首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Topologically knotted proteins are tantalizing examples of how polypeptide chains can explore complex free energy landscapes to efficiently attain defined knotted conformations. The evolution trails of protein knots, however, remain elusive. We used circular permutation to change an evolutionally conserved topologically knotted SPOUT RNA methyltransferase into an unknotted form. The unknotted variant adopted the same three-dimensional structure and oligomeric state as its knotted parent, but its folding stability was markedly reduced with accelerated folding kinetics and its ligand binding was abrogated. Our findings support the hypothesis that the universally conserved knotted topology of the SPOUT superfamily evolved from unknotted forms through circular permutation under selection pressure for folding robustness and, more importantly, for functional requirements associated with the knotted structural element.  相似文献   

2.
Knotted proteins, because of their ability to fold reversibly in the same topologically entangled conformation, are the object of an increasing number of experimental and theoretical studies. The aim of the present investigation is to assess, on the basis of presently available structural data, the extent to which knotted proteins are isolated instances in sequence or structure space, and to use comparative schemes to understand whether specific protein segments can be associated to the occurrence of a knot in the native state. A significant sequence homology is found among a sizeable group of knotted and unknotted proteins. In this family, knotted members occupy a primary sub-branch of the phylogenetic tree and differ from unknotted ones only by additional loop segments. These “knot-promoting” loops, whose virtual bridging eliminates the knot, are found in various types of knotted proteins. Valuable insight into how knots form, or are encoded, in proteins could be obtained by targeting these regions in future computational studies or excision experiments.  相似文献   

3.
Topological knots are found in a considerable number of protein structures, but it is not clear how they knot and fold within the cellular environment. We investigated the behavior of knotted protein molecules as they are first synthesized by the ribosome using a cell-free translation system. We found that newly translated knotted proteins can spontaneously self-tie and do not require the assistance of molecular chaperones to fold correctly to their trefoil-knotted structures. This process is slow but efficient, and we found no evidence of misfolded species. A kinetic analysis indicates that the knotting process is rate limiting, occurs post-translationally, and is specifically and significantly (P < 0.001) accelerated by the GroEL-GroES chaperonin complex. This demonstrates a new active mechanism for this molecular chaperone and suggests that chaperonin-catalyzed knotting probably dominates in vivo. These results explain how knotted protein structures have withstood evolutionary pressures despite their topological complexity.  相似文献   

4.
YibK is a 160 residue homodimeric protein belonging to the SPOUT class of methyltransferases. Proteins in this group all display a unique topological feature; the backbone polypeptide chain folds to form a deep trefoil knot. Such knotted structures were completely unpredicted, it being thought impossible for a protein to fold efficiently in this way. However, they are becoming more common and there are now a growing number of examples in the Protein Data Bank. These intriguing knotted structures represent a new and significant challenge in the field of protein folding. Here, we present an initial characterisation of the folding of YibK, one of the smallest knotted proteins to be identified. This is the first detailed folding study on a knotted protein to be reported. We have established conditions under which the protein can be denatured reversibly in vitro using urea, thereby showing that molecular chaperones are not required for the efficient folding of this protein. A series of equilibrium unfolding experiments were performed over a 400-fold range of protein concentration. Both secondary and tertiary structural probes show a single, protein concentration-dependent unfolding transition, and data are most consistent with a three-state equilibrium denaturation model involving a monomeric intermediate. Thermodynamic parameters obtained from the fit of the data to this model indicate that the intermediate is a stable species with appreciable secondary and tertiary structure; whether the topological knot remains in the intermediate state is still to be shown. Together, these results demonstrate that, despite its complex knotted structure, YibK is able to fold efficiently and behaves remarkably similarly to other dimeric proteins under equilibrium conditions.  相似文献   

5.
Among proteins of known three-dimensional structure, only a few possess complex topological features such as knotted or interlinked (catenated) protein backbones. Such unusual proteins offer potentially unique insights into folding pathways and stabilization mechanisms. They also present special challenges for both theorists and computational scientists interested in understanding and predicting protein-folding behavior. Here, we review complex topological features in proteins with a focus on recent progress on the identification and characterization of knotted and interlinked protein systems. Also, an approach is described for designing an expanded set of knotted proteins.  相似文献   

6.
Knots in proteins are increasingly being recognized as an important structural concept, and the folding of these peculiar structures still poses considerable challenges. From a functional point of view, most protein knots discovered so far are either enzymes or DNA-binding proteins. Our comprehensive topological analysis of the Protein Data Bank reveals several novel structures including knotted mitochondrial proteins and the most deeply embedded protein knot discovered so far. For the latter, we propose a novel folding pathway based on the idea that a loose knot forms at a terminus and slides to its native position. For the mitochondrial proteins, we discuss the folding problem from the perspective of transport and suggest that they fold inside the mitochondria. We also discuss the evolutionary origin of a novel class of knotted membrane proteins and argue that a novel knotted DNA-binding protein constitutes a new fold. Finally, we have also discovered a knot in an artificially designed protein structure.  相似文献   

7.
Both ubiquitin conjugation and ubiquitin-dependent degradation of chicken egg white lysozyme in a reticulocyte lysate depend on the presence of a reducing agent. We present evidence that the reduction of a specific disulfide bond, namely that at Cys6-Cys127, facilitates ubiquitination and is a prerequisite to the formation of a multiubiquitin chain on one of at least four chain initiation sites on lysozyme. The Cys6-Cys127 disulfide bond in lysozyme can be specifically reduced, and the modified protein can be isolated after carboxymethylation of the 2 resulting cysteines. This modified lysozyme no longer requires the presence of a reducing agent for ubiquitin conjugation and degradation. Inhibition of ubiquitination by the dipeptide Lys-Ala revealed that this modified lysozyme, like the unmodified protein, is recognized via the binding of the ubiquitin protein ligase, E3, to the substrate's N-terminal lysyl residue. Both the rate and the extent of ubiquitin-lysozyme conjugation, however, are significantly higher with this modified substrate. Likewise, ubiquitin-dependent degradation of 6,127-reduced/carboxymethylated lysozyme was 2-4-fold faster than degradation of the unmodified counterpart. These results are consistent with an interpretation that the modified lysozyme mimics an intermediate formed at the rate-limiting step of the degradation of lysozyme in the reticulocyte lysate. Reduction of the Cys6-Cys127 disulfide bond is expected to unhinge the N-terminal region of lysozyme, and we propose that the recognition of this otherwise stable protein by the ubiquitin pathway is due to facilitated binding of E3 that results from such a conformational transition.  相似文献   

8.
The folding pathway and rate coefficients of the folding of a knotted protein are calculated for a potential energy function with minimal energetic frustration. A kinetic transition network is constructed using the discrete path sampling approach, and the resulting potential energy surface is visualized by constructing disconnectivity graphs. Owing to topological constraints, the low-lying portion of the landscape consists of three distinct regions, corresponding to the native knotted state and to configurations where either the N or C terminus is not yet folded into the knot. The fastest folding pathways from denatured states exhibit early formation of the N terminus portion of the knot and a rate-determining step where the C terminus is incorporated. The low-lying minima with the N terminus knotted and the C terminus free therefore constitute an off-pathway intermediate for this model. The insertion of both the N and C termini into the knot occurs late in the folding process, creating large energy barriers that are the rate limiting steps in the folding process. When compared to other protein folding proteins of a similar length, this system folds over six orders of magnitude more slowly.  相似文献   

9.
The T-knot scaffold, a disulphide-reinforced structural motif shared by several proteins with very different biological functions, has been defined as 'a stretch of the protein chain which comprises two strands of a beta-sheet and three loops, knotted by two disulphides into the shape of the letter T'. In this communication we show that the presence of a central beta-sheet is not a required structural feature for proteins sharing the T-knot topology. Moreover, superposition of the three-dimensional structures of representative members of the T-knot family highlights a common and structurally well-defined core, formed by the two knotted disulphides, substituting for a larger residue-based hydrophobic core. These results suggest that folding and stability of the T-knot scaffold mainly depend on the geometry of the two knotted disulphides and on the loop length, and that the secondary structure elements are not a prerequisite for motif formation. Accordingly, a redefinition of the T-knot motif is proposed.  相似文献   

10.
Entanglement and knots occur across all aspects of the physical world. Despite the common belief that knots are too complicated for incorporation into proteins, knots have been identified in the native fold of a growing number of proteins. The discovery of proteins with this unique backbone characteristic has challenged the preconceptions about the complexity of biological structures, as well as current folding theories. Given the intricacies of the knotted geometry, the interplay between a protein’s fold, structure, and function is of particular interest. Interestingly, for most of these proteins, the knotted region appears critical both in folding and function, although full understanding of these contributions is still incomplete. Here, we experimentally reveal the impact of the knot on the landscape, the origin of the bistable nature of the knotted protein, and broaden the view of knot formation as uniquely decoupled from folding.  相似文献   

11.
Brownian dynamics simulations are performed to investigate the role of long-range electrostatic forces in the association of the monoclonal antibody HyHEL-5 with hen egg lysozyme. The electrostatic field of the antibody is obtained from a solution of the nonlinear Poisson-Boltzmann using the x-ray crystal coordinates of this protein. The lysozyme is represented as an asymmetric dumbell consisting of two spheres of unequal size, an arrangement that allows for the modeling of the orientational requirements for docking. Calculations are done with the wild-type antibody and several point mutants at different ionic strengths. Changes in the charge distribution of the lysozyme are also considered. Results are compared with experiment and a simpler model in which the lysozyme is approximately by a single charged sphere.  相似文献   

12.
We explore the effect of surface tethering on the folding process of a lattice protein that contains a trefoil knot in its native structure via Monte Carlo simulations. We show that the outcome of the tethering experiment depends critically on which terminus is used to link the protein to a chemically inert plane. In particular, if surface tethering occurs at the bead that is closer to the knotted core the folding rate becomes exceedingly slow and the protein is not able to find the native structure in all the attempted folding trajectories. Such low folding efficiency is also apparent from the analysis of the probability of knot formation, pknot, as a function of nativeness. Indeed, pknot increases abruptly from ∼0 to ∼1 only when the protein has more than 80% of its native contacts formed, showing that a highly compact conformation must undergo substantial structural re-arrangement in order to get effectively knotted. When the protein is surface tethered by the bead that is placed more far away from the knotted core pknot is higher than in the other folding setups (including folding in the bulk), especially if conformations are highly native-like. These results show that the mobility of the terminus closest to the knotted core is critical for successful folding of trefoil proteins, which, in turn, highlights the importance of a knotting mechanism that is based on a threading movement of this terminus through a knotting loop. The results reported here predict that if this movement is blocked, knotting occurs via an alternative mechanism, the so-called spindle mechanism, which is prone to misfolding. Our simulations show that in the three considered folding setups the formation of the knot is typically a late event in the folding process. We discuss the implications of our findings for co-translational folding of knotted trefoils.  相似文献   

13.
Reduction of lysozyme by diborane, followed by air oxidation of the reduced disulfides and chromatography on CM-cellulose, yielded a homogeneous derivative. In the derivative, the carboxyl groups of aspartic acid 119 and the end-chain leucine residue were reduced to their corresponding alcohols. Correct re-forming of the disulfide bonds was demonstrated by peptide mapping of the tryptic hydrolysates of the derivative and lysozyme without breaking the disulfide bonds, followed by identification of the disulfide-containing peptides. Correct disulfide pairing in the two-disulfide peptide in the tryptic hydrolysate was established from its immunochemical behavior. Preparations of the two-disulfide fragment from lysozyme and derivative had equal inhibitory activities (26 or 32%) of the reaction of lysozyme with two homologous antisera. In ORD measurements, lysozyme and the derivative had equal rotatory powers at neutral pH. However, the bo value for the derivative decreased by about 10%. Below pH 6.4 and above pH 8.0, the derivative was less rotatory than native lysozyme. In CD measurements at neutral pH, the negative ellipticity bands at 220 and 208 nm showed little or no decrease in the derivative relative to the native protein. Although conformational differences between the derivative and its parent protein were almost undetectable by ORD and CD measurements, they were readily detected by chemical monitoring of the conformation. In the derivative, both accessibility to tryptic hydrolysis and reducibility of the disulfide bonds increased markedly. The enzymic activity of the derivative was decreased but retained the same pH optimum. With antisera to lysozyme or antisera to the derivative, lysozyme and its derivative possessed equal antigenic reactivities. The immunochemical findings further confirm the correct refolding of the disulfides. Also, they indicate that aspartic acid 119 and the C-terminal leucine residue are not part of an antigenic reactive region in lysozyme.  相似文献   

14.
Among the thousands of known three-dimensional protein folds, only a few have been found whose backbones are in knotted configurations. The rarity of knotted proteins has important implications for how natural proteins reach their natively folded states. Proteins with such unusual features offer unique opportunities for studying the relationships between structure, folding, and stability. Here we report the identification of a unique slipknot feature in the fold of a well-known thermostable protein, alkaline phosphatase. A slipknot is created when a knot is formed by part of a protein chain, after which the backbone doubles back so that the entire structure becomes unknotted in a mathematical sense. Slipknots are therefore not detected by computational tests that look for knots in complete protein structures. A computational survey looking specifically for slipknots in the Protein Data Bank reveals a few other instances in addition to alkaline phosphatase. Unexpected similarities are noted among some of the proteins identified. In addition, two transmembrane proteins are found to contain slipknots. Finally, mutagenesis experiments on alkaline phosphatase are used to probe the contribution the slipknot feature makes to thermal stability. The trends and conserved features observed in these proteins provide new insights into mechanisms of protein folding and stability.  相似文献   

15.
Common pili from Escherichia coli were found to bind hen egg white lysozyme. The binding was highly dependent on ionic strength, and the maximum binding occurred near an ionic strength of 0.02. The pili were aggregated by lysozyme, and this process could be followed by optical turbidity, electron microscopy, and coprecipitation. Near the maximum saturation of binding, one lysozyme molecule was bound by two pilus protein subunits. Electron micrographs of this aggregate indicated that they were paracrystalline structures. Piliated bacteria were more readily agglutinated by lysozyme than were nonpiliated bacteria. Since lysozyme is considered to be an antibacterial humoral factor and since pili are considered to be a colonization factor, the binding of lysozyme may represent an important bacterium-host interaction  相似文献   

16.
Exploitation of the insulating properties of the complete chicken lysozyme gene domain may facilitate the production of transgenic chicken bioreactors with the capacity to deposit valuable proteins in the egg white. Chimeric genes consisting of the chicken lysozyme gene regulatory sequences and sequences encoding foreign proteins could be inserted randomly into the chicken genome and retain appropriate expression levels. The research reported here established that chicken lysozyme gene regulatory sequences can be used to direct the production and secretion of green fluorescent protein (used as a reporter protein) in transiently transfected chicken blastodermal cells. Attempts to verify these findings in transgenic hens are currently in progress. To provide a rapid means of generating constructs encoding other foreign proteins under the control of lysozyme gene regulatory sequences that can facilitate the secretion of heterologous proteins in vivo, a generic lysozyme gene regulatory scaffold was created using a poxvirus-mediated gene targeting system.  相似文献   

17.
Proteins in the alpha-lactalbumin and c-type lysozyme family have been studied extensively as model systems in protein folding. Early formation of the alpha-helical domain is observed in both alpha-lactalbumin and c-type lysozyme; however, the details of the kinetic folding pathways are significantly different. The major folding intermediate of hen egg-white lysozyme has a cooperatively formed tertiary structure, whereas the intermediate of alpha-lactalbumin exhibits the characteristics of a molten globule. In this study, we have designed and constructed an isolated alpha-helical domain of hen egg-white lysozyme, called Lyso-alpha, as a model of the lysozyme folding intermediate that is stable at equilibrium. Disulfide-exchange studies show that under native conditions, the cysteine residues in Lyso-alpha prefer to form the same set of disulfide bonds as in the alpha-helical domain of full-length lysozyme. Under denaturing conditions, formation of the nearest-neighbor disulfide bonds is strongly preferred. In contrast to the isolated alpha-helical domain of alpha-lactalbumin, Lyso-alpha with two native disulfide bonds exhibits a well-defined tertiary structure, as indicated by cooperative thermal unfolding and a well-dispersed NMR spectrum. Thus, the determinants for formation of the cooperative side-chain interactions are located mainly in the alpha-helical domain. Our studies suggest that the difference in kinetic folding pathways between alpha-lactalbumin and lysozyme can be explained by the difference in packing density between secondary structural elements and support the hypothesis that the structured regions in a protein folding intermediate may correspond to regions that can fold independently.  相似文献   

18.
Many knotted proteins have been discovered recently, but the folding process of which remains elusive. HP0242 is a hypothetical protein from Helicobacter pylori, which is a model system for studying the folding pathway of a knotted protein. In this study, we report the 1H, 13C, and 15N chemical shift assignments of HP0242. The results will enable us to further investigate HP0242 by NMR experiments.  相似文献   

19.
The precise and entire antigenic structure of native lysozyme.   总被引:11,自引:1,他引:10       下载免费PDF全文
The exact boundary, residue, conformational and directional definitions of the three antigenic sites of native hen's egg-white lysozyme are described. The results clearly reveal that the three antigenic sites account quantitatively for the total antigenic reactivity of the protein. Thus the entire antigenic structure of lysozyme has now been precisely determined and is briefly discussed here, together with the power of the surface-stimulation synthetic concept.  相似文献   

20.
The intensity autocorrelation functions of light scattered by lysozyme solutions under pre-crystallization conditions in NaCl-containing media were recorded at scattering angles from 20 degrees to 90 degrees. The measurements, conducted on freshly prepared protein solutions supersaturated more than 3-fold, indicate the simultaneous presence of two scatterer populations which can be assigned to individual protein molecules and to large particles. When solutions are undersaturated, or slightly supersaturated, light scattering only reveals the presence of the small scatterers. In the supersaturated medium, where aggregates were detected, lysozyme crystals grew in a time-span of 1-3 days after the scattering experiments. These results are medium, where aggregates were detected, lysozyme crystals grew in a time-span of 1-3 days after the scattering experiments. These results are correlated with the nucleation step during protein crystallization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号