首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chondroitin 4-sulfotransferase (C4ST) catalyzes the transfer of sulfate from 3'-phosphoadenosine 5'-phosphosulfate to position 4 of the N-acetylgalactosamine residues of chondroitin. We previously reported the cloning of C4ST cDNA from mouse brain. We here report the cloning and expression of human C4ST cDNA. The cDNA was isolated from a human fetal brain cDNA library by hybridization with a DNA probe prepared from rat poly(A)(+) RNA used for the cloning of mouse C4ST cDNA. The cDNA comprises a single open reading frame that predicts a Type II transmembrane protein composed of 352 amino acids. The protein has an amino acid sequence homology of 96% with mouse C4ST. When the cDNA was introduced into a eukaryotic expression vector and transfected in COS-7 cells, the sulfotransferase activity that transfers sulfate to both chondroitin and desulfated dermatan sulfate was overexpressed. Northern blot analysis indicated that human C4ST mRNAs (6.0 and 1.9 kb) are expressed ubiquitously in various adult human tissues. Dot blot analysis has shown that human C4ST is strongly expressed in colorectal adenocarcinoma and peripheral blood leukocytes, whereas strong expression of human chondroitin 6-sulfotransferase (C6ST) is observed in aorta and testis. These observations suggest that the expression of C4ST and C6ST may be controlled differently in human tissues. The C4ST gene was localized to chromosome 12q23.2-q23.3 by fluorescence in situ hybridization.  相似文献   

2.
3.
Neuropsin is a secreted-type serine protease involved in learning and memory. The type II splice form of neuropsin is abundantly expressed in the human brain but not in the mouse brain. We sequenced the type II-spliced region of neuropsin gene in humans and representative nonhuman primate species. Our comparative sequence analysis showed that only the hominoid species (humans and apes) have the intact open reading frame of the type II splice form, indicating that the type II neuropsin originated recently in the primate lineage about 18 MYA. Expression analysis using RT-PCR detected abundant expression of the type II form in the frontal lobe of the adult human brain, but no expression was detected in the brains of lesser apes and Old World monkeys, indicating that the type II form of neuropsin only became functional in recent time, and it might contribute to the progressive change of cognitive abilities during primate evolution.  相似文献   

4.
We have cloned the cDNA encoding a new isozyme of glycogen phosphorylase (1,4-D-glucan:orthosphosphate D-glucosyltransferase, EC 2.4.1.1) from a cDNA library prepared from a human brain astrocytoma cell line. Blot-hybridization analysis reveals that this message is preferentially expressed in human brain, but is also found at a low level in human fetal liver and adult liver and muscle tissues. Although previous studies have suggested that the major isozyme of phosphorylase found in all fetal tissues is the brain type, our data show that the predominant mRNA in fetal liver (24-week gestation) is the adult liver form. The protein sequence deduced from the nucleotide sequence of the brain phosphorylase cDNA is 862 amino acids long compared with 846 and 841 amino acids for the liver and muscle isozymes, respectively; the greater length of brain phosphorylase is entirely due to an extension at the far C-terminal portion of the protein. The muscle and brain isozymes share greater identity with regard to nucleotide and deduced amino acid sequences, codon usage, and nucleotide composition than either do with the liver sequence, suggesting a closer evolutionary relationship between them. Spot blot hybridization of the brain phosphorylase cDNA to laser-sorted human chromosome fractions, and Southern blot analysis of hamster/human hybrid cell line DNA reveals that the exact homolog of the newly cloned cDNA maps to chromosome 20, but that a slightly less homologous gene is found on chromosome 10 as well. The liver and muscle genes have previously been localized to chromosomes 14 and 11, respectively. This suggests that the phosphorylase genes evolved by duplication and translocation of a common ancestral gene, leading to divergence of elements controlling gene expression and of structural features of the phosphorylase proteins that confer tissue-specific functional properties.  相似文献   

5.
cDNAs encoding two splicing variants of a serine protease, termed hippostasin, were isolated by a PCR-based cloning strategy. The difference of 5' nucleotide sequence resulted in the variation in the amino terminal ends of the two, brain and prostate, types of human hippostasin. The longest ORF of the brain-type was 250 amino acids with a putative signal peptide, while that of the prostate-type was 282 amino acids. Homology search using the amino acid sequence revealed that prostate-type hippostasin was identical to TLSP (PRSS20), which is expressed in human primary keratinocytes (1). Transient expression analysis showed that both brain- and prostate-type TLSP/hippostasin were secreted into the conditioned medium as about 40 kDa proteins. Human TLSP/hippostasin showed 47% and 45% identity to trypsinogen II and kallikrein, respectively. In fact, the recombinant human TLSP/hippostasin efficiently cleaved Bz-Phe-Arg-4-methylcoumaryl-7-amide, a kallikrein substrate, and weakly cleaved other substrates for kallikrein and trypsin. Northern blot analysis detected a 1.3 kb band in the whole brain and a 1.4 kb band in the prostate and the lung. In situ hybridization revealed that it was expressed preferentially by the pyramidal neurons in the human hippocampus and secretory epithelial cells in the prostate. These results indicated that TLSP/hippostasin is involved in the functions of the human central nervous system and prostate and that it is a multifunctional protease present in various organs.  相似文献   

6.
7.
8.
9.
A single human myosin light chain kinase gene (MLCK; MYLK)   总被引:7,自引:0,他引:7  
Lazar V  Garcia JG 《Genomics》1999,57(2):256-267
The myosin light chain kinase (MLCK) gene, a muscle member of the immunoglobulin gene superfamily, yields both smooth muscle and nonmuscle cell isoforms. Both isoforms are known to regulate contractile activity via calcium/calmodulin-dependent myosin light chain phosphorylation. We previously cloned from a human endothelial cell (EC) cDNA library a high-molecular-weight nonmuscle MLCK isoform (EC MLCK (MLCK 1) with an open reading frame that encodes a protein of 1914 amino acids. We now describe four novel nonmuscle MLCK isoforms (MLCK 2, 3a, 3b, and 4) that are the alternatively spliced variants of an mRNA precursor that is transcribed from a single human MLCK gene. The primary structure of the cDNA encoding the nonmuscle MLCK isoform 2 is identical to the previously published human nonmuscle MLCK (MLCK 1) (J. G. N. Garcia et al., 1997, Am. J. Respir. Cell Mol. Biol. 16, 489-494) except for a deletion of nucleotides 1428-1634 (D2). The full nucleotide sequence of MLCK isoforms 3a and 3b and partial sequence for MLCK isoform 4 revealed identity to MLCK 1 except for deletions at nucleotides 5081-5233 (MLCK 3a, D3), double deletions of nucleotides 1428-1634 and 5081-5233 (MLCK 3b), and nucleotide deletions 4534-4737 (MLCK 4, D4). Northern blot analysis demonstrated the extended expression pattern of the nonmuscle MLCK isoform(s) in both human adult and human fetal tissues. RT-PCR using primer pairs that were designed to detect specifically nonmuscle MLCK isoforms 2, 3, and 4 deletions (D2, D3, and D4) confirmed expression in both human adult and human fetal tissues (lung, liver, brain, and kidney) and in human endothelial cells (umbilical vein and dermal). Furthermore, relative quantitative expression studies demonstrated that the nonmuscle MLCK isoform 2 is the dominant splice variant expressed in human tissues and cells. Further analysis of the human MLCK gene revealed that the MLCK 2 isoform represents the deletion of an independent exon flanked by 5' and 3' neighboring introns of 0.6 and 7.0 kb, respectively. Together these studies demonstrate for the first time that the human MLCK gene yields multiple nonmuscle MLCK isoforms by alternative splicing of its transcribed mRNA precursor with differential distribution of these isoforms in various human tissues and cells.  相似文献   

10.
11.
12.
13.
Abstract: Nucleotide sequence analysis of a cDNA clone of a rat cortex-enriched mRNA identifies a novel integral membrane protein of 82 amino acids. The encoded protein is named cortexin to reflect its enriched expression in cortex. The amino acid sequence of rat cortexin and its mouse homologue are nearly identical (98% similarity), and both contain a conserved single membrane-spanning region in the middle of each sequence. Northern blot analysis shows that cortexin mRNA is brain-specific, cortexenriched, and present at significant levels in fetal brain, with peak expression in postnatal rodent brain. In situ hybridization studies detect cortexin mRNA primarily in neurons of rodent cerebral cortex, but not in cells of the hindbrain or white matter regions. The function of cortexin may be particularly important to neurons of both the developing and adult cerebral cortex.  相似文献   

14.
Li J  Ji C  Yang Q  Chen J  Gu S  Ying K  Xie Y  Mao Y 《Biochemical genetics》2004,42(3-4):129-137
TGF-beta activated kinase (TAK1) plays a critical role in the TGF-beta signaling transduction pathway. By screening a human 18-week fetal brain library, we isolated a novel human TAK1-like (TAKL) gene. The gene encoded a putative protein of 242 amino acids, which shared a homology with human, mouse, and Xenopus TAK1. The TAKL gene was located in chromosome 21q21. Northern blot analysis revealed that the TAKL mRNA was expressed predominantly in peripheral blood leukocytes and ubiquitously in human adult and fetal tissues. TAKL was also expressed strongly in breast carcinoma GI-101, colon adenocarcinoma GI-112, and prostatic adenocarcinoma PC3.  相似文献   

15.
16.
17.
Ma L  Liu Y  Ky B  Shughrue PJ  Austin CP  Morris JA 《Genomics》2002,80(6):662-672
We cloned the mouse ortholog of DISC1 (Disrupted-in-Schizophrenia 1), a candidate gene for schizophrenia. Disc1 is 3163 nucleotides long and has 60% identity with the human DISC1. Disc1 encodes 851 amino acids and has 56% identity with the human protein. Disc1 maps to the DISC1 syntenic region in the mouse, and genomic structure is conserved. A Disc1 splice variant deletes a portion of Disc1 beginning at amino acids orthologous to the human truncation. Bioinformatic analysis and cross-species comparisons revealed sequence conservation distributed across the genes and conservation of leucine zipper and coiled-coil domains in both orthologs. In situ hybridization in adult mouse brain revealed a restricted expression pattern, with highest levels in the dentate gyrus of the hippocampus and lower expression in CA1-CA3 of the hippocampus, cerebellum, cerebral cortex, and olfactory bulbs. Identification of Disc1 will facilitate the study of DISC1's function and creation of mouse models of DISC1 disruption.  相似文献   

18.
19.
A novel gene, RTVP-1, which shows significant sequence identity to the mammalian testis-specific proteins, a family of plant pathogenesis-related proteins and the vespid venom allergen, antigen-5, has been isolated from a cDNA library of the human glioblastoma brain tumor cell line, U-251 MG. The highest degree of sequence identity was with the human testis-specific protein, TPX1 (38.7% over 119 amino acids). Northern hybridization analysis revealed that in fetal tissue RTVP-1 RNA was detected only in the kidney, but its expression was ubiquitous in adult tissues including brain. Multiple mRNAs encoded by RTVP-1 were highly expressed in a panel of cell lines from nervous system tumors arising from glia, although expression was low or absent in non-glial-derived nervous system tumour cell lines. The GenBank DNA database accession number for this sequence is X91911.  相似文献   

20.
Extracellular serine protease neuropsin (NP) is expressed in the forebrain limbic area of adult brain and is implicated in synaptic plasticity. We screened for endogenous NP inhibitors with recombinant NP (r-NP) from extracts of the hippocampus and the cerebral cortex in adult mouse brain. Two SDS-stable complexes were detected, and after their purification, peptide sequences were determined by amino acid sequencing and mass spectrometry, revealing that target molecules were serine proteinase inhibitor-3 (SPI3) and murinoglobulin I (MUG I). The addition of the recombinant SPI3 to r-NP resulted in an SDS-stable complex, and the complex formation followed bimolecular kinetics with an association rate constant of 3.4 +/- 0.22 x 10(6) M(-1) s(-1), showing that SPI3 was a slow, tight binding inhibitor of NP. In situ hybridization histochemistry showed that SPI3 mRNA was expressed in pyramidal neurons in the hippocampal CA1-CA3 subfields, as was NP mRNA. Alternatively, the addition of purified plasma MUG I to r-NP resulted in an SDS-stable complex, and MUG I inhibited degradation of fibronectin by r-NP to 24% at a r-NP/MUG I molar ratio of 1:2. Immunofluorescence histochemistry showed that MUG I localized in the hippocampal neurons. These findings indicate that SPI3 and MUG I serve to inactivate NP and control the level of NP in adult brain, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号