首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acarbose fermentation was conducted by cultivation of Actinoplanes sp. CKD485-16. Approximately 2,300 mg/L of acarbose was produced at the end of cultivation along with 600 mg/L of the acarbose byproduct component C. Maltose, a known moiety of acarbose, should be maintained at high concentration levels in culture broths for efficient acarbose production. The acarbose yield increased with an increasing osmolality of the culture medium, with a maximum value of 3,200 mg/L obtained at 500 mOsm/kg. Component C was also produced in proportion to the osmolality. Conversion of acarbose to component C was accomplished with resting whole cells. Inhibitors of the conversion of acarbose to component C were sought since component C is probably derived from acarbose. Valienamine was found to be a potent inhibitor, resulting in a more than 90% reduction in component C formation at a 10 microM concentration. Effects were similar in a 1,500-L pilot fermentor with acarbose and component C yields of 3,490 and 43 mg/L at 500 mOsm/kg, respectively.  相似文献   

2.
【目的】在阿卡波糖发酵过程中,C组分的存在严重影响阿卡波糖产品的质量,研究拟通过基因改造降低阿卡波糖C组分。【方法】通过构建treY同框敲除质粒pUAmT-YUD,以接合转移方法将其转入阿卡波糖工业菌株8-22,经同源重组将treY基因内部编码182个氨基酸的序列敲除,从而得到treY基因失活的突变株Y810。【结果】发酵结果显示突变菌株中C组分较出发菌株下降了约10倍,而阿卡波糖本身的效价末受影响。【结论】敲除treY基因可大幅降低阿卡波糖C组分的含量。研究的实施将大大简化阿卡波糖的纯化步骤,提升产品品质,降低生产成本,从而提高工业化生产的市场竞争力。研究同时还对游动放线菌的接合转移条件进行了优化,大大提高了转化效率。  相似文献   

3.
A poly (methacrylic acid-ethylene glycol dimethacrylate, MAA-EGDMA) monolithic capillary was used for the in-tube solid-phase microextraction (in-tube SPME) of several angiotensin II receptor antagonists (ARA-IIs) from human plasma and urine. Under the optimized extraction condition, the protein component of the biological sample was flushed through the monolithic capillary, while the analytes were successfully trapped. Coupled to HPLC with fluorescence detection, this on-line in-tube SPME method was successfully applied for the determination of candesartan, losartan, irbesartan, valsartan, telmisartan, and their detection limits were found to be 0.1-15.3ng/mL and 0.1-15.2ng/mL in human plasma and urine, respectively. The method was linear over the range of 0.5-200ng/mL for telmisartan, 5-2000ng/mL for candesartan and irbesartan, 10-2000ng/mL for valsartan, and 50-5000ng/mL for losartan with correlation coefficients being above 0.9985 in plasma sample and above 0.9994 in urine sample. The method reproducibility was evaluated at three concentration levels, resulting in the R.S.D. <7%. The poly (MAA-EGDMA) monolithic capillary was demonstrated to be robust and biocompatible by using direct injections of biological samples.  相似文献   

4.
Component C (Acarviosy-1,4-Glc-1,1-Glc) was a highly structural acarbose analog, which could be largely formed during acarbose fermentation process, resulting in acarbose purification being highly difficult. By choosing osmolality level as the key fermentation parameter of acarbose-producing Actinoplanes sp. A56, this paper successfully established an effective and simplified osmolality-shift strategy to improve acarbose production and concurrently reduce component C formation. Firstly, the effects of various osmolality levels on acarbose fermentation were firstly investigated in a 50-l fermenter. It was found that 400–500 mOsm/kg of osmolality was favorable for acarbose biosynthesis, but would exert a negative influence on the metabolic activity of Actinoplanes sp. A56, resulting in an obviously negative increase of acarbose and a sharp formation of component C during the later stages of fermentation (144–168 h). Based on this fact, an osmolality-shift fermentation strategy (0–48 h: 250–300 mOsm/kg; 49–120 h: 450–500 mOsm/kg; 121–168 h: 250–300 mOsm/kg) was further carried out. Compared with the osmolality-stat (450–500 mOsm/kg) fermentation process, the final accumulation amount of component C was decreased from 498.2 ± 27.1 to 307.2 ± 9.5 mg/l, and the maximum acarbose yield was increased from 3,431.9 ± 107.7 to 4,132.8 ± 111.4 mg/l.  相似文献   

5.
A method based on poly (methacrylic acid-co-ethylene glycol dimethacrylate) (MAA-EGDMA) monolith microextraction (PMME) and field-enhanced sample injection (FESI) pre-concentration technique was proposed for sensitive capillary electrophoresis-ultraviolet (CE-UV) analysis of ephedrine (E) and pseudoephedrine (PE) in human plasma and urine. The PMME device consisted of a regular plastic syringe (1 mL), a poly (MAA-EGDMA) monolithic capillary (2 cm x 530 microm I.D.) and a plastic pinhead connecting the former two components seamlessly. The extraction was achieved by driving the sample solution through the monolithic capillary tube using a syringe pump, for the desorption step, an aliquot of organic solvent, which normally provided an excellent medium to ensure direct compatibility for FESI in CE, was injected via the monolithic capillary and collected into a vial for subsequent analysis by CZE. The best separation was achieved using a buffer composed of 0.1M phosphate electrolyte (pH 2.5) and 10% acetonitrile (v/v). The combination of both pre-concentration procedures allowed the detection limits of the analytes down to 5.3 ng/mL and 8.0 ng/mL in human plasma and urine, respectively. Excellent method of reproducibility was found over a linear range 50-5000 ng/mL in plasma and urine sample. Plasma and urine samples from volunteers receiving pseudoephedrine have also been successfully analysed.  相似文献   

6.
GacH is the solute binding protein (receptor) of the putative oligosaccharide ATP-binding cassette transporter GacFG, encoded in the acarbose biosynthetic gene cluster (gac) from Streptomyces glaucescens GLA.O. In the context of the proposed function of acarbose (acarviosyl-1,4-maltose) as a ‘carbophor,’ the transporter, in complex with a yet to be identified ATPase subunit, is supposed to mediate the uptake of longer acarbose homologs and acarbose for recycling purposes. Binding assays using isothermal titration calorimetry identified GacH as a maltose/maltodextrin-binding protein with a low affinity for acarbose but with considerable binding activity for its homolog, component 5C (acarviosyl-1,4-maltose-1,4-glucose-1,1-glucose). In contrast, the maltose-binding protein of Salmonella typhimurium (MalE) displays high-affinity acarbose binding. We determined the crystal structures of GacH in complex with acarbose, component 5C, and maltotetraose, as well as in unliganded form. As found for other solute receptors, the polypeptide chain of GacH is folded into two distinct domains (lobes) connected by a hinge, with the interface between the lobes forming the substrate-binding pocket. GacH does not specifically bind the acarviosyl group, but displays specificity for binding of the maltose moiety in the inner part of its binding pocket. The crystal structure of acarbose-loaded MalE showed that two glucose units of acarbose are bound at the same region and position as maltose. A comparative analysis revealed that in GacH, acarbose is buried deeper into the binding pocket than in MalE by exactly one glucose ring shift, resulting in a total of 18 hydrogen-bond interactions versus 21 hydrogen-bond interactions for MalEacarbose. Since the substrate specificity of ATP-binding cassette import systems is determined by the cognate binding protein, our results provide the first biochemical and structural evidence for the proposed role of GacHFG in acarbose metabolism.  相似文献   

7.
A test procedure was developed for the detection and quantification of 1- and 2-bromopropane in human urine. 1-Bromopropane (1-BP) is a commonly used industrial solvent, and 2-bromopropane (2-BP) is often found as an impurity component in industrial grade 1-BP. Both compounds are a health concern for exposed workers due to their chronic toxicity. Bromopropanes have been associated with neurological disorders in both animals and humans. Sample preparation consisted of diluting urine with water and fortification with 1-bromobutane (1-BB), which was used as an internal standard; then each sample was sealed in a headspace vial. A static-headspace sampler (Teledyne-Tekmar Model 7000) was used to heat each sample at 75 degrees C for a 35-min equilibrium time. Quantification was by means of a gas chromatograph (GC) equipped with an electron capture detector (ECD) and a dimethylpolysiloxane (DB-1) capillary column. A recovery study using fortified urine samples at multiple concentrations (0.5-8 microg/ml) demonstrated full recovery; 104-121% recovery was obtained. Precision ranged from 5 to 17% for the 15-20 spiked samples used at each concentration, which were analyzed over multiple experimental trial days. The limit of detection (LOD) for this test procedure was approximately 2 ng/ml 1-BP and 7 ng/ml 2-BP in urine. A recovery study of 1- and 2-BP from fortified urine stored in vials appropriate for field collection was also completed. These results and other factors of the development and validation of this test procedure will be discussed.  相似文献   

8.
A sequence of chromatographic methods (thin-layer chromatography, high-performance liquid chromatography and glass capillary gas chromatography) was used to separate the acid fraction of human urine. The power of this method to separate and detect previously unknown compounds and the elucidation of their final structure with mass spectrometry is exemplified by the identification of N-acetyl-2-aminooctanoic acid as a metabolic compound in the urine of healthy individuals.In addition, the conjugate of glycine with indolepropionic acid, N-formylanthranilic acid, succinoylphenylalanine, δ-hydroxyvaleric acid, δ-hydroxycapric acid, 3-hydroxyadipic acid, and higher homologues were detected in a polar fraction of human urine.  相似文献   

9.
A method successfully coupling capillary electrophoretic separation to time-of-flight mass spectrometric (TOFMS) detection for the simultaneous analysis of catecholamines (dopamine, norepinephrine, and epinephrine) and their O-methoxylated metabolites (3-methoxytyramine, normetanephrine, and metanephrine) is described. The inner capillary wall was coated with polyvinyl alcohol in order to obtain baseline resolution of catecholamines and metanephrines and to ensure reproducibility without extensive restorative washing of the capillary. Using electrokinetic injection, detection limits of 0.3 microM for dopamine and norepinephrine, 0.2 microM for 3-methoxytyramine and normetanephrine, and 0.1 microM for epinephrine and metanephrine were achieved with standard solutions. The usefulness of this approach was demonstrated by applying the developed method to the analysis of a spot collection of human urine from a healthy volunteer. The catecholamines and metanephrines were removed from the urine samples and preconcentrated by simultaneous SPE on cation-exchange sorbents. The recoveries of all analytes, with the exception of epinephrine (75%), were over 80%. Catecholamines and metanephrines in the urine samples were quantitated using 3,4-dihydroxybenzylamine as an internal standard. Submicromolar concentrations, consistent with the catecholamine and metanephrine levels reported for normal human urine, were detected.  相似文献   

10.
Methylmalonic acid, succinic acid, and other dicarboxylic acids have been extracted and partially purified from serum and urine using ether extraction and high-performance liquid chromatography. The t-butyldimethylsilyl derivatives were prepared and analyzed using capillary gas chromatography-mass spectrometry with selected ion monitoring. The addition of [methyl-2H3]methylmalonic acid and [1,4-13C2]succinic acid to the starting samples made it possible to quantitate these two dicarboxylic acids. Normal ranges for methylmalonic acid and succinic acid were determined in human and rat serum and in human urine. The utilization of other internal standards would make it possible to quantitate malonic, dimethylmalonic, ethylmalonic, methylsuccinic, glutaric, and other dicarboxylic acids.  相似文献   

11.
Total homocysteine, total cysteine, and methionine have been extracted and partially purified from serum and urine using reduction with 2-mercaptoethanol followed by cation-exchange chromatography and anion-exchange chromatography. The t-butyldimethylsilyl derivatives were prepared and analyzed using capillary gas chromatography-mass spectrometry with selected ion monitoring. The addition of DL-[3,3,3',3',4,4,4',4'-2H8]homocystine, DL-[3,3,3',3'-2H4]cystine, and L-[methyl-2H3]methionine to the starting samples prior to the reduction of all disulfides, including the deuterated internal standards, with 2-mercaptoethanol makes it possible to quantitate all three amino acids. Normal ranges for total homocysteine, total cysteine, and methionine have been determined in human and rat serum and in human urine.  相似文献   

12.
A sensitive, simple and accurate method was developed for determination of dextromethorphan (DM) and dextrorphan (DT) in human urine by capillary gas chromatography without derivatization. After an oral dose of 30 mg DM, urine samples were collected and extracted, then analyzed on 0.22 mmx17 m HP-1 capillary column. DM and its metabolite DT were analyzed simultaneously with good separation. Docosane was used as the internal standard (I.S.). The detector used was flame ionization detector (FID). There was a linear relationship between peak area ratios of analytes to I.S. and concentration of analytes over the concentration range 0.37-7.38 micromol/l for DM and 0.39-77.8 micromol/l for DT. The recovery was 88.1 approximately 103.9% for DM and 86.7 approximately 96.8% for DT. The within-day and between-day coefficients of variation were less than 7.4 and 7.3% (RSD) for the assay of DM and DT in urine, respectively. The limits of detection (LOD) were 0.30 micromol/l for DM and 0.16 micromol/l for DT. The limits of quantitation (LOQ) were 0.37 micromol/l (RSD<6%) for DM and 0.39 micromol/l (RSD<7%) for DT. The method has been applied to determine the oxidative phenotypes of cytochrome P450 2D6 (CYP2D6) in a Chinese population with metabolic ratio of DM in human urine.  相似文献   

13.
A capillary zone electrophoretic (CZE) method was investigated for the determination of Gleevec and its main metabolite (N-demethylated piperazine derivative) in human urine using a fused-silica capillary (75 microm I.D.x60 cm total length, 10 cm effective length). The separation was performed with an hydrodynamic injection time of 10 s (0.5 p.s.i.) a voltage of -25 kV, a capillary temperature of 25 degrees C and a 100 mM phosphoric acid adjusted to pH 2 with the addition of triethanolamine. Under these conditions, the analysis takes about 5 min. A linear response over the 0.4-30.0 mg l(-1) concentration range was investigated for two compounds. A dilution of the sample was the only step necessary before the electrophoresis analysis. Detection limits of 0.1 mg l(-1) for Gleevec and its metabolite (S/N=3) were obtained. The developed method is easy, rapid and sensitive and has been applied to determine Gleevec and its main metabolite in clinical urine samples.  相似文献   

14.
A reversed-phase high-performance liquid chromatography method for the determination of dimethindene and its main metabolites N-demethyldimethindene, 6-hydroxydimethindene and 6-hydroxy-N-demethyldimethindene in human urine was developed. The assay was also applied to the quantification of dimethindene-N-oxide in rat urine. Conjugates of the hydroxylated metabolites were determined after enzymatic deconjugation. Moreover the direct determination of dimethindene and its metabolites without prior extraction from urine was performed by capillary electrophoresis. The direct simultaneous determination of the enantiomers of dimethindene and N-demethyldimethindene was achieved on a Chiralcel OD column. Urinary data after oral administration of dimethindene are presented. The assays were used to study dimethindene and it metabolites in urine upon oral administration of the drug to rats and human volunteers.  相似文献   

15.
Yoon SH  Robyt JF 《Carbohydrate research》2003,338(19):1969-1980
Acarbose analogues, 4IV-maltohexaosyl acarbose (G6-Aca) and 4IV-maltododecaosyl acarbose (G12-Aca), were prepared by the reaction of cyclomaltodextrin glucanyltransferase with cyclomaltohexaose and acarbose. The inhibition kinetics of acarbose and the two acarbose analogues were studied for four different alpha-amylases: Aspergillus oryzae, Bacillus amyloliquefaciens, human salivary, and porcine pancreatic alpha-amylases. The three inhibitors showed mixed, noncompetitive inhibition, for all four alpha-amylases. The acarbose inhibition constants, Ki, for the four alpha-amylases were 270, 13, 1.27, and 0.80 microM, respectively; the Ki values for G6-Aca were 33, 37, 14, and 7 nM, respectively; and the G12-Aca Ki constants were 59, 81, 18, and 11 nM, respectively. The G6-Aca and G12-Aca analogues are the most potent alpha-amylase inhibitors observed, with Ki values one to three orders of magnitude more potent than acarbose, which itself was one to three orders of magnitude more potent than other known alpha-amylase inhibitors.  相似文献   

16.
Lorcainide, a new antiarrhythmic agent currently undergoing clinical trial, has been pentadeuterated and the usefulness of this labelled compound in pharmacokinetic and metabolism studies has been investigated in dogs. Specific analytical methods based on capillary gas chromatography/mass spectrometry (GC/MS) were developed for quantitative and qualitative analysis of plasma and urine samples. Following oral administration of an equimolar mixture of 5 : 5 mg of (2H0/2H5)lorcainide, eight major metabolites were rapidly identified in urine by the ion cluster technique. Quantitative analysis of (2H0/2H5)lorcainide in plasma and urine indicated an enhanced systematic availability of the deuterated compound, probably due to a secondary isotope effect. According to these findings in the dog, the use of deuterated lorcainide in human bioavailability and metabolism studies is probably of limited value.  相似文献   

17.
Furosemide, a drug that promotes urine excretion, is used in the pharmacotherapy of various diseases and is considered as a doping agent in sports. Using alkaline electrolytes, analysis of furosemide by dodecyl sulfate based micellar electrokinetic capillary chromatography (MECC) and capillary zone electrophoresis (CZE) with laser-induced fluorescence detection (LIF, analyte excitation with the 325 nm line of a HeCd laser) is described. Data produced by injection of plain or diluted patient urines are confirmed with those obtained via analysis of urinary solid-phase extracts. CZE-LIF and MECC-LIF are thereby shown to permit unambiguous recognition of furosemide in urines collected after ingestion of therapeutic doses of this drug. This is in contrast to solute detection via UV absorbance for which the extraction of furosemide is required. MECC based electropherograms are somewhat more complex compared to those obtained by CZE-LIF, this suggesting that the latter approach is more suitable for rapid screening of urines with direct sample injection and LIF detection. Alternatively, capillary electrophoresis with negative electrospray ionization-ion-trap tandem mass spectrometry (CE-MS2) is shown to permit the direct confirmation of furosemide in human urine. This approach is based upon the monitoring of the m/z 329.3-->4m/z 285.2 precursor-product ion transition. CZE-LIF and CE-MS2 with injection of plain or diluted urine represent simple, rapid and attractive urinary screening and confirmation assays for furosemide in patient urines.  相似文献   

18.
Two capillary electrophoresis methods have been developed for the direct determination of triamterene and its main metabolite hydroxytriamterene sulfate in human urine. Analytes were detected using conventional UV detection as well as laser-induced fluorescence (LIF) detection with an HeCd-laser operating at a wavelength of 325 nm. The results of both detection techniques were compared. Indeed, the limit of quantification was eightfold lower using LIF detection (50 ng/ml) in comparison to UV detection (400 ng/ml). As no interference due to endogenous urine compounds was observed, direct urine analysis was feasible. Analysis was very simple and fast-one run could be performed within less than 10 min (CE-UV method) and 2.5 min (CE-LIF method), respectively. Both assays were fully validated and applied to urine samples from a human volunteer. The results of the application of the CE-LIF method to human urine samples are presented in this publication.  相似文献   

19.
Intraperitoneal injections (approximately 400 mg/kg of body weight) of acarbose, an inhibitor of acid (1----4)-alpha-D-glucosidase, perturb the metabolism of glycogen in the liver, resulting in excess storage of lysosomal glycogen. The metabolism of skeletal muscle glycogen was unaffected, suggesting that acarbose either does not enter the tissue or that the muscle alpha-D-glucosidase is not inhibited. The hydrolysis of maltose and glycogen by the acid alpha-D-glucosidases from rat liver, rat skeletal muscle, and human placenta was inhibited competitively by acarbose. Thus, the lack of effect of acarbose upon the metabolism of muscle glycogen is due to its inability to enter the tissue.  相似文献   

20.
A gas chromatographic method adapted to routine analysis has been developed for quantitative separation on glass capillary columns for free proteic and other known amino acids normally or abnormally found in physiological fluids. The procedure involves ion-exchange chromatography and isobutyl ester, N(O)-heptafluorobutyrate derivatization of free plasma and urine amino acid samples. Derivatized components were ascertained by combined gas chromatography—mass spectrometry. The use of glass for the capillary column is mandatory to achieve qualitative and quantitative analysis of the known occurring amino acids in urine and small plasma samples. Quantitative analysis of several types of human amino acid disorders are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号