首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conflicting results have been reported concerning the role of AMP-activated protein kinase (AMPK) in mediating thrombin stimulation of endothelial NO-synthase (eNOS). We examined the involvement of two upstream kinases in AMPK activation in cultured human umbilical endothelial cells, LKB1 stimulated by a rise in intracellular AMP/ATP ratio, and Ca(+2)/CaM kinase kinase (CaMKK) responding to elevation of intracellular Ca(+2). We also studied the effects of AMPK activation on the downstream target eNOS. In culture medium 1640 the level of intracellular ATP was unchanged after thrombin stimulation and the CaMKK inhibitor STO-609 totally inhibited phosphorylation of AMPK and acetyl coenzyme A carboxylase (ACC) but not eNOS. In Morgan's medium 199 thrombin caused a significant lowering of intracellular ATP and STO-609 only partially inhibited the phosphorylation of AMPK, ACC and eNOS. Inhibition of AMPK by Compound C or AMPK downregulation using siRNA partially inhibited the phosphorylation of eNOS in medium 199 but not in 1640, underscoring a clear difference in the pathways mediating thrombin-stimulated eNOS phosphorylation in different culture media. Thus, conditions subjecting endothelial cells to a fall in ATP after thrombin stimulation facilitate activation of pathways partly dependent on AMPK causing downstream phosphorylation of eNOS. In contrast, under culture conditions that do not facilitate a fall in ATP after stimulation, AMPK activation is exclusively mediated by CaMKK and does not contribute to the phosphorylation of eNOS.  相似文献   

2.
AMP-activated protein kinase (AMPK) is the downstream component of a kinase cascade that plays a pivotal role in energy homeostasis. Activation of AMPK requires phosphorylation of threonine 172 (T172) within the T loop region of the catalytic alpha subunit. Recently, LKB1 was shown to activate AMPK. Here we show that AMPK is also activated by Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK). Overexpression of CaMKKbeta in mammalian cells increases AMPK activity, whereas pharmacological inhibition of CaMKK, or downregulation of CaMKKbeta using RNA interference, almost completely abolishes AMPK activation. CaMKKbeta isolated from rat brain or expressed in E. coli phosphorylates and activates AMPK in vitro. In yeast, CaMKKbeta expression rescues a mutant strain lacking the three kinases upstream of Snf1, the yeast homolog of AMPK. These results demonstrate that AMPK is regulated by at least two upstream kinases and suggest that AMPK may play a role in Ca(2+)-mediated signal transduction pathways.  相似文献   

3.
The AMP-activated protein kinase (AMPK) is a critical regulator of energy balance at both the cellular and whole-body levels. Two upstream kinases have been reported to activate AMPK in cell-free assays, i.e., the tumor suppressor LKB1 and calmodulin-dependent protein kinase kinase. However, evidence that this is physiologically relevant currently only exists for LKB1. We now report that there is a significant basal activity and phosphorylation of AMPK in LKB1-deficient cells that can be stimulated by Ca2+ ionophores, and studies using the CaMKK inhibitor STO-609 and isoform-specific siRNAs show that CaMKKbeta is required for this effect. CaMKKbeta also activates AMPK much more rapidly than CaMKKalpha in cell-free assays. K(+)-induced depolarization in rat cerebrocortical slices, which increases intracellular Ca2+ without disturbing cellular adenine nucleotide levels, activates AMPK, and this is blocked by STO-609. Our results suggest a potential Ca(2+)-dependent neuroprotective pathway involving phosphorylation and activation of AMPK by CaMKKbeta.  相似文献   

4.
Reports on the role of AMP-activated protein kinase (AMPK) in thrombin-mediated activation of endothelial nitric-oxide synthase (eNOS) in endothelial cells have been conflicting. Previously, we have shown that under culture conditions that allow reduction of ATP-levels after stimulation, activation of AMPK contributes to eNOS phosphorylation and activation in endothelial cells after treatment with thrombin. In this paper we examined the signaling pathways mediating phosphorylation and activation of eNOS after stimulation of cultured human umbilical vein endothelial cells (HUVEC) with histamine and the role of LKB1-AMPK in the signaling. In Morgan's medium 199 intracellular ATP was lowered by treatment with histamine or the ionophore A23187 while in medium RMPI 1640 ATP was unchanged after identical treatment. In medium 199 inhibition of Ca+ 2/CaM kinase kinase (CaMKK) by STO-609 only partially inhibited AMPK phosphorylation but after gene silencing of LKB1 with siRNA there was a total inhibition of AMPK phosphorylation by STO-609 after treatment with either histamine or thrombin, demonstrating phosphorylation of AMPK by both upstream kinases, LKB1 and CaMKK. Downregulation of AMPK with siRNA partially inhibited eNOS phosphorylation caused by histamine in cells maintained in medium 199. Downregulation of LKB1 by siRNA inhibited both phosphorylation and activity of eNOS and addition of the AMPK inhibitor Compound C had no further effect on eNOS phosphorylation. When experiments were carried out in medium 1640, STO-609 totally prevented the phosphorylation of AMPK without affecting eNOS phosphorylation. AMPKα2 downregulation resulted in a loss of the integrity of the endothelial monolayer and increased expression of GRP78, indicative of endoplasmic reticular (ER) stress. Downregulation of AMPKα1 had no such effect. The results show that culture conditions affect endothelial signal transduction pathways after histamine stimulation. Under conditions where intracellular ATP is lowered by histamine, AMPK is activated by both LKB1 and CaMKK and, in turn, mediates eNOS phosphorylation in an LKB1 dependent manner. Both AMPKα1 and − α2 are involved in the signaling. Under conditions where intracellular ATP is unchanged after histamine treatment, CaMKK alone activates AMPK and eNOS is phosphorylated and activated independent of AMPK.  相似文献   

5.
The AMP-activated protein kinase (AMPK) is an important regulator of cellular metabolism in response to metabolic stress and to other regulatory signals. AMPK activity is absolutely dependent upon phosphorylation of AMPKalphaThr-172 in its activation loop by one or more AMPK kinases (AMPKKs). The tumor suppressor kinase, LKB1, is a major AMPKK present in a variety of tissues and cells, but several lines of evidence point to the existence of other AMPKKs. We have employed three cell lines deficient in LKB1 to study AMPK regulation and phosphorylation, HeLa, A549, and murine embryo fibroblasts derived from LKB(-/-) mice. In HeLa and A549 cells, mannitol, 2-deoxyglucose, and ionomycin, but not 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR), treatment activates AMPK by alphaThr-172 phosphorylation. These responses, as well as the downstream effects of AMPK on the phosphorylation of acetyl-CoA carboxylase, are largely inhibited by the Ca(2+)/ calmodulin-dependent protein kinase kinase (CaMKK) inhibitor, STO-609. AMPKK activity in HeLa cell lysates measured in vitro is totally inhibited by STO-609 with an IC50 comparable with that of the known CaMKK isoforms, CaMKKalpha and CaMKKbeta. Furthermore, 2-deoxyglucose- and ionomycin-stimulated AMPK activity, alphaThr-172 phosphorylation, and acetyl-CoA carboxylase phosphorylation are substantially reduced in HeLa cells transfected with small interfering RNAs specific for CaMKKalpha and CaMKKbeta. Lastly, the activation of AMPK in response to ionomycin and 2-deoxyglucose is not impaired in LKB1(-/-) murine embryo fibroblasts. These data indicate that the CaMKKs function in intact cells as AMPKKs, predicting wider roles for these kinases in regulating AMPK activity in vivo.  相似文献   

6.
We investigated whether AMP-activated protein kinase (AMPK), a multi-functional regulator of energy homeostasis, participates in the regulation of erythropoietin (EPO)-mediated activation of endothelial nitric oxide synthase (eNOS) in endothelial cells (ECs) and mice. In ECs, treatment with EPO increased the phosphorylation of AMPK, acetyl-CoA carboxylase (ACC), and eNOS, as revealed by Western blot analysis. Inhibition of AMPK activation by compound C or dominant-negative AMPK mutant abrogated the EPO-induced increase in the phosphorylation of AMPK, ACC, and eNOS, as well as nitric oxide (NO) production. Additionally, suppression of AMPK activation abolished EPO-induced EC proliferation, migration and tube formation. Immunoprecipitation analysis demonstrated that AMPK mediated the EPO-induced increase in the phosphorylation of β common receptor (βCR) and the formation of a βCR-AMPK-eNOS complex. In mice, inhibition of AMPK activation by compound C markedly decreased EPO-elicited angiogenesis in Matrigel plugs. Furthermore, the phosphorylation of AMPK and eNOS was significantly higher in aortas from EPO transgenic mice than wild-type mice. Moreover, treatment with EPO neutralizing antibody greatly reduced the exercise training-induced increase in phosphorylation of AMPK and eNOS in aortas of wild-type mice. Taken together, EPO may trigger AMPK-dependent signaling, which leads to enhanced phosphorylation of βCR and eNOS, increased βCR-AMPK-eNOS complex formation, NO production, and, ultimately, angiogenesis.  相似文献   

7.
The transient receptor potential canonical (TRPC) family channels are proposed to be essential for store-operated Ca2+ entry in endothelial cells. Ca2+ signaling is involved in NF-kappaB activation, but the role of store-operated Ca2+ entry is unclear. Here we show that thrombin-induced Ca2+ entry and the resultant AMP-activated protein kinase (AMPK) activation targets the Ca2+-independent protein kinase Cdelta (PKCdelta) to mediate NF-kappaB activation in endothelial cells. We observed that thrombin-induced p65/RelA, AMPK, and PKCdelta activation were markedly reduced by knockdown of the TRPC isoform TRPC1 expressed in human endothelial cells and in endothelial cells obtained from Trpc4 knock-out mice. Inhibition of Ca2+/calmodulin-dependent protein kinase kinase beta downstream of the Ca2+ influx or knockdown of the downstream Ca2+/calmodulin-dependent protein kinase kinase beta target kinase, AMPK, also prevented NF-kappaB activation. Further, we observed that AMPK interacted with PKCdelta and phosphorylated Thr505 in the activation loop of PKCdelta in thrombin-stimulated endothelial cells. Expression of a PKCdelta-T505A mutant suppressed the thrombin-induced but not the TNF-alpha-induced NF-kappaB activation. These findings demonstrate a novel mechanism for TRPC channels to mediate NF-kappaB activation in endothelial cells that involves the convergence of the TRPC-regulated signaling at AMPK and PKCdelta and that may be a target of interference of the inappropriate activation of NF-kappaB associated with thrombosis.  相似文献   

8.
Elevated levels of free fatty acids contribute to cardiovascular diseases, but the mechanisms remain poorly understood. The present study was aimed to determine if free fatty acid inhibits the AMP-activated kinase (AMPK). Exposure of cultured bovine aortic endothelial cells (BAECs) to palmitate (0.4 mM) but not to palmitoleic or oleic acid (0.4 mM) for 40 h significantly reduced the Thr(172) phosphorylation of AMPK-alpha without altering its protein expression or the phosphorylation of LKB1-Ser(428), a major AMPK kinase in BAECs. Further, in LKB1-deficient cells, palmitate suppressed AMPK-Thr(172) implying that the inhibitory effects of palmitate on AMPK might be independent of LKB1. In contrast, 2-bromopalmitate, a non-metabolizable analog of palmitate, did not alter the phosphorylation of AMPK and acetyl-CoA carboxylase. Further, palmitate significantly increased the activity of protein phosphatase (PP)2A. Inhibition of PP2A with either okadaic acid, a selective PP2A inhibitor, or PP2A small interference RNA abolished palmitate-induced inhibition on AMPK-Thr(172) phosphorylation. Exposure of BAECs to C(2)-ceramide, a cell-permeable analog of ceramide, mimicked the effects of palmitate. Conversely, fumonisin B1, which selectively inhibits ceramide synthase and decreases de novo formation of ceramide, abolished the effects of palmitate on both PP2A and AMPK. Inhibition of AMPK in parallel with increased PP2A activity was founded in C57BL/6J mice fed with high fat diet (HFD) rich in palmitate but not in mice fed with HFD rich in oleate. Moreover, inhibition of PP2A with PP2A-specific siRNA but not scrambled siRNA reversed HFD-induced inhibition on the phosphorylation of AMPK-Thr(172) and endothelial nitric-oxide synthase (eNOS)-Ser(1177) in mice fed with high fat diets. Taken together, we conclude that palmitate inhibits the phosphorylation of both AMPK and endothelial nitric-oxide synthase in endothelial cells via ceramide-dependent PP2A activation.  相似文献   

9.
alpha-Lipoic acid (ALA) widely exists in foods and is an antidiabetic agent. ALA stimulates glucose uptake and increases insulin sensitivity by the activation of AMP-activated protein kinase (AMPK) in skeletal muscle, but the underlying mechanism for AMPK activation is unknown. Here, we investigated the mechanism through which ALA activates AMPK in C2C12 myotubes. Incubation of C2C12 myotubes with 200 and 500 microM ALA increased the activity and phosphorylation of the AMPK alpha-subunit at Thr(172). Phosphorylation of the AMPK substrate, acetyl CoA carboxylase (ACC), at Ser(79) was also increased. No difference in ATP, AMP, and the calculated AMP-to-ATP ratio was observed among the different treatment groups. Since the upstream AMPK kinase, LKB1, requires an alteration of the AMP-to-ATP ratio to activate AMPK, this data showed that LKB1 might not be involved in the activation of AMPK induced by ALA. Treatment of ALA increased the intracellular Ca(2+) concentration measured by fura-2 fluorescent microscopy (P < 0.05), showing that ALA may activate AMPK through enhancing Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK) signaling. Indeed, chelation of intracellular free Ca(2+) by loading cells with 25 microM BAPTA-AM for 30 min abolished the ALA-induced activation of AMPK and, in turn, phosphorylation of ACC at Ser(79). Furthermore, inhibition of CaMKK using its selective inhibitor, STO-609, abolished ALA-stimulated AMPK activation, with an accompanied reduction of ACC phosphorylation at Ser(79). In addition, ALA treatment increased the association of AMPK with CaMKK. To further show the role of CaMKK in AMPK activation, short interfering RNA was used to silence CaMKK, which abolished the ALA-induced AMPK activation. These data show that CaMKK is the kinase responsible for ALA-induced AMPK activation in C2C12 myotubes.  相似文献   

10.
11.
The AMP-activated protein kinase (AMPK) is reported to mediate the beneficial effects of statin on the vascular functions, but the biochemical mechanisms are incompletely understood. The aim of the study was to determine how statin activates AMPK. Exposure of confluent bovine aortic endothelial cells to simvastatin (statin) dose-dependently increased phosphorylation of AMPK at Thr(172) and activities of AMPK, which was in parallel with increased detection of both LKB1 phosphorylation at Ser(428) and LKB1 nuclear export. Furthermore, statin treatment was shown to increase protein kinase C (PKC)-zeta activity and PKC-zeta phosphorylation at Thr(410)/Thr(403). Consistently, inhibition of PKC-zeta either by pharmacological or genetic manipulations abolished statin-enhanced LKB1 phosphorylation at Ser(428), blocked LKB1 nucleus export, and prevented the subsequent activation of AMPK. Similarly, in vivo transfection of PKC-zeta-specific small interfering RNA in C57BL/6J mice significantly attenuated statin-enhanced phosphorylation of AMPK-Thr(172), acetyl-CoA carboxylase (ACC)-Ser(79), and LKB1-Ser(428). In addition, statin significantly increased reactive oxygen species, whereas preincubation of mito-TEMPOL, a superoxide dismutase mimetic, abolished statin-enhanced phosphorylation of both AMPK-Thr(172) and ACC-Ser(79). Finally, in vivo administration of statin increased 3-nitrotyrosine and the phosphorylation of AMPK and ACC in C57BL/6J mice but not in mice deficient in endothelial nitric-oxide synthase. Taken together, our data suggest that AMPK activation by statin is peroxynitrite-mediated but PKC-zeta-dependent.  相似文献   

12.
Resveratrol may protect against metabolic disease through activating SIRT1 deacetylase. Because we have recently defined AMPK activation as a key mechanism for the beneficial effects of polyphenols on hepatic lipid accumulation, hyperlipidemia, and atherosclerosis in type 1 diabetic mice, we hypothesize that polyphenol-activated SIRT1 acts upstream of AMPK signaling and hepatocellular lipid metabolism. Here we show that polyphenols, including resveratrol and the synthetic polyphenol S17834, increase SIRT1 deacetylase activity, LKB1 phosphorylation at Ser(428), and AMPK activity. Polyphenols substantially prevent the impairment in phosphorylation of AMPK and its downstream target, ACC (acetyl-CoA carboxylase), elevation in expression of FAS (fatty acid synthase), and lipid accumulation in human HepG2 hepatocytes exposed to high glucose. These effects of polyphenols are largely abolished by pharmacological and genetic inhibition of SIRT1, suggesting that the stimulation of AMPK and lipid-lowering effect of polyphenols depend on SIRT1 activity. Furthermore, adenoviral overexpression of SIRT1 stimulates the basal AMPK signaling in HepG2 cells and in the mouse liver. AMPK activation by SIRT1 also protects against FAS induction and lipid accumulation caused by high glucose. Moreover, LKB1, but not CaMKKbeta, is required for activation of AMPK by polyphenols and SIRT1. These findings suggest that SIRT1 functions as a novel upstream regulator for LKB1/AMPK signaling and plays an essential role in the regulation of hepatocyte lipid metabolism. Targeting SIRT1/LKB1/AMPK signaling by polyphenols may have potential therapeutic implications for dyslipidemia and accelerated atherosclerosis in diabetes and age-related diseases.  相似文献   

13.
In endothelial cells, the AMP-activated protein kinase (AMPK) is stimulated by sheer stress or growth factors that stimulate release of nitric oxide (NO). We hypothesized that NO might act as an endogenous activator of AMPK in endothelial cells. Exposure of human umbilical vein endothelial cells (HUVECs) to NO donors caused an increase in phosphorylation of both Thr-172 of AMPK and Ser-1177 of endothelial nitric oxide synthase, a downstream enzyme of AMPK. NO-induced activation of AMPK was not affected by inhibition of LKB1, an AMPK kinase. In contrast, inhibition of calcium calmodulin-dependent protein kinase kinase abolished the effect of NO in HUVECs. NO-induced AMPK activation in HeLa S3 cells was abolished by either 1H-(1,2,4)-oxadiazole[4,3-a]quinoxalon-1-one, a potent inhibitor for guanylyl cyclase, or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM), an intracellular Ca(2+) chelator, indicating that NO-induced AMPK activation is guanylyl cyclase-mediated and calcium-dependent. Exposure of HUVECs or isolated mice aortas to either calcium ionophore A23187 or bradykinin significantly increased AMPK Thr-172 phosphorylation, which was abolished by N-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthase. Finally, A23187- or bradykinin-enhanced AMPK activation was significantly greater in aortas from wild type mice than those in the aortas of endothelial nitric oxide synthase knock-out mice. Taken together, we conclude that NO might act as an endogenous AMPK activator.  相似文献   

14.
We previously reported the phosphoinositide 3-kinase-dependent activation of the 5'-AMP-activated kinase (AMPK) by peroxynitrite (ONOO-) and hypoxia-reoxygenation in cultured endothelial cells. Here we show the molecular mechanism of activation of this pathway. Exposure of bovine aortic endothelial cells to ONOO- significantly increased the phosphorylation of both Thr172 of AMPK and Ser1179 of endothelial nitric-oxide synthase, a known downstream enzyme of AMPK. In addition, activation of AMPK by ONOO- was accompanied by increased phosphorylation of protein kinase Czeta (PKCzeta) (Thr410/403) and translocation of cytosolic PKCzeta into the membrane. Further, inhibition of PKCzeta abrogated ONOO- -induced AMPK-Thr172 phosphorylation as that of endothelial nitric-oxide synthase. Furthermore, overexpression of a constitutively active PKCzeta mutant enhanced the phosphorylation of AMPK-Thr172, suggesting that PKCzeta is upstream of AMPK activation. In contrast, ONOO- activated PKCzeta in LKB1-deficient HeLa-S3 but affected neither AMPK-Thr172 nor AMPK activity. These data suggest that LKB1 is required for PKCzeta-enhanced AMPK activation. In vitro, recombinant PKCzeta phosphorylated LKB1 at Ser428, resulting in phosphorylation of AMPK at Thr172. Further, direct mutation of Ser428 of LKB1 into alanine, like the kinase-inactive LKB1 mutant, abolished ONOO- -induced AMPK activation. In several cell types originating from human, rat, and mouse, inhibition of PKCzeta significantly attenuated the phosphorylation of both LKB1-Ser428 and AMPK-Thr172 that were enhanced by ONOO-. Taken together, we conclude that PKCzeta can regulate AMPK activity by increasing the Ser428 phosphorylation of LKB1, resulting in association of LKB1 with AMPK and consequent AMPK Thr172 phosphorylation by LKB1.  相似文献   

15.
Vascular endothelial growth factor (VEGF) is an important regulator of endothelial cell function. VEGF stimulates NO production, proposed to be a result of phosphorylation and activation of endothelial NO synthase (eNOS) at Ser1177. Phosphorylation of eNOS at this site also occurs after activation of AMP-activated protein kinase (AMPK) in cultured endothelial cells. We therefore determined whether AMPK mediates VEGF-stimulated NO synthesis in endothelial cells. VEGF caused a rapid, dose-dependent stimulation of AMPK activity, with a concomitant increase in phosphorylation of eNOS at Ser1177. Infection of endothelial cells with an adenovirus expressing a dominant negative mutant AMPK partially inhibited both VEGF-stimulated eNOS Ser1177 phosphorylation and NO production. VEGF-stimulated AMPK activity was completely inhibited by the Ca(2+)/calmodulin-dependent protein kinase kinase inhibitor, STO-609. Stimulation of AMPK via Ca(2+)/calmodulin-dependent protein kinase kinase represents a novel signalling mechanism utilised by VEGF in endothelial cells that contributes to eNOS phosphorylation and NO production.  相似文献   

16.
AMP-activated protein kinase (AMPK) is a serine/threonine kinase that regulates cellular and whole body energy homeostasis. In adipose tissue, activation of AMPK has been demonstrated in response to a variety of extracellular stimuli. However, the upstream kinase that activates AMPK in adipocytes remains elusive. Previous studies have identified LKB1 as a major AMPK kinase in muscle, liver, and other tissues. In certain cell types, Ca(2+) /calmodulin-dependent protein kinase kinase β (CaMKKβ) has been shown to activate AMPK in response to increases of intracellular Ca(2+) levels. Our aim was to investigate if LKB1 and/or CaMKK function as AMPK kinases in adipocytes. We used adipose tissue and isolated adipocytes from mice in which the expression of LKB1 was reduced to 10-20% of that of wild-type (LKB1 hypomorphic mice). We show that adipocytes from LKB1 hypomorphic mice display a 40% decrease in basal AMPK activity and a decrease of AMPK activity in the presence of the AMPK activator phenformin. We also demonstrate that stimulation of 3T3L1 adipocytes with intracellular [Ca(2+) ]-raising agents results in an activation of the AMPK pathway. The inhibition of CaMKK isoforms, particularly CaMKKβ, by the inhibitor STO-609 or by siRNAs, blocked Ca(2+) -, but not phenformin-, AICAR-, or forskolin-induced activation of AMPK, indicating that CaMKK activated AMPK in response to Ca(2+) . Collectively, we show that LKB1 is required to maintain normal AMPK-signaling in non-stimulated adipocytes and in the presence of phenformin. In addition, we demonstrate the existence of a Ca(2+) /CaMKK signaling pathway that can also regulate the activity of AMPK in adipocytes.  相似文献   

17.
We have studied the mechanism of A-769662, a new activator of AMP-activated protein kinase (AMPK). Unlike other pharmacological activators, it directly activates native rat AMPK by mimicking both effects of AMP, i.e. allosteric activation and inhibition of dephosphorylation. We found that it has no effect on the isolated alpha subunit kinase domain, with or without the associated autoinhibitory domain, or on interaction of glycogen with the beta subunit glycogen-binding domain. Although it mimics actions of AMP, it has no effect on binding of AMP to the isolated Bateman domains of the gamma subunit. The addition of A-769662 to mouse embryonic fibroblasts or primary mouse hepatocytes stimulates phosphorylation of acetyl-CoA carboxylase (ACC), effects that are completely abolished in AMPK-alpha1(-/-)alpha2(-/-) cells but not in TAK1(-/-) mouse embryonic fibroblasts. Phosphorylation of AMPK and ACC in response to A-769662 is also abolished in isolated mouse skeletal muscle lacking LKB1, a major upstream kinase for AMPK in this tissue. However, in HeLa cells, which lack LKB1 but express the alternate upstream kinase calmodulin-dependent protein kinase kinase-beta, phosphorylation of AMPK and ACC in response to A-769662 still occurs. These results show that in intact cells, the effects of A-769662 are independent of the upstream kinase utilized. We propose that this direct and specific AMPK activator will be a valuable experimental tool to understand the physiological roles of AMPK.  相似文献   

18.
Han Y  Wang Q  Song P  Zhu Y  Zou MH 《PloS one》2010,5(11):e15420
Redox state is a critical determinant of cell function, and any major imbalances can cause severe damage or death.

Objectives

The aim of this study is to determine if AMP-activated protein kinase (AMPK), a cellular energy sensor, is activated by oxidants generated by Berberine in endothelial cells (EC).

Methods

Bovine aortic endothelial cells (BAEC) were exposed to Berberine. AMPK activity and reactive oxygen species were monitored after the incubation.

Results

In BAEC, Berberine caused a dose- and time-dependent increase in the phosphorylation of AMPK at Thr172 and acetyl CoA carboxylase (ACC) at Ser79, a well characterized downstream target of AMPK. Concomitantly, Berberine increased peroxynitrite, a potent oxidant formed by simultaneous generation of superoxide and nitric oxide. Pre-incubation of BAEC with anti-oxidants markedly attenuated Berberine-enhanced phosphorylation of both AMPK and ACC. Consistently, adenoviral expression of superoxide dismutase and pretreatment of L-NG-Nitroarginine methyl ester (L-NAME; a non-selective NOS inhibitor) blunted Berberine-induced phosphorylation of AMPK. Furthermore, mitochondria-targeted tempol (mito-tempol) pretreatment or expression of uncoupling protein attenuated AMPK activation caused by Berberine. Depletion of mitochondria abolished the effects of Berberine on AMPK in EC. Finally, Berberine significantly increased the phosphorylation of LKB1 at Ser307 and gene silencing of LKB1 attenuated Berberine-enhanced AMPK Thr172 phosphorylation in BAEC.

Conclusion

Our results suggest that mitochondria-derived superoxide anions and peroxynitrite are required for Berberine-induced AMPK activation in endothelial cells.  相似文献   

19.
Recent studies have indicated that endothelial nitric-oxide synthase (eNOS) is regulated by reversible phosphorylation in intact endothelial cells. AMP-activated protein kinase (AMPK) has previously been demonstrated to phosphorylate and activate eNOS at Ser-1177 in vitro, yet the function of AMPK in endothelium is poorly characterized. We therefore determined whether activation of AMPK with 5'-aminoimidazole-4-carboxamide ribonucleoside (AICAR) stimulated NO production in human aortic endothelial cells. AICAR caused the time- and dose-dependent stimulation of AMPK activity, with a concomitant increase in eNOS Ser-1177 phosphorylation and NO production. AMPK was associated with immunoprecipitates of eNOS, yet this was unaffected by increasing concentrations of AICAR. AICAR also caused the time- and dose-dependent stimulation of protein kinase B phosphorylation. To confirm that the effects of AICAR were indeed mediated by AMPK, we utilized adenovirus-mediated expression of a dominant negative AMPK mutant. Expression of dominant negative AMPK attenuated AICAR-stimulated AMPK activity, eNOS Ser-1177 phosphorylation and NO production and was without effect on AICAR-stimulated protein kinase B Ser-473 phosphorylation or NO production stimulated by insulin or A23187. These data suggest that AICAR-stimulated NO production is mediated by AMPK as a consequence of increased Ser-1177 phosphorylation of eNOS. We propose that stimuli that result in the acute activation of AMPK activity in endothelial cells stimulate NO production, at least in part due to phosphorylation and activation of eNOS. Regulation of endothelial AMPK therefore provides an additional mechanism by which local vascular tone may be controlled.  相似文献   

20.
The endothelial isoform of nitric-oxide synthase (eNOS), a key determinant of vascular homeostasis, is a calcium/calmodulin-dependent phosphoprotein regulated by diverse cell surface receptors. Vascular endothelial growth factor (VEGF) and sphingosine 1-phosphate (S1P) stimulate eNOS activity through Akt/phosphoinositide 3-kinase and calcium-dependent pathways. AMP-activated protein kinase (AMPK) also activates eNOS in endothelial cells; however, the molecular mechanisms linking agonist-mediated AMPK regulation with eNOS activation remain incompletely understood. We studied the role of AMPK in VEGF- and S1P-mediated eNOS activation and found that both agonists led to a striking increase in AMPK phosphorylation in pathways involving the calcium/calmodulin-dependent protein kinase kinase beta. Treatment with tyrosine kinase inhibitors or the phosphoinositide 3-kinase inhibitor wortmannin demonstrated differential effects of VEGF versus S1P. Small interfering RNA (siRNA)-mediated knockdown of AMPKalpha1or Akt1 impaired the stimulatory effects of both VEGF and S1P on eNOS activation. AMPKalpha1 knockdown impaired agonist-mediated Akt phosphorylation, whereas Akt1 knockdown did not affect AMPK activation, thus suggesting that AMPK lies upstream of Akt in the pathway leading from receptor activation to eNOS stimulation. Importantly, we found that siRNA-mediated knockdown of AMPKalpha1 abrogates agonist-mediated activation of the small GTPase Rac1. Conversely, siRNA-mediated knockdown of Rac1 decreased the agonist-mediated phosphorylation of AMPK substrates without affecting that of AMPK, implicating Rac1 as a molecular link between AMPK and Akt in agonist-mediated eNOS activation. Finally, siRNA-mediated knockdown of caveolin-1 significantly enhanced AMPK phosphorylation, suggesting that AMPK is negatively regulated by caveolin-1. Taken together, these results suggest that VEGF and S1P differentially regulate AMPK and establish a central role for an agonist-modulated AMPK --> Rac1 --> Akt axis in the control of eNOS in endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号