首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plant KT/KUP/HAK potassium transporters: single family - multiple functions   总被引:3,自引:0,他引:3  
Grabov A 《Annals of botany》2007,99(6):1035-1041
BACKGROUND AND AIMS: Potassium transporters belonging to the KT/KUP/HAK family are important for various aspects of plant life including mineral nutrition and the regulation of development. Genes encoding these transporters are present in the genomes of all plants, but have not been found in the genomes of Protista or Animalia. The aim of this Botanical Briefing is to analyse the function of KT/KUP/HAK transporters from evolutionary, molecular and physiological perspectives. SCOPE: This Briefing covers the phylogeny and evolution of KT/KUP/HAK transporters, the role of transporters in plant mineral nutrition and potassium homeostasis, and the role of KT/KUP/HAK transporters in plant development.  相似文献   

2.
Potassium transporters belonging to the KT/HAK/KUP family play an important role in plant growth, development, mineral nutrition, and stress adaptation. In this study, we identified 19 KT/HAK/KUP family genes in tomato, distributed on 10 chromosomes, by using bioinformatics methods. A complete overview of the KT/HAK/KUP (SlHAK) genes in tomato is presented, including chromosome location, phylogeny, gene structure, and evolution pattern. Phylogenetic analysis of 19 SlHAK proteins suggested that group IV of the KT/HAK/KUP family is absent in the tomato genome. In addition, five pairs of segmental duplicated paralogs and two pairs of tandem duplicated paralogs were identified in the tomato KT/HAK/KUP family. This suggests that segmental duplication is predominant for the expansion of the SlHAK genes. Calculation of the approximate dates of duplication events using the synonymous substitution rate indicated that the segmental duplication of the KT/HAK/KUP genes in tomato originated 35.89–62.77 million years ago. Adaptive evolution analysis showed that purifying selection contributed to the evolution of segmental duplicated pairs. Furthermore, Tajima’s relative rate test indicated that all segmental duplicated pairs evolved at similar rates. As a first step toward a genome-wide analysis of the KT/HAK/KUP gene family in tomato, our results provide valuable information for understanding the function and evolution of the KT/HAK/KUP gene family in tomato and other species.  相似文献   

3.
C He  K Cui  A Duan  Y Zeng  J Zhang 《Ecology and evolution》2012,2(8):1996-2004
As the largest K(+) transport gene family, KT/HAK/KUP family plays an important role in plant growth, development, and stress adaptation. However, there is limited information about this family in woody plant species. In this study, with genome-wide in-depth investigation, 31 Poplar KT/HAK/KUP transporter genes including six pairs of tandem duplicated and eight pairs of segmental duplicated paralogs have been identified, suggesting segmental and tandem duplication events contributed to the expansion of this family in Poplar. The combination of phylogenetic, exon structure and splice site, and paragon analysis revealed 11 pairs of Poplar KT/HAK/KUP duplicates. For these 11 pairs, all pairs are subject to purify selection, and asymmetric evolutionary rates have been found to occur in three pairs. This study might provide more insights into the underlying evolution mechanisms of trees acclimating to their natural habitat.  相似文献   

4.
钾离子转运载体HAK/KUP/KT家族参与植物耐盐性的研究进展   总被引:1,自引:0,他引:1  
钾可以通过多种方式参与植物的生长和发育,在植物缓解盐等非生物胁迫方面发挥重要作用。在植物中,HAK/KUP/KT是成员数目最多的一类高亲和钾转运蛋白家族,本文对该家族成员的分类、盐胁迫下钾的吸收、转运、生理功能和分子调控机制等方面的研究进行了综述,并对该转运体家族今后的研究方向进行了展望。  相似文献   

5.
Ankyrin repeat (ANK) containing proteins comprise a large protein family. Although many members of this family have been implicated in plant growth, development and signal transduction, only a few ANK genes have been reported in rice. In this study, we analyzed the structures, phylogenetic relationship, genome localizations and expression profiles of 175 ankyrin repeat genes identified in rice (OsANK). Domain composition analysis suggested OsANK proteins can be classified into ten subfamilies. Chromosomal localizations of OsANK genes indicated nine segmental duplication events involving 17 genes and 65 OsANK genes were involved in tandem duplications. The expression profiles of 158 OsANK genes were analyzed in 24 tissues covering the whole life cycle of two rice genotypes, Minghui 63 and Zhenshan 97. Sixteen genes showed preferential expression in given tissues compared to all the other tissues in Minghui 63 and Zhenshan 97. Nine genes were preferentially expressed in stamen of 1 day before flowering, suggesting that these genes may play important roles in pollination and fertilization. Expression data of OsANK genes were also obtained with tissues of seedlings subjected to three phytohormone (NAA, GA3 and KT) and light/dark treatments. Eighteen genes showed differential expression with at least one phytohormone treatment while under light/dark treatments, 13 OsANK genes showed differential expression. Our data provided a very useful reference for cloning and functional analysis of members of this gene family in rice. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Cloning and characterizations of plant K+ transport systems aside from Arabidopsis have been increasing over the past decade, favored by the availability of more and more plant genome sequences. Information now available enables the comparison of some of these systems between species. In this review, we focus on three families of plant K+ transport systems that are active at the plasma membrane: the Shaker K+ channel family, comprised of voltage-gated channels that dominate the plasma membrane conductance to K+ in most environmental conditions, and two families of transporters, the HAK/KUP/KT K+ transporter family, which includes some high-affinity transporters, and the HKT K+ and/or Na+ transporter family, in which K+-permeable members seem to be present in monocots only. The three families are briefly described, giving insights into the structure of their members and on functional properties and their roles in Arabidopsis or rice. The structure of the three families is then compared between plant species through phylogenic analyses. Within clusters of ortologues/paralogues, similarities and differences in terms of expression pattern, functional properties and, when known, regulatory interacting partners, are highlighted. The question of the physiological significance of highlighted differences is also addressed.  相似文献   

7.
The high-affinity K(+) (HAK) transporter gene family constitutes the largest family that functions as potassium transporter in plant and is important for various cellular processes of plant life. In spite of their physiological importance, systematic analyses of ZmHAK genes have not yet been investigated. In this paper, we indicated the isolation and characterization of ZmHAK genes in whole-genome wide by using bioinformatics methods. A total of 27 members (ZmHAK1-ZmHAK27) of this family were identified in maize genome. ZmHAK genes were distributed in all the maize 10 chromosomes. These genes expanded in the maize genome partly due to tandem and segmental duplication events. Multiple alignment and motif display results revealed major maize ZmHAK proteins share all the three conserved domains. Phylogenetic analysis indicated ZmHAK family can be divided into six subfamilies. Putative cis-elements involved in Ca(2+) response, abiotic stress adaption, light and circadian rhythms regulation and seed development were observed in the promoters of ZmHAK genes. Expression data mining suggested maize ZmHAK genes have temporal and spatial expression pattern. In all, these results will provide molecular insights into the potassium transporter research in maize.  相似文献   

8.
Thioredoxin (Trx) proteins play important biological functions in cells by changing redox via thioldisulfied exchange. This system is especially widespread in plants. Through database search, we identified 30 potential Trx protein-encoding genes (OsTrx) in rice (Oryza sativa L.). An analysis of the complete set of OsTrx proteins is presented here, including chromosomal location, conserved motifs, domain duplication, and phylogenetic relationships. Our findings suggest that the expansion of the Trx gene family in rice, in large part, occurred due to gene duplication. A comprehensive expression profile of Trx genes family was investigated by analyzing the signal data of this family extracted from the whole genome microarray analysis of Minghui 63 and Zhenshan 97, two indica parents, and their hybrid Shanyou 63, using 27 different tissues representing the entire life cycle of rice. Results revealed specific expression of some members at germination transition as well as the 3-leaf stage during the vegetative growth phase of rice. OsTrx genes were also found to be differentially up- or down-regulated in rice seedlings subjected to treatments of phytohormones and light/dark conditions. The expression levels of the OsTrx genes in the different tissues and under different treatments were also checked by RT-PCR analysis. The identification of OsTrx genes showing differential expression in specific tissues among different genotypes or in response to different environmental cues could provide a new avenue for functional analyses in rice.  相似文献   

9.
10.
Gierth M  Mäser P 《FEBS letters》2007,581(12):2348-2356
Potassium is a major plant nutrient which has to be accumulated in great quantity by roots and distributed throughout the plant and within plant cells. Membrane transport of potassium can be mediated by potassium channels and secondary potassium transporters. Plant potassium transporters are present in three families of membrane proteins: the K(+) uptake permeases (KT/HAK/KUP), the K(+) transporter (Trk/HKT) family and the cation proton antiporters (CPA). This review will discuss the contribution of members of each family to potassium acquisition, redistribution and homeostasis.  相似文献   

11.
The high-affinity K+ (HAK) transporter gene family is the largest family in plant that functions as potassium transporter and is important for various aspects of plant life. In the present study, we identified 27 members of this family in rice genome. The phylogenetic tree divided the land plant HAK transporter proteins into 6 distinct groups. Although the main characteristic of this family was established before the origin of seed plants, they also showed some differences between the members of non-seed and seed plants. The HAK genes in rice were found to have expanded in lineage-specific manner after the split of monocots and dicots, and both segmental duplication events and tandem duplication events contributed to the expansion of this family. Functional divergence analysis for this family provided statistical evidence for shifted evolutionary rate after gene duplication. Further analysis indicated that both point mutant with positive selection and gene conversion events contributed to the evolution of this family in rice.  相似文献   

12.
Plants take up large amounts of K(+) from the soil solution and distribute it to the cells of all organs, where it fulfills important physiological functions. Transport of K(+) from the soil solution to its final destination is mediated by channels and transporters. To better understand K(+) movements in plants, we intended to characterize the function of the large KT-HAK-KUP family of transporters in rice (Oryza sativa cv Nipponbare). By searching in databases and cDNA cloning, we have identified 17 genes (OsHAK1-17) encoding transporters of this family and obtained evidence of the existence of other two genes. Phylogenetic analysis of the encoded transporters reveals a great diversity among them, and three distant transporters, OsHAK1, OsHAK7, and OsHAK10, were expressed in yeast (Saccharomyces cerevisiae) and bacterial mutants to determine their functions. The three transporters mediate K(+) influxes or effluxes, depending on the conditions of the experiment. A comparative kinetic analysis of HAK-mediated K(+) influx in yeast and in roots of K(+)-starved rice seedlings demonstrated the involvement of HAK transporters in root K(+) uptake. We discuss that all HAK transporters may mediate K(+) transport, but probably not only in the plasma membrane. Transient expression of the OsHAK10-green fluorescent protein fusion protein in living onion epidermal cells targeted this protein to the tonoplast.  相似文献   

13.
鲁黎明  杨铁钊 《西北植物学报》2006,26(11):2402-2410
K 在植物的生命活动中发挥着十分重要的作用。植物对K 的吸收,可分为高亲和吸收与低亲和吸收。在分子水平上,高亲和吸收主要由KUP/HAK/KT及HKT家族的K 转运蛋白来承担;而Shaker、KCO等家族的K 通道蛋白,则主要在植物的低亲和吸收中发挥重要作用。AKT1、HAK5及其在植物中的同源基因在高等植物K 吸收转运中占有举足轻重的地位。KUP/HAK/KT家族基因的调节,主要是转录水平的调节,而K 通道蛋白的调节则可能主要是一种翻译后调节。植物的蛋白激酶通过磷酸化K 通道蛋白来调节通道的活性,从而改变K 的吸收特性。本文综述了高等植物K 吸收运转及调节的分子机制研究方面的最新进展,并对研究的前景进行了展望。  相似文献   

14.
Han Lei  Junlin Li  Zhizhong Song 《Phyton》2022,91(11):2519-2536
Potassium (K+) is an essential macronutrient for plants to maintain normal growth and development. Shaker-like K+ channels and HAK/KUP/KT transporters are critical components in the K+ acquisition and translocation. In this study, we identified 9 Shaker-like K+ channel (VvK) and 18 HAK/KUP/KT transporter (VvKUP) genes in grape, which were renamed according to their distributions in the genome and relative linear orders among the distinct chromosomes. Similar structure organizations were found within each group according to the exon/intron structure and protein motif analysis. Chromosomal distribution analysis showed that 9 VvK genes and 18 VvKUP genes were unevenly distributed on 7 or 10 putative grape chromosomes. Three pairs of tandem duplicated genes and one pair of segmental duplicated genes were observed in the expansion of the grape VvKUP genes. Gene expression omnibus (GEO) data analysis showed that VvK and VvKUP genes were expressed differentially in distinct tissues. Various cis-acting regulatory elements pertinent to phytohormone responses and abiotic stresses, including K+ deficiency response and drought stress, were detected in the promoter region of VvK and VvKUP genes. This study provides valuable information for further functional studies of VvK and VvKUP genes, and lays a foundation to explore K+ uptake and utilization in fruit trees.  相似文献   

15.
Calcium-dependent protein kinases (CDPKs) control plant development and response to various stress environments through the important roles in the regulation of Ca2+ signaling. Thirty-one CDPK genes have been identified in the rice genome by a complete search of the genome based upon HMM profiles. In this study, the expression of this gene family was analyzed using the Affymetrix rice genome array in three rice cultivars: Minghui 63, Zhenshan 97, and their hybrid Shanyou 63 independently. Twenty-seven tissues sampled throughout the entire rice life-span were studied, along with three hormone treatments (GA3, NAA and KT), applied to the seedling at the trefoil stage. All 31 genes were found to be expressed in at least one of the experimental stages studied and revealed diverse expression patterns. We identified differential expression of the OsCPK genes in the stamen (1 day before flowering), the panicle (at the heading stage), the endosperm (days after pollination) and also in callus, in all three cultivars. Eight genes, OsCPK2, OsCPK11, OsCPK14, OsCPK22, OsCPK25, OsCPK26, OsCPK27 and OsCPK29 were found dominantly expressed in the panicle and the stamen, and five genes, OsCPK6, OsCPK7, OsCPK12, OsCPK23 and OsCPK31 were up-regulated in the endosperm stage. The OsCPK genes were also found to be regulated in rice seedlings subjected to different hormone treatment conditions, however their expression were not the same for all varieties. These diverse expression profiles trigger the functional analysis of the CDPK family in rice. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Potassium ions (K(+)) are the most abundant cations in plants and are necessary for cell growth. Arabidopsis shy3-1 mutant plants have a short hypocotyl, small leaves, and a short flowering stem, and these defects result from decreased cell expansion. The semidominant shy3-1 mutation changes an amino acid in KT2/KUP2, a K(+) transporter related to the Escherichia coli Kup protein. Second mutations in the KT2/KUP2/SHY3 gene, including presumed null mutations, suppress the shy3-1 phenotypes. Plants with these intragenic suppressor mutations appear similar to wild-type plants, suggesting that KT2/KUP2/SHY3 acts redundantly with other genes. Expression of the shy3-1 mutant version of KT2/KUP2/SHY3 in wild-type plants confers shy3-1-like phenotypes, indicating that shy3-1 probably either causes a gain of function or creates an interfering protein. The shy3-1 mutation does not eliminate the ability of the KT2/KUP2 cDNA to rescue the growth of a potassium transport-deficient E. coli mutant. A P(SHY3)::GUS fusion is expressed in growing portions of the plant. These results suggest that KT2/KUP2/SHY3 mediates K(+)-dependent cell expansion in growing tissues.  相似文献   

17.

Background and Aims

The cell cycle is controlled by cyclin-dependent kinases (CDKs), and CDK inhibitors are major regulators of their activities. The ICK/KRP family of CDK inhibitors has been reported in several plants, with seven members in arabidopsis; however, the phylogenetic relationship among members in different species is unknown. Also, there is a need to understand how these genes and proteins are regulated. Furthermore, little information is available on the functional differences among ICK/KRP family members.

Methods

We searched publicly available databases and identified over 120 unique ICK/KRP protein sequences from more than 60 plant species. Phylogenetic analysis was performed using 101 full-length sequences from 40 species and intron–exon organization of ICK/KRP genes in model species. Conserved sequences and motifs were analysed using ICK/KRP protein sequences from arabidopsis (Arabidopsis thaliana), rice (Orysa sativa) and poplar (Populus trichocarpa). In addition, gene expression was examined using microarray data from arabidopsis, rice and poplar, and further analysed by RT-PCR for arabidopsis.

Key Results and Conclusions

Phylogenetic analysis showed that plant ICK/KRP proteins can be grouped into three major classes. Whereas the C-class contains sequences from dicotyledons, monocotyledons and gymnosperms, the A- and B-classes contain only sequences from dicotyledons or monocotyledons, respectively, suggesting that the A- and B-classes might have evolved from the C-class. This classification is also supported by exon–intron organization. Genes in the A- and B- classes have four exons, whereas genes in the C-class have only three exons. Analysis of sequences from arabidopsis, rice and poplar identified conserved sequence motifs, some of which had not been described previously, and putative functional sites. The presence of conserved motifs in different family members is consistent with the classification. In addition, gene expression analysis showed preferential expression of ICK/KRP genes in certain tissues. A model has been proposed for the evolution of this gene family in plants.  相似文献   

18.
In plants, K transporter (KT)/high affinity K transporter (HAK)/K uptake permease (KUP) is the largest potassium (K) transporter family; however, few of the members have had their physiological functions characterized in planta. Here, we studied OsHAK5 of the KT/HAK/KUP family in rice (Oryza sativa). We determined its cellular and tissue localization and analyzed its functions in rice using both OsHAK5 knockout mutants and overexpression lines in three genetic backgrounds. A β-glucuronidase reporter driven by the OsHAK5 native promoter indicated OsHAK5 expression in various tissue organs from root to seed, abundantly in root epidermis and stele, the vascular tissues, and mesophyll cells. Net K influx rate in roots and K transport from roots to aerial parts were severely impaired by OsHAK5 knockout but increased by OsHAK5 overexpression in 0.1 and 0.3 mm K external solution. The contribution of OsHAK5 to K mobilization within the rice plant was confirmed further by the change of K concentration in the xylem sap and K distribution in the transgenic lines when K was removed completely from the external solution. Overexpression of OsHAK5 increased the K-sodium concentration ratio in the shoots and salt stress tolerance (shoot growth), while knockout of OsHAK5 decreased the K-sodium concentration ratio in the shoots, resulting in sensitivity to salt stress. Taken together, these results demonstrate that OsHAK5 plays a major role in K acquisition by roots faced with low external K and in K upward transport from roots to shoots in K-deficient rice plants.Potassium (K) is one of the three most important macronutrients and the most abundant cation in plants. As a major osmoticum in the vacuole, K drives the generation of turgor pressure, enabling cell expansion. In the vascular tissue, K is an important participant in the generation of root pressure (for review, see Wegner, 2014 [including his new hypothesis]). In the phloem, K is critical for the transport of photoassimilates from source to sink (Marschner, 1996; Deeken et al., 2002; Gajdanowicz et al., 2011). In addition, enhancing K absorption and decreasing sodium (Na) accumulation is a major strategy of glycophytes in salt stress tolerance (Maathuis and Amtmann, 1999; Munns and Tester, 2008; Shabala and Cuin, 2008).Plants acquire K through K-permeable proteins at the root surface. Since available K concentration in the soil may vary by 100-fold, plants have developed multiple K uptake systems for adapting to this variability (Epstein et al., 1963; Grabov, 2007; Maathuis, 2009). In a classic K uptake experiment in barley (Hordeum vulgare), root K absorption has been described as a high-affinity and low-affinity biphasic transport process (Epstein et al., 1963). It is generally assumed that the low-affinity transport system (LATS) in the roots mediates K uptake in the millimolar range and that the activity of this system is insensitive to external K concentration (Maathuis and Sanders, 1997; Chérel et al., 2014). In contrast, the high-affinity transport system (HATS) was rapidly up-regulated when the supply of exogenous K was halted (Glass, 1976; Glass and Dunlop, 1978).The membrane transporters for K flux identified in plants are generally classified into three channels and three transporter families based on phylogenetic analysis (Mäser et al., 2001; Véry and Sentenac, 2003; Lebaudy et al., 2007; Alemán et al., 2011). For K uptake, it was predicted that, under most circumstances, K transporters function as HATS, while K-permeable channels mediate LATS (Maathuis and Sanders, 1997). However, a root-expressed K channel in Arabidopsis (Arabidopsis thaliana), Arabidopsis K Transporter1 (AKT1), mediates K absorption over a wide range of external K concentrations (Sentenac et al., 1992; Lagarde et al., 1996; Hirsch et al., 1998; Spalding et al., 1999), while evidence is accumulating that many K transporters, including members of the K transporter (KT)/high affinity K transporter (HAK)/K uptake permease (KUP) family, are low-affinity K transporters (Quintero and Blatt, 1997; Senn et al., 2001), implying that functions of plant K channels and transporters overlap at different K concentration ranges.Out of the three families of K transporters, cation proton antiporter (CPA), high affinity K/Na transporter (HKT), and KT/HAK/KUP, CPA was characterized as a K+(Na+)/H+ antiporter, HKT may cotransport Na and K or transport Na only (Rubio et al., 1995; Uozumi et al., 2000), while KT/HAK/KUP were predicted to be H+-coupled K+ symporters (Mäser et al., 2001; Lebaudy et al., 2007). KT/HAK/KUP were named by different researchers who first identified and cloned them (Quintero and Blatt, 1997; Santa-María et al., 1997). In plants, the KT/HAK/KUP family is the largest K transporter family, including 13 members in Arabidopsis and 27 members in the rice (Oryza sativa) genome (Rubio et al., 2000; Mäser et al., 2001; Bañuelos et al., 2002; Gupta et al., 2008). Sequence alignments show that genes of this family share relatively low homology to each other. The KT/HAK/KUP family was divided into four major clusters (Rubio et al., 2000; Gupta et al., 2008), and in cluster I and II, they were further separated into A and B groups. Genes of cluster I or II likely exist in all plants, cluster III is composed of genes from both Arabidopsis and rice, while cluster IV includes only four rice genes (Grabov, 2007; Gupta et al., 2008).The functions of KT/HAK/KUP were studied mostly in heterologous expression systems. Transporters of cluster I, such as AtHAK5, HvHAK1, OsHAK1, and OsHAK5, are localized in the plasma membrane (Kim et al., 1998; Bañuelos et al., 2002; Gierth et al., 2005) and exhibit high-affinity K uptake in the yeast Saccharomyces cerevisiae (Santa-María et al., 1997; Fu and Luan, 1998; Rubio et al., 2000) and in Escherichia coli (Horie et al., 2011). Transporters of cluster II, like AtKUP4 (TINY ROOT HAIRS1, TRH1), HvHAK2, OsHAK2, OsHAK7, and OsHAK10, could not complement the K uptake-deficient yeast (Saccharomyces cerevisiae) but were able to mediate K fluxes in a bacterial mutant; they might be tonoplast transporters (Senn et al., 2001; Bañuelos et al., 2002; Rodríguez-Navarro and Rubio, 2006). The function of transporters in clusters III and IV is even less known (Grabov, 2007).Existing data suggest that some KT/HAK/KUP transporters also may respond to salinity stress (Maathuis, 2009). The cluster I transporters of HvHAK1 mediate Na influx (Santa-María et al., 1997), while AtHAK5 expression is inhibited by Na (Rubio et al., 2000; Nieves-Cordones et al., 2010). Expression of OsHAK5 in tobacco (Nicotiana tabacum) BY2 cells enhanced the salt tolerance of these cells by accumulating more K without affecting their Na content (Horie et al., 2011).There are only scarce reports on the physiological function of KT/HAK/KUP in planta. In Arabidopsis, mutation of AtKUP2 (SHORT HYPOCOTYL3) resulted in a short hypocotyl, small leaves, and a short flowering stem (Elumalai et al., 2002), while a loss-of-function mutation of AtKUP4 (TRH1) resulted in short root hairs and a loss of gravity response in the root (Rigas et al., 2001; Desbrosses et al., 2003; Ahn et al., 2004). AtHAK5 is the only system currently known to mediate K uptake at concentrations below 0.01 mm (Rubio et al., 2010) and provides a cesium uptake pathway (Qi et al., 2008). AtHAK5 and AtAKT1 are the two major physiologically relevant molecular entities mediating K uptake into roots in the range between 0.01 and 0.05 mm (Pyo et al., 2010; Rubio et al., 2010). AtAKT1 may contribute to K uptake within the K concentrations that belong to the high-affinity system described by Epstein et al. (1963).Among all 27 members of the KT/HAK/KUP family in rice, OsHAK1, OsHAK5, OsHAK19, and OsHAK20 were grouped in cluster IB (Gupta et al., 2008). These four rice HAK members share 50.9% to 53.4% amino acid identity with AtHAK5. OsHAK1 was expressed in the whole plant, with maximum expression in roots, and was up-regulated by K deficiency; it mediated high-affinity K uptake in yeast (Bañuelos et al., 2002). In this study, we examined the tissue-specific localization and the physiological functions of OsHAK5 in response to variation in K supply and to salt stress in rice. By comparing K uptake and translocation in OsHAK5 knockout (KO) mutants and in OsHAK5-overexpressing lines with those in their respective wild-type lines supplied with different K concentrations, we found that OsHAK5 not only mediates high-affinity K acquisition but also participates in root-to-shoot K transport as well as in K-regulated salt tolerance.  相似文献   

19.
高等植物钾转运蛋白   总被引:3,自引:0,他引:3  
钾在植物生长发育过程中具有许多重要的作用。以模式植物拟南芥中克隆和鉴定的钾通道和转运体为基础,全面介绍了高等植物中钾转运体系家族,包括Shaker通道、KCO通道、KUP/HAK/KT转运体、HKT转运体和其它转运体。同时,分析了在高等植物中存在多种钾吸收和转运机制的可能原因。  相似文献   

20.
Molecular mechanisms of potassium and sodium uptake in plants   总被引:20,自引:0,他引:20  
Potassium (K+) is an essential nutrient and the most abundant cation in plants, whereas the closely related ion sodium (Na+) is toxic to most plants at high millimolar concentrations. K+ deficiency and Na+ toxicity are both major constraints to crop production worldwide. K+ counteracts Na+ stress, while Na+, in turn, can to a certain degree alleviate K+ deficiency. Elucidation of the molecular mechanisms of K+ and Na+ transport is pivotal to the understanding – and eventually engineering – of plant K+ nutrition and Na+ sensitivity. Here we provide an overview on plant K+ transporters with particular emphasis on root K+ and Na+ uptake. Plant K+-permeable cation transporters comprise seven families: Shaker-type K+ channels, `two-pore' K+ channels, cyclic-nucleotide-gated channels, putative K+/H+ antiporters, KUP/HAK/KT transporters, HKT transporters, and LCT1. Candidate genes for Na+ transport are the KUP/HAK/KTs, HKTs, CNGCs, and LCT1. Expression in heterologous systems, localization in plants, and genetic disruption in plants will provide insight into the roles of transporter genes in K+ nutrition and Na+ toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号