipid remodeling. Confocal microscopic analysis revealed that cPLA(2)(1-522) was distributed in the nucleus. Pharmacological and transfection studies revealed that Ca(2+)-independent PLA(2) (iPLA(2); type VI), a phospholipid remodeling PLA(2), contributes to the cell death-associated increase in fatty acid release. iPLA(2) was cleaved at Asp(183) by caspase-3 to a truncated enzyme lacking most of the first ankyrin repeat, and this cleavage resulted in increased iPLA(2) functions. iPLA(2) had a significant influence on cell growth or death, according to cell type. Collectively, the caspase-truncated form of cPLA(2)alpha behaves like a naturally occurring dominant-negative molecule for stimulus-induced AA release, rendering apoptotic cells no longer able to produce lipid mediators, whereas the caspase-truncated form of iPLA(2) accelerates phospholipid turnover that may lead to apoptotic membranous changes.  相似文献   

13.
The objective of this investigation was to determine the role of secretory and cytosolic isoforms of phospholipase A(2) (PLA(2)) in the induction of arachidonic acid (AA) and leukotriene synthesis in human eosinophils and the mechanism of PLA(2) activation by mitogen-activated protein kinase (MAPK) isoforms in this process. Pharmacological activation of eosinophils with fMLP caused increased AA release in a concentration (EC(50) = 8.5 nM)- and time-dependent (t(1/2) = 3.5 min) manner. Both fMLP-induced AA release and leukotriene C(4) (LTC(4)) secretion were inhibited concentration dependently by arachidonic trifluoromethyl ketone, a cytosolic PLA(2) (cPLA(2)) inhibitor; however, inhibition of neither the 14-kDa secretory phospholipase A(2) by 3-(3-acetamide-1-benzyl-2-ethylindolyl-5-oxy)propanephosphonic acid nor cytosolic Ca(2+)-independent phospholipase A(2) inhibition by bromoenol lactone blocked hydrolysis of AA or subsequent leukotriene synthesis. Pretreatment of eosinophils with a mitogen-activated protein/extracellular signal-regulated protein kinase (ERK) kinase inhibitor, U0126, or a p38 MAPK inhibitor, SB203580, suppressed both AA production and LTC(4) release. fMLP induced phosphorylation of MAPK isoforms, ERK1/2 and p38, which were evident after 30 s, maximal at 1-5 min, and declined thereafter. fMLP stimulation also increased cPLA(2) activity in eosinophils, which was inhibited completely by 30 microM arachidonic trifluoromethyl ketone. Preincubation of eosinophils with U0126 or SB203580 blocked fMLP-enhanced cPLA(2) activity. Furthermore, inhibition of Ras, an upstream GTP-binding protein of ERK, also suppressed fMLP-stimulated AA release. These findings demonstrate that cPLA(2) activation causes AA hydrolysis and LTC(4) secretion. We also find that cPLA(2) activation caused by fMLP occurs subsequent to and is dependent upon ERK1/2 and p38 MAPK activation. Other PLA(2) isoforms native to human eosinophils possess no significant activity in the stimulated production of AA or LTC(4).  相似文献   

14.
Pulmonary fibrosis is an interstitial disorder of the lung parenchyma whose mechanism is poorly understood. Potential mechanisms include the infiltration of inflammatory cells to the lungs and the generation of pro-inflammatory mediators. In particular, idiopathic pulmonary fibrosis is a progressive and fatal form of the disorder characterized by alveolar inflammation, fibroblast proliferation and collagen deposition. Here, we investigated the role of cytosolic phospholipase A(2) (cPLA(2)) in pulmonary fibrosis using cPLA(2)-null mutant mice, as cPLA(2) is a key enzyme in the generation of pro-inflammatory eicosanoids. Disruption of the gene encoding cPLA(2) (Pla2g4a) attenuated IPF and inflammation induced by bleomycin administration. Bleomycin-induced overproduction of thromboxanes and leukotrienes in lung was significantly reduced in cPLA(2)-null mice. Our data suggest that cPLA(2) has an important role in the pathogenesis of pulmonary fibrosis. The inhibition of cPLA(2)-initiated pathways might provide a novel therapeutic approach to pulmonary fibrosis, for which no pharmaceutical agents are currently available.  相似文献   

15.
Interleukin (IL-)1 stimulates prostaglandin E(2)(PGE(2)) generation in fibroblasts, and preferential couplings between particular phospholipase A(2)(PLA(2)) and cyclooxygenase (COX) isozymes are implicated with IL-1-induced delayed PGE(2)generation. The regulatory effects of interferon (IFN)-gamma and IL-4 on IL-1beta-induced COX, PLA(2)isoforms expression and terminal delayed PGE(2)generation were examined in three types of human fibroblasts. These human fibroblasts constitutively expressed cytosolic PLA(2)(cPLA(2)) and COX-1 enzymes, and exhibited delayed PGE(2)generation in response to IL-1beta. IL-1beta also stimulated expression of cPLA(2)and COX-2 only, while constitutive and IL-1beta-induced type IIA and type V secretory PLA(2)s (sPLA(2)s) expression could not be detected. A COX-2 inhibitor and cPLA(2)inhibitor markedly suppressed the IL-1beta-induced delayed PGE(2)generation, while a type IIA sPLA(2)inhibitor failed to affect it. IFN-gamma and IL-4 dramatically inhibited the IL-1beta-induced delayed PGE(2)generation; these cytokines apparently suppressed IL-1beta-stimulated COX-2 expression and only weakly suppressed cPLA(2)expression in response to IL-1beta. These results indicate that IL-1beta-induced delayed PGE(2)generation in these human fibroblasts mainly depends on de novo induction of COX-2 and cPLA(2), irrespective of the constitutive presence of COX-1, and that IFN-gamma and IL-4 inhibit IL-1beta-induced delayed PGE(2)generation by suppressing, predominantly, COX-2 expression.  相似文献   

16.
The principal secreted estrogen, 17beta-estradiol rapidly activates signaling cascades that regulate important physiological processes including ion transport across membranes, cytosolic pH and cell proliferation. These effects have been extensively studied in the MCF-7 estrogen-responsive human breast carcinoma cell line. Here, we demonstrate that a physiological concentration of 17beta-estradiol caused a rapid, synchronous and transient increase in intracellular calcium concentration in a confluent monolayer of MCF-7 cells 2-3 min after treatment. This response was abolished when cells were pre-incubated with the phospholipase A(2) (PLA(2)) inhibitor quinacrine or with the cyclooxygenase inhibitor indomethacin. The translocation of GFP-cPLA(2)alpha to perinuclear membranes occurred 1-2 min after 17beta-estradiol treatment; this translocation was concurrent with the transient phosphorylation of cPLA(2)alpha at serine residue 505. The phosphorylation and translocation of cPLA(2) were sensitive to inhibition of the extracellular signal regulated kinase (ERK) signaling cascade and occurred simultaneously with a transient activation of ERK. The phosphorylation of cPLA(2) could be stimulated by membrane impermeable 17beta-estradiol conjugated to bovine serum albumen and was blocked by an antagonist of the classical estrogen receptor. Here we show, for the first time, that PLA(2) and the eicosanoid biosynthetic pathway are involved in the 17beta-estradiol induced rapid calcium responses of breast cancer cells.  相似文献   

17.
Both elevated iron concentrations and the resulting oxidative stress condition are common signs in retinas of patients with age-related macular degeneration (AMD). The role of phospholipase A(2) (PLA(2)) during iron-induced retinal toxicity was investigated. To this end, isolated retinas were exposed to increasing Fe(2+) concentrations (25, 200 or 800μM) or to the vehicle, and lipid peroxidation levels, mitochondrial function, and the activities of cytosolic PLA(2) (cPLA(2)) and calcium-independent PLA(2) (iPLA(2)) were studied. Incubation with Fe(2+) led to a time- and concentration-dependent increase in retinal lipid peroxidation levels whereas retinal cell viability was only affected after 60min of oxidative injury. A differential release of arachidonic acid (AA) and palmitic acid (PAL) catalyzed by cPLA(2) and iPLA(2) activities, respectively, was also observed in microsomal and cytosolic fractions obtained from retinas incubated with iron. AA release diminished as the association of cyclooxigenase-2 increased in microsomes from retinas exposed to iron. Retinal lipid peroxidation and cell viability were also analyzed in the presence of cPLA(2) inhibitor, arachidonoyl trifluoromethyl ketone (ATK), and in the presence of iPLA(2) inhibitor, bromoenol lactone (BEL). ATK decreased lipid peroxidation levels and also ERK1/2 activation without affecting cell viability. BEL showed the opposite effect on lipid peroxidation. Our results demonstrate that iPLA(2) and cPLA(2) are differentially regulated and that they selectively participate in retinal signaling in an experimental model resembling AMD.  相似文献   

18.
The group IV cytosolic phospholipase A(2) (cPLA(2)) has been localized to the nucleus (M. R. Sierra-Honigmann, J. R. Bradley, and J. S. Pober, Lab. Investig. 74:684-695, 1996) and is known to translocate from the cytosolic compartment to the nuclear membrane (S. Glover, M. S. de Carvalho, T. Bayburt, M. Jonas, E. Chi, C. C. Leslie, and M. H. Gelb, J. Biol. Chem. 270:15359-15367, 1995; A. R. Schievella, M. K. Regier, W. L. Smith, and L. L. Lin, J. Biol. Chem. 270:30749-30754, 1995). We hypothesized that nuclear proteins interact with cPLA(2) and participate in the functional effects of this translocation. We have identified a nuclear protein, cPLA(2)-interacting protein (PLIP), a splice variant of human Tip60, which interacts with the amino terminal region of cPLA(2). Like Tip60, PLIP cDNA includes the MYST domain containing a C2HC zinc finger and well-conserved similarities to acetyltransferases. Both PLIP and Tip60 coimmunoprecipitate and colocalize with cPLA(2) within the nuclei of transfected COS cells. A polyclonal antibody raised to PLIP recognizes both PLIP and Tip60. Endogenous Tip60 and/or PLIP in rat mesangial cells is localized to the nucleus in response to serum deprivation. Nuclear localization coincides temporally with apoptosis. PLIP expression, mediated by adenoviral gene transfer, potentiates serum deprivation-induced prostaglandin E(2) (PGE(2)) production and apoptosis in mouse mesangial cells from cPLA(2)(+/+) mice but not in mesangial cells derived from cPLA(2)(-/-) mice. Thus PLIP, a splice variant of Tip60, interacts with cPLA(2) and potentiates cPLA(2)-mediated PGE(2) production and apoptosis.  相似文献   

19.
Lung vascular permeability is acutely increased by high-pressure and high-volume ventilation. To determine the roles of mechanically activated cytosolic PLA2 (cPLA2)and Clara cell secretory protein (CCSP), a modulator of cPLA2 activity, we compared lung injury with and without a PLA2 inhibitor in wild-type mice and CCSP-null mice (CCSP-/-) ventilated with high and low peak inflation pressures (PIP) for 2- or 4-h periods. After ventilation with high PIP, we observed significant increases in the bronchoalveolar lavage albumin concentrations, lung wet-to-dry weight ratios, and lung myeloperoxidase in both genotypes compared with unventilated controls and low-PIP ventilated mice. All injury variables except myeloperoxidase were significantly greater in the CCSP-/- mice relative to wild-type mice. Inhibition of cPLA2 in wild-type and CCSP-/- mice ventilated at high PIP for 4 h significantly reduced bronchoalveolar lavage albumin and total protein and lung wet-to-dry weight ratios compared with vehicle-treated mice of the same genotype. Membrane phospho-cPLA2 and cPLA2 activities were significantly elevated in lung homogenates of high-PIP ventilated mice of both genotypes but were significantly higher in the CCSP-/- mice relative to the wild-type mice. Inhibition of cPLA2 significantly attenuated both the phospho-cPLA2 increase and increased cPLA2 activity due to high-PIP ventilation. We propose that mechanical activation of the cPLA2 pathway contributes to acute high PIP-induced lung injury and that CCSP may reduce this injury through inhibition of the cPLA2 pathway and reduction of proinflammatory products produced by this pathway.  相似文献   

20.
Boyan BD  Wang L  Wong KL  Jo H  Schwartz Z 《Steroids》2006,71(4):286-290
1,25-Dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] acts on chondrocytes and osteoblasts through traditional nuclear Vitamin D receptor (VDR) mechanisms as well as through rapid actions on plasma membranes that initiate intracellular signaling pathways. We have investigated the mechanisms involved in activation of protein kinase C (PKC) and downstream biological responses that depend on the latter pathway. These studies show that PKC activation depends on presence of a membrane receptor ERp60 and rapid increases in phospholipase A(2) (PLA(2)) activity. Cells that are responsive to 1alpha,25(OH)(2)D(3) express PLA(2) activating protein (PLAA), suggesting a link between ERp60 and PLA(2). Increased PLA(2) results in increased arachidonic acid release and formation of lysophospholipid, which then activates phospholipase C beta (PLCbeta), leading to rapid formation of inositol-trisphosphate (IP3) and diacylglycerol (DAG). PLA(2), PLC, and DAG are all associated with lipid rafts including caveolae in many cells, suggesting that the caveolar environment may be an important mediator of PKC activation by 1alpha,25(OH)(2)D(3). Here, we use the VDR(-/-) mouse costochondral cartilage growth plate to examine the expression of ERp60 and PLAA in vivo in 1alpha,25(OH)(2)D(3)-responsive hypertrophic chondrocytes (growth zone cells) and in resting zone cells that do not respond to this Vitamin D metabolite in vitro. In addition, we determined if intact lipid rafts are required for the response of rat costochondral cartilage growth zone cells to 1alpha,25(OH)(2)D(3). The results show that ERp60 and PLAA are localized to 1alpha,25(OH)(2)D(3)-responsive growth zone cells and metaphyseal osteoblasts, even in VDR(-/-) mice. Disruption of lipid rafts using beta-cyclodextrin blocks the activation of PKC by 1alpha,25(OH)(2)D(3) and reduces the ability of 1alpha,25(OH)(2)D(3) to regulate [(35)S]-sulfate incorporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号