首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Complementary DNA of cytochrome P-450 CYP1A, in addition to CYP1A1, has been isolated from Japanese eel (Anguilla japonica) liver treated with 3-methylcholanthrene. The cDNA contained a 5′ untranslated region of 66 bp, an open reading frame of 1554 bp coding for 517 amino acids and a stop codon, and a 3′ untranslated region of 1166 bp. The predicted molecular weight of the Japanese eel CYP1A was approximately 58.5 kDa. The nucleotide sequence exhibited identities with the reported CYP1A1 sequences of 77% for Japanese eel, 75% for rainbow trout, 72% for scup, plaice, and butterfly fish, and 71% for toadfish. The deduced amino acid sequence exhibited identities with the reported CYP1A1 sequences of 78% for Japanese eel, 77% for rainbow trout, 75% for scup, 74% for toadfish, 73% for plaice, and 72% for butterfly fish. The novel eel CYP1A obtained had less similarity to the other teleost CYP1A1 proteins (72%–78%) than that of the eel CYP1A1 (74%–80%). When compared with mammalian CYP proteins, the novel eel CYP1A was more similar to the CYP1A1 proteins (54%–56%) than to the CYP1A2 proteins (50%–53%). The phylogenetic tree of the teleost CYP1A genes constructed using the maximum likelihood method suggested that the novel eel CYP1A is ubiquitous among the Anguilliformes. Received August 25, 2000; accepted November 30, 2000  相似文献   

2.
Cytochrome P450 1A (CYP1A) complementary DNA was isolated from eel (Anguilla japonica) liver treated with 3-methylcholanthrene. The cDNA contained a 5′ untranslated region of 163 bp, an open reading flame of 1560 bp coding for 519 amino acids and a stop codon, and a 3′ untranslated region of 1730 bp. The predicted molecular weight was approximately 58.4 kDa. The deduced amino acid sequence exhibited identities with reported CYP1A sequences of 80% for rainbow trout, 79% for scup, 76% for plaice and butterfly fish, and 74% for toadfish. When compared with mammalian CYP proteins, the eel CYP1A was more similar to CYP1A1 (54%–56%) than to CYP1A2 (49%–52%). Northern and Southern blot analyses showed two distinct bands, suggesting the existence of another 3-methylcholanthrene-inducible CYP1A gene in eel. Received December 19, 1998; accepted February 18, 1999  相似文献   

3.
Two novel CYP1 genes from teleost fish constituting a new subfamily have been cloned. These paralogous sequences are designated CYP1C1 and CYP1C2. Both genes were initially obtained from untreated scup Stenotomus chrysops tissues by RT-PCR and RACE. Scup CYP1C1 and CYP1C2 code for 524 and 525 amino acids, respectively, and share 80-81% identity at the nucleotide and amino acid levels. Orthologues of CYP1C1 and CYP1C2 were identified in genome databases for other fish species, and both CYP1B1 and CYP1C1 were cloned from zebrafish (Danio rerio). Phylogenetic analysis shows that CYP1Cs and CYP1Bs constitute a sister clade to the CYP1As. Analysis of sequence domains likely to have functional significance suggests that the two CYP1Cs in scup may have catalytic functions and/or substrate specificity that differ from each other and from those of mammalian CYP1Bs or CYP1As. RT-PCR results indicate that CYP1C1 and CYP1C2 are variously expressed in several scup organs.  相似文献   

4.
5.
We have isolated and sequenced a novel P450 gene (CYP319A1) from the cattle tick, Boophilus microplus. The CYP319A1 cDNA encodes a protein of 531 amino acids with an estimated molecular weight of 60.9k. It contains all highly conserved motifs characteristic of P450 enzymes. Comparison of deduced amino acid sequence with other CYP members shows that the CYP319A1 is more closely related to CYP4 family, but its overall identity to the CYP4 family is less than 40%. Therefore, it was assigned to a new P450 family by the P450 nomenclature committee. A pseudogene which shares high homology with the CYP319A1 was identified. Analysis of genomic sequence of the pseudogene indicated that the pseudogene contains two additional DNA inserts in the coding region, which disrupt the open reading frame. RT-PCR analysis showed that CYP319A1 is expressed in both susceptible and acaricide-resistant ticks.  相似文献   

6.
Cytochrome P450 enzymes (CYP450s) represent a superfamily of haem-thiolate proteins. CYP450s are most abundant in the liver, a major site of drug metabolism, and play key roles in the metabolism of a variety of substrates, including drugs and environmental contaminants. Interaction of two or more different drugs with the same enzyme can account for adverse effects and failure of therapy. Human CYP3A4 metabolizes about 50% of all known drugs, but little is known about the orthologous CYP450s in horses. We report here the genomic organization of the equine CYP3A gene cluster as well as a comparative analysis with the human CYP3A gene cluster. The equine CYP450 genes of the 3A family are located on ECA 13 between 6.97-7.53 Mb, in a region syntenic to HSA 7 99.05-99.35 Mb. Seven potential, closely linked equine CYP3A genes were found, in contrast to only four genes in the human genome. RNA was isolated from an equine liver sample, and the approximately 1.5-kb coding sequence of six CYP3A genes could be amplified by RT-PCR. Sequencing of the RT-PCR products revealed numerous hitherto unknown single nucleotide polymorphisms (SNPs) in these six CYP3A genes, and one 6-bp deletion compared to the reference sequence (EquCab2.0). The presence of the variants was confirmed in a sample of genomic DNA from the same horse. In conclusion, orthologous genes for the CYP3A family exist in horses, but their number differs from those of the human CYP3A gene family. CYP450 genes of the same family show high homology within and between mammalian species, but can be highly polymorphic.  相似文献   

7.
The fugu (pufferfish) genome has been sequenced, and a second genome assembly was released 17 May 2002. Exhaustive searches were made to identify all P450 genes and pseudogenes from the earlier release of 26 October 2001. P450 genes assembled as completely as possible from these data were used to do additional searches of the newer assembly and all P450 genes and pseudogenes in the available fugu sequence data have been identified, compared to human P450s, and assigned names. There are 54 P450 genes in fugu and 1 nearly intact pseudogene (CYP3A50P). CYP1A is missing much of its N-terminal half; however, 45 P450 genes are completely assembled. Eight others are lacking only one or two exons or less. CYP2X4 is known only from an EST. This may be a 55th P450 gene if it represents an accurate sequence. In addition to 2X4, there are 16 other pseudogene fragments or small pieces of P450 genes. At the P450 family level, 17 of 18 mammalian families are found in fugu. CYP39 is the only CYP family missing and it is not seen in any other fish sequence data either. The CYP2 family shows the largest degree of divergence. In the CYP2 family, only CYP2R1 and CYP2U1 are conserved as recognizable subfamilies across species. Intron-exon boundaries are largely preserved across 420 million years of evolution.  相似文献   

8.
Phylogenetic Analysis of the Cytochrome P450 3 (CYP3) Gene Family   总被引:2,自引:0,他引:2  
Cytochrome P450 genes (CYP) constitute a superfamily with members known from the Bacteria, Archaea, and Eukarya. The CYP3 gene family includes the CYP3A and CYP3B subfamilies. Members of the CYP3A subfamily represent the dominant CYP forms expressed in the digestive and respiratory tracts of vertebrates. The CYP3A enzymes metabolize a wide variety of chemically diverse lipophilic organic compounds. To understand vertebrate CYP3 diversity better, we determined the killifish (Fundulus heteroclitus) CYP3A30 and CYP3A56 and the ball python (Python regius) CYP3A42 sequences. We performed phylogenetic analyses of 45 vertebrate CYP3 amino acid sequences using a Bayesian approach. Our analyses indicate that teleost, diapsid, and mammalian CYP3A genes have undergone independent diversification and that the ancestral vertebrate genome contained a single CYP3A gene. Most CYP3A diversity is the product of recent gene duplication events. There is strong support for placement of the guinea pig CYP3A genes within the rodent CYP3A diversification. The rat, mouse, and hamster CYP3A genes are mixed among several rodent CYP3A subclades, indicative of a complex history involving speciation and gene duplication. Phylogenetic analyses suggest two CYP3A gene duplication events early in rodent history, with the rat CYP3A9 and mouse Cyp3a13 clade having a sister relationship to all other rodent CYP3A genes. In primate history, the human CYP3A43 gene appears to have a sister relationship to all other known primate CYP3A genes. Other, more recent gene duplications are hypothesized to have occurred independently within the human, pig, rat, mouse, guinea pig, and fish genomes. Functional analyses suggest that gene duplication is strongly tied to acquisition of new function and that convergent evolution of CYP3A function may be frequent among independent gene copies. Current address (Rachel L. Cox): Laboratory of Aquatic Biomedicine, Marine Biology Laboratory, Woods Hole, MA 02543, USA  相似文献   

9.
A cDNA coding for plaice (Pleuronectes platessa) alpha1-microglobulin (Leaver et al., 1994, Comp. Biochem. Physiol. 108B, 275-281) was expressed and purified from baculovirus-infected insect cells. Specific monoclonal antibodies were then prepared and used to isolate the protein from plaice liver and serum. Mature 28.5 kDa alpha1-microglobulin was found in both liver and serum. The protein consisted of an 184 amino acid peptide with a complex N-glycan in position Asn123, one intrachain disulfide bridge and a yellow-brown chromophore. Physicochemical characterization indicated a globular shape with a frictional ratio of 1.37, electrophoretic charge-heterogeneity and antiparallel beta-sheet structure. A smaller, incompletely glycosylated, yellow-brown alpha1-microglobulin as well as a 45 kDa precursor protein were also found in liver. The chromophore was found to be linked to alpha1-microglobulin intracellularly. Recombinant plaice alpha1-microglobulin isolated from insect cells had the same N-terminal sequence, globular shape and yellow-brown color as mature alpha1-microglobulin, but carried a smaller, fucosylated, non-sialylated N-glycan in the Asn123 position. The concentration of alpha1-microglobulin in plaice serum was 20 mg/l and it was found both as a 28.5 kDa component and as high molecular weight components. Thus, the size, shape, charge and color of plaice alpha1-microglobulin were similar to mammalian alpha1-microglobulin, indicating a high degree of structural conservation between fish and human alpha1-microglobulin. The monoclonal antibodies against plaice alpha1-microglobulin cross-reacted with human alpha1-microglobulin, emphasizing the structural similarity.  相似文献   

10.
Although transforming growth factor-beta (TGF-beta) genes have been described in several species of fish, whether an individual fish possesses more than one member of this multigene family has yet to be established. During this study, three DNA fragments were isolated from the plaice (Pleuronectes platessa) by homology cloning. Sequence analysis revealed that each fragment closely resembled a distinct member of the TGF-beta family. Each putative plaice TGF-beta clustered individually with a different TGF-beta subgroup during phylogenetic analysis suggesting that these may be the plaice homologues of vertebrate TGF-beta 1/4/5, -beta 2 or -beta 3. The first direct evidence for the presence of multiple TGF-beta genes in a single fish species is presented.  相似文献   

11.
12.
Members of the cytochrome P450 family 1 (CYP1s) are involved in the detoxification and bioactivation of numerous environmental pollutants and phytochemicals such as polycyclic aromatic hydrocarbons (PAHs), aromatic amines, and flavonoids. The vertebrate CYP1 gene comprises four subfamilies: CYP1A, CYP1B, CYP1C, and CYP1D. Recently, the CYP1D gene was identified in fish, and subsequently in the platypus. These findings indicate the possibility that all vertebrates have a functional CYP1D subfamily. However, there is no information on the mammalian CYP1D gene. In this study we investigated the genomic location of CYP1D genes in mammals and other vertebrates in silico. We also performed phylogenetic analysis and calculated the identities and similarities of CYP1D sequences. The data from synteny and phylogenetic analyses of CYP1D genes demonstrated the evolutionary history of the CYP1 gene family. The results suggested that CYP1D became a nonfunctional pseudogene in human and bovine species; however, several other mammals possess functional CYP1D genes. The promoter regions of CYP1D genes were also examined. Unlike other CYP1 isoforms, few xenobiotic responsive element (XRE)-like sequences were found upstream of the CYP1D genes. Analysis of mammalian CYP1Ds also provided new insight into the relationship between CYP1 genes and the aryl hydrocarbon receptor.  相似文献   

13.
14.
15.
16.
A cDNA expression library of Trichoderma reesei RutC-30 was constructed in the yeast Saccharomyces cerevisiae. Two genes, abf1 and bxl1, were isolated by screening the yeast library for extracellular alpha-L-arabinofuranosidase activity with the substrate p-nitrophenyl-alpha-L-arabinofuranoside. The genes abf1 and bxl1 encode 500 and 758 amino acids, respectively, including the signal sequences. The deduced amino acid sequence of ABFI displays high-level similarity to the alpha-L-arabinofuranosidase B of Aspergillus niger, and the two can form a new family of glycosyl hydrolases. The deduced amino acid sequence of BXLI shows similarities to the beta-glucosidases grouped in family 3. The yeast-produced enzymes were tested for enzymatic activities against different substrates. ABFI released L-arabinose from p-nitrophenyl-alpha-L-arabinofuranoside and arabinoxylans and showed some beta-xylosidase activity toward p-nitrophenyl-beta-D-xylopyranoside. BXLI did not release L-arabinose from arabinoxylan. It showed alpha-L-arabinofuranosidase, alpha-L-arabinopyranosidase, and beta-xylosidase activities against p-nitrophenyl-alpha-L-arabinofuranosidase, p-nitrophenyl-alpha-L-arabinopyranoside, and p-nitrophenyl-beta-D- xylopyranoside, respectively, with the last activity being the highest. It was also able to hydrolyze xylobiose and slowly release xylose from polymeric xylan. ABFI and BXLI correspond to a previously purified alpha-L-arabinofuranosidase and a beta-xylosidase from T. reesei, respectively, as confirmed by partial amino acid sequencing of the Trichoderma-produced enzymes. Both enzymes produced in yeasts displayed hydrolytic properties similar to those of the corresponding enzymes purified from T. reesei.  相似文献   

17.
A cDNA clone encoding the soluble guanylyl cyclase alpha2 subunit was isolated from medaka fish (Oryzias latipes) and designated as OlGCS-alpha2. The OlGCS-alpha2 cDNA was 3,192 bp in length and the open reading frame (ORF) encodes a protein of 805 amino acids. The deduced amino acid sequence has high similarity to that of the mammalian alpha2 subunit gene except for the N-terminal regulatory domain. The C-terminal 5 amino acids, "RETSL", which have been reported to interact with the post synaptic density protein (PSD)-95 were conserved. An RNase protection assay with adult fish organs showed that OlGCS-alpha2 was expressed mainly in the brain and testis. The complete nucleotide sequence (about 41 kbp) of the OlGCS-alpha2 genomic DNA clone isolated from a medaka fish BAC library indicated that the OlGCS-alpha2 gene consisted of 9 exons and 8 introns. The 5'-flanking region and larger introns, such as introns 1, 4, and 7, contained the several fragments conserved in the nucleotide sequences of Rex6 (non-long terminal repeat retrotransposon), MHC class I genomic region, and OlGC1, the medaka fish homolog of the mammalian guanylyl cyclase B gene. Linkage analysis on the medaka fish chromosome demonstrated that the OlGCS-alpha2 gene was mapped to LG13; this mapping position was different from those for the OlGCS-alpha1 and OlGCS-beta1 genes (LG1).  相似文献   

18.
In this study, CYP2B-immunoreactive protein was purified to electrophoretic homogeneity from the liver microsomes of leaping mullet. The purified cytochrome P450 (CYP) gave a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis having a M(r) of 49,300 Da. Absolute absorption spectrum of the purified CYP showed a maximum at 417 nm and CO-difference spectrum of dithionite-reduced cytochrome P450 gave a peak at 450 nm. The purified CYP was found to be active in N-demethylation of benzphetamine, erythromycin, and ethylmorphine, and O-dealkylation of pentoxyresorufin in the reconstituted system. However, it was unable to catalyze O-dealkylation of ethoxyresorufin, methoxyresorufin, benzyloxyresorufin, and hydroxylation of lauric acid and aniline. The purified CYP showed strong cross-reactivity with anti-sheep lung CYP2B, a homologue of CYP2B4. N-terminal amino acid sequence of the mullet P450 had the highest degree of homology with CYP2Bs among the known CYPs. Spectral, electrophoretic, immunochemical, N-terminal amino acid sequence, and biocatalytic properties of the purified CYP are most similar to those of mammalian cytochrome P4502B. All these data indicate that the purified CYP is certainly 2B-like. In this study, we not only purified biocatalytically active CYP2B-like protein from fish, but also demonstrated detailed functional properties of CYP2B-like protein for the first time.  相似文献   

19.
20.
Cytochromes P450 (CYPs or P450s) contain a highly conserved threonine residue in the active site, which is referred to as Thr302 in the amino acid sequence of CYP2B4. Extensive biochemical and crystallographic studies have established that this Thr302 plays a critical role in activating molecular oxygen to generate Compound I, a putative iron(IV)-oxo porphyrin cation radical, that carries out the preliminary oxygenation of CYP substrates. Because of its proximity to the center of the P450 active site, this Thr302 is susceptible to mechanism-based inactivation under certain conditions. In this article, we review recent studies on the mechanism-based inactivation of three mammalian P450s in the 2B family, CYP2B1 (rat), 2B4 (rabbit) and 2B6 (human) by tert-butylphenylacetylene (tBPA). These studies showed that tBPA is a potent mechanism-based inactivator of CYP2B1, 2B4 and 2B6 with high kinact/KI ratios (0.23–2.3 min−1 μM−1) and low partition ratios (0–5). Furthermore, mechanistic studies revealed that tBPA inactivates these three CYP2B enzymes through the formation of a single ester adduct with the Thr302 in the active site. These inhibitory properties of tBPA allowed the preparation of a modified CYP2B4 where the Thr302 was covalently and stoichiometrically labeled by a reactive intermediate of tBPA in quantities large enough to permit spectroscopic and crystallographic studies of the consequences of covalent modification of Thr302. Molecular modeling studies revealed a unique binding mode of tBPA in the active site that may shed light on the potency of this inhibition. The results from these studies may serve as a basis for designing more specific and potent inhibitors for P450s by targeting this highly conserved threonine residue which is present in the active sites of most mammalian P450s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号