首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New fumagillin analogues were designed through structure-based molecular modeling with a human methionine aminopeptidase-2. Among the fumagillin analogues, cinnamic acid ester derivative CKD-731 showed 1000-fold more potent proliferation inhibitory activity on endothelial cell than TNP-470.  相似文献   

2.
Pulmonary Hypertension (PH) is a pathophysiologic condition characterized by hypoxemia and right ventricular strain. Proliferation of fibroblasts, smooth muscle cells, and endothelial cells is central to the pathology of PH in animal models and in humans. Methionine aminopeptidase-2 (MetAP2) regulates proliferation in a variety of cell types including endothelial cells, smooth muscle cells, and fibroblasts. MetAP2 is inhibited irreversibly by the angiogenesis inhibitor fumagillin. We have previously found that inhibition of MetAP2 with fumagillin in bleomycin-injured mice decreased pulmonary fibrosis by selectively decreasing the proliferation of lung myofibroblasts. In this study, we investigated the role of fumagillin as a potential therapy in experimental PH. In vivo, treatment of rats with fumagillin early after monocrotaline injury prevented PH and right ventricular remodeling by decreasing the thickness of the medial layer of the pulmonary arteries. Treatment with fumagillin beginning two weeks after monocrotaline injury did not prevent PH but was associated with decreased right ventricular mass and decreased cardiomyocyte hypertrophy, suggesting a direct effect of fumagillin on right ventricular remodeling. Incubation of rat pulmonary artery smooth muscle cells (RPASMC) with fumagillin and MetAP2-targeting siRNA inhibited proliferation of RPASMC in vitro. Platelet-derived growth factor, a growth factor that is important in the pathogenesis of PH and stimulates proliferation of fibroblasts and smooth muscle cells, strongly increased expression of MetP2. By immunohistochemistry, we found that MetAP2 was expressed in the lesions of human pulmonary arterial hypertension. We propose that fumagillin may be an effective adjunctive therapy for treating PH in patients.  相似文献   

3.
Methionine aminopeptidase (MetAP) catalyzes removal of the initiator methionine from nascent polypeptides. In eukaryotes, there are two forms of MetAP, type 1 and type 2, whose combined activities are essential, but whose relative intracellular roles are unclear. Methionine metabolism is an important aspect of cellular physiology, involved in oxidative stress, methylation, and cell cycle. Due to the potential of MetAP activity to provide a methionine salvage pathway, we evaluated the relationship between methionine metabolism and MetAP activity in Saccharomyces cerevisiae. We provide the first demonstration that yeast MetAP1 plays a significant role in methionine metabolism, namely, preventing premature activation of MET genes through MetAP function in methionine salvage. Interestingly, in cells lacking MetAP1, excess methionine dramatically inhibits cell growth. Growth inhibition is independent of the ability of methionine to repress MET genes and does not result from inhibition of synthesis of another metabolite, rather it results from product inhibition of MetAP2. Inhibition by methionine is selective for MetAP2 over MetAP1. These results provide an explanation for the previously observed dominance of MetAP1 in terms of N-terminal processing and cell growth in yeast. Additionally, differential regulation of the two isoforms may be indicative of different intracellular roles for the two enzymes.  相似文献   

4.
TNP-470, the first anti-angiogenic small molecule to enter clinical trials, targets methionine aminopeptidase-2 (MetAP-2), a metalloprotease that cleaves the N-terminal methionine of proteins. Previously, biochemical binding, in vivo yeast studies, and structural studies of human methionine aminopeptidase-2 bound to TNP-470 and its analogs fumagillin and ovalicin revealed that these compounds exhibit specificity for MetAP-2 over its family member MetAP-1. To further elucidate the nature of this specificity, we developed a yeast-based screen for human MetAP-2 mutations that confer ovalicin resistance. Of the three resistant alleles, A362T appeared in the majority of clones and was found to be the most resistant to the ovalicin class of inhibitors. Alignment of human MetAP-2 with human MetAP-1, which is naturally ovalicin-resistant, revealed that the analogous residue in MetAP-1 is also a threonine. Mutation of this residue to alanine resulted in an ovalicin-sensitive MetAP-1 allele, demonstrating that an alanine at this position is critical for inhibition by ovalicin. These results provide a molecular explanation for the specificity exhibited by this class of anti-angiogenic agents for MetAP-2 over MetAP-1 and may prove useful in the development of additional MetAP-2-specific therapeutic agents.  相似文献   

5.
Methionine aminopeptidase 2 (MetAP2) is responsible for the hydrolysis of the initiator methionine molecule from the majority of newly synthesized proteins. We have cloned the MetAP2 gene from the malaria parasite Plasmodium falciparum (PfMetAP2; GenBank accession number AF348320). The cloned PfMetAP2 has no intron, consists of 1,544 bp and encodes a protein of 354 amino acids with a molecular mass of 40,537 D and an overall base composition of 72.54% A + T. PfMetAP2 has 40% sequence identity with human MetAP2 and 45% identity with yeast MetAP2, and is located in chromosome 14 of P. falciparum. The three-dimensional structure of Pf MetAP2 has been modeled based on the crystal structure of human MetAP2, and several amino acid side chains protruding into the binding pocket that differ between the plasmodial and human enzyme have been identified. The specific MetAP2 inhibitors, fumagillin and TNP-470, potently blocked in vitro growth of P. falciparum and Leishmania donavani, with IC(50) values similar to the prototype drugs. Furthermore, in the case of P. falciparum, the chloroquine-resistant strains are equally susceptible to these two compounds.  相似文献   

6.
Boxem M  Tsai CW  Zhang Y  Saito RM  Liu JO 《FEBS letters》2004,576(1-2):245-250
We have investigated the physiological function of type 2 methionine aminopeptidases (MetAP2) using Caenorhabditis elegans as a model system. A homolog of human MetAP2 was found in the C. elegans genome, which we termed MAP-2. MAP-2 protein displayed methionine aminopeptidase activity and was sensitive to inhibition by fumagillin. Downregulation of map-2 expression by RNAi led to sterility, resulting from a defect in germ cell proliferation. These observations suggest that MAP-2 is essential for germ cell development in C. elegans and that this ubiquitous enzyme may play important roles in a tissue specific manner.  相似文献   

7.
Hybrids of 1-deoxynojirimycin (DNJ) and aryl-1,2,3-triazole have been synthesized with a view to identifying an inhibitor of both alpha-glucosidase and methionine aminopeptidase 2 (MetAP2). One compound was a potent inhibitor of alpha-glucosidase at both the enzyme and cellular level, and this agent also inhibited bovine aortic endothelial cell (BAEC) growth and tube formation. The anti-proliferative activity of this hybrid is due to its ability to induce cell-cycle arrest in the G(1) phase. The novel agent caused a reduction in the expression of cyclin D1 but did not promote apoptosis or inhibit the phosphorylation of ERK1/2. These observations indicate that its mechanism of action is distinct from fumagillin and its analogues, which inhibit MetAP2. Stress-fibre assembly in BAECs was abolished by the novel agent indicating that the inhibition of BAEC tube formation observed is partially a result of a reduction in cell motility.  相似文献   

8.
S100A4 is an EF-hand type calcium-binding protein that regulates tumor metastasis and a variety of cellular processes via interaction with different target proteins. Here we report that S100A4 physically interacts with methionine aminopeptidase 2 (MetAP2), the primary target for potent angiogenesis inhibitors, fumagillin and ovalicin. Using a yeast two-hybrid screen, S100A4 was found to interact with the N-terminal half of MetAP2. In vitro pull-down assays showed that S100A4 associates with MetAP2 in a calcium-dependent manner. In addition, the binding site of S100A4 was found located within the region between amino acid residues 170 and 229 of MetAP2. In vivo interaction of S100A4 with MetAP2 was verified by co-immunoprecipitation analysis. Immunofluorescent staining revealed that S100A4 and MetAP2 were co-localized in both quiescent and basic fibroblast growth factor-treated murine endothelial MSS31 cells, in the latter of which a significant change of intracellular distribution of both proteins was observed. Although the binding of S100A4 did not affect the in vitro methionine aminopeptidase activity of MetAP2, the cytochemical observation suggests a possible involvement of S100A4 in the regulation of MetAP2 activity through changing its localization, thereby modulating the N-terminal methionine processing of nascent substrates. These results may offer an essential clue for understanding the functional role of S100A4 in regulating endothelial cell growth and tumor metastasis.  相似文献   

9.
A precise balance between growth promoting signals and growth inhibitory signals plays important roles in the maintenance of healthy mammalian cells. Any deregulation of this critical balance converts normal cells into abnormal or cancerous cells. Several macromolecules are being identified and characterized that are involved in the regulation of cell signaling pathways that connect to the cell cycle and thus they play roles as tumor promoters or tumor suppressors. In situ tumor formation needs active angiogenesis, a process that generates new blood vessels from existing ones either by splitting or sprouting. Several small molecule inhibitors and proteins have been identified as inhibitors of angiogenesis. One such protein, p67/MetAP2 also known as methionine aminopeptidase 2 (MetAP2), has been shown to bind covalently to fumagillin and its derivatives that have anti-angiogenic activity. In addition to fumagillin or its derivatives, several other small molecule inhibitors of p67/MetAP2 have been recently identified and some of these drugs are in phase III trials for cancer therapy. Although molecular details of actions toward tumor suppression by these drugs are largely unknown, a significant progress has been made to understand the structure–function relationship of p67/MetAP2 and its roles in the maintenance of the levels of phosphorylation of the ∝-subunit of eukaryotic initiation factor 2 (eIF2∝) and extracellular signal-regulated kinases 1 and 2 (ERK1/2). In this article, roles of p67/MetAP2 in the suppression of cancer development are also discussed.  相似文献   

10.
The dependence of cell growth on methionine aminopeptidase (MetAP) function in bacteria and yeast is firmly established. Here we report experimental evidence that the control of cell proliferation in mammalian cells is directly linked and strictly dependent on the activity of both MetAP-1 and MetAP-2. The targeted downregulation of either methionine aminopeptidase MetAP-1 or MetAP-2 protein expression by small interfering RNA (siRNA) significantly inhibited the proliferation of human umbilical vein endothelial cells (HUVEC) (70%-80%), while A549 human lung carcinoma cell proliferation was less inhibited (20%-30%). The cellular levels of MetAP-2 enzyme were measured after MetAP-2 siRNA treatment and found to decrease over time from 4 to 96 h, while rapid and complete depletion of MetAP-2 enzyme activity was observed after 4 h treatment with two pharmacological inhibitors of MetAP-2, PPI-2458 and fumagillin. When HUVEC and A549 cells were treated simultaneously with MetAP-2 siRNA and PPI-2458, or fumagillin, which irreversibly inhibit MetAP-2 enzyme activity, no additive effect on maximum growth inhibition was observed. This strongly suggests that MetAP-2 is the single critical cellular enzyme affected by either MetAP-2 targeting approach. Most strikingly, despite their significantly different sensitivity to growth inhibition after targeting of either MetAP-1 or MetAP-2, HUVEC, and A549 cells, which were made functionally deficient in both MetAP-1 and MetAP-2 were completely or almost completely inhibited in their growth, respectively. This closely resembled the observed growth inhibition in genetically double-deficient map1map2 yeast strains. These results suggest that MetAP-1 and MetAP-2 have essential functions in the control of mammalian cell proliferation and that MetAP-dependent growth control is evolutionarily highly conserved.  相似文献   

11.
Substituted 3-amino-2-hydroxyamides and related hydroxyamides and acylhydrazines were identified as inhibitors of human methionine aminopeptidase-2 (MetAP2). Examination of substituents through parallel synthesis and iterative structure-based design allowed the identification of potent inhibitors with good selectivity against MetAP1. Diacylhydrazine 3t (A-357300) was identified as an analogue displaying inhibition of methionine processing and cellular proliferation in human microvascular endothelial cells (HMVEC).  相似文献   

12.
Fumagillin is a potent anti-angiogenic drug used in cancer treatments. It is also one of the few molecules active against the Enterocytozoon and Encephalitozoon parasites responsible for various clinical syndromes in HIV-infected or immunosuppressive treated patients. Its toxicity, however, makes desirable the design of more specific molecules. The fumagillin target, as anti-angiogenic agent, is the methionine aminopeptidase, an ubiquitous metallo-enzyme responsible for the removing of the N-terminal methionine in nascent proteins. By analogy, it has been proposed that this enzyme could also be the target in the parasites. As a first approach to verify this and to determine if it would be possible to design a more specific derivative, we have built a homology model of the E. cuniculi aminopeptidase. The charges of the two cobalt ions present in the active site and of the side-chains involved in their binding were computed using ab-initio methods. A preliminary comparison of the interactions of the fumagillin and of a related compound, the TNP-470, with both the human and the parasitic enzymes strongly support the hypothesis that the parasitic aminopeptidase is indeed the target of the fumagillin. It also suggests that the TNP-470 interact identically with both enzymes while there could be small differences in case of the fumagillin.  相似文献   

13.
QSAR have been formulated for variations of TNP-470 and Ovalicin on various cell lines. In the examples of mouse lymphocyte cells and bovine endothelial cells the results suggest an allosteric interaction. These results are compared with the binding of nitrobenzene to hemoglobin in rats in vivo. Such a reaction does not occur with methionine aminopeptidase.  相似文献   

14.
Methionine aminopeptidases (MetAPs) remove the initiator methionine during protein biosynthesis. They exist in two isoforms, MetAP1 and MetAP2. The anti-angiogenic compound fumagillin binds tightly to the Type 2 MetAPs but only weakly to Type 1. High-affinity complexes of fumagillin and its relative ovalicin with Type 2 human MetAP have been reported. Here we describe the crystallographic structure of the low-affinity complex between ovalicin and Type 1 human MetAP at 1.1 A resolution. This provides the first opportunity to compare the structures of ovalicin or fumagillin bound to a Type 1 and a Type 2 MetAP. For both Type 1 and Type 2 human MetAPs the inhibitor makes a covalent adduct with a corresponding histidine. At the same time there are significant differences in the alignment of the inhibitors within the respective active sites. It has been argued that the lower affinity of ovalicin and fumagillin for the Type 1 MetAPs is due to the smaller size of their active sites relative to the Type 2 enzymes. Comparison with the uncomplexed structure of human Type 1 MetAP indicates that there is some truth to this. Several active site residues have to move "outward" by 0.5 Angstroms or so to accommodate the inhibitor. Other residues move "inward." There are, however, other factors that come into play. In particular, the side chain of His310 rotates by 134 degrees into a different position where (together with Glu128 and Tyr195) it coordinates a metal ion not seen at this site in the native enzyme.  相似文献   

15.
The anti-angiogenic activity of AGM-1470, a new synthetic analog of fumagillin isolated from Aspergillus fumigatus, was extensively examined both in vitro and in vivo using four different types of assay and compared to that of the fumagillin parent. Locally administered AGM-1470 inhibited the angiogenesis in the chick embryo chorioallantoic membrane assay and the rat corneal assay. In the rat sponge implantation assay, systemically administered AGM-1470 inhibited angiogenesis induced by basic fibroblast growth factor. Furthermore, in the rat blood vessel organ culture assay, AGM-1470 (1-1,000 ng/ml) was found to selectively inhibit the capillary-like tube formation of endothelial cells with a minimal effect on the non-endothelial cell growth. AGM-1470 showed more potent anti-angiogenic activity and less toxicity than the fumagillin parent. Therefore, AGM-1470 is much better than the fumagillin parent as anti-angiogenic compound.  相似文献   

16.
Histone acetylation plays an important role in chromatin remodeling and gene expression. The molecular mechanisms involved in cell-specific expression of endothelial nitric-oxide synthase (eNOS) are not fully understood. In this study we investigated whether histone deacetylation was involved in repression of eNOS expression in non-endothelial cells. Induction of eNOS expression by histone deacetylase (HDAC) inhibitors trichostatin A (TSA) and sodium butyrate was observed in all four different types of non-endothelial cells examined. Chromatin immunoprecipitation assays showed that the induction of eNOS expression by TSA was accompanied by a remarkable increase of acetylation of histone H3 associated with the eNOS 5'-flanking region in the non-endothelial cells. Moreover, DNA methylation-mediated repression of eNOS promoter activity was partially reversed by TSA treatment, and combined treatment of TSA and 5-aza-2'-deoxycytidine (AzadC) synergistically induced eNOS expression in non-endothelial cells. The proximal Sp1 site is critical for basal activity of eNOS promoter. The induction of eNOS by inhibition of HDACs in non-endothelial cells, however, appeared not mediated by the changes in Sp1 DNA binding activity. We further showed that Sp1 bound to the endogenous eNOS promoter and associated with HDAC1 in non-endothelial HeLa cells. Combined TSA and AzadC treatment increased Sp1 binding to the endogenous eNOS promoter but decreased the association between HDAC1 and Sp1 in HeLa cells. Our data suggest that HDAC1 plays a critical role in eNOS repression, and the proximal Sp1 site may serve a key target for HDCA1-mediated eNOS repression in non-endothelial cells.  相似文献   

17.
Fumagillin is the only antibiotic approved for control of nosema disease in honey bees and has been extensively used in United States apiculture for more than 50 years for control of Nosema apis. It is toxic to mammals and must be applied seasonally and with caution to avoid residues in honey. Fumagillin degrades or is diluted in hives over the foraging season, exposing bees and the microsporidia to declining concentrations of the drug. We showed that spore production by Nosema ceranae, an emerging microsporidian pathogen in honey bees, increased in response to declining fumagillin concentrations, up to 100% higher than that of infected bees that have not been exposed to fumagillin. N. apis spore production was also higher, although not significantly so. Fumagillin inhibits the enzyme methionine aminopeptidase2 (MetAP2) in eukaryotic cells and interferes with protein modifications necessary for normal cell function. We sequenced the MetAP2 gene for apid Nosema species and determined that, although susceptibility to fumagillin differs among species, there are no apparent differences in fumagillin binding sites. Protein assays of uninfected bees showed that fumagillin altered structural and metabolic proteins in honey bee midgut tissues at concentrations that do not suppress microsporidia reproduction. The microsporidia, particularly N. ceranae, are apparently released from the suppressive effects of fumagillin at concentrations that continue to impact honey bee physiology. The current application protocol for fumagillin may exacerbate N. ceranae infection rather than suppress it.  相似文献   

18.
Tissue-type plasminogen activator (tPA) is a multidomain serine protease that converts the zymogen plasminogen to plasmin. tPA contains two kringle domains which display considerable sequence identity with those of angiostatin, an angiogenesis inhibitor. TK1-2, a recombinant kringle domain composed of t-PA kringles 1 and 2 (Ala(90)-Thr(263)), was produced by both bacterial and yeast expression systems. In vitro, TK1-2 inhibited endothelial cell proliferation stimulated by basic fibroblast growth factor, vascular endothelial growth factor, and epidermal growth factor. It did not inhibit proliferation of non-endothelial cells. TK1-2 also inhibited in vivo angiogenesis in the chick embryo chorioallantoic membrane model. These results suggest that the recombinant kringle domain of t-PA is a selective inhibitor of endothelial cell growth and identifies this molecule as a novel anti-angiogenic agent.  相似文献   

19.
The identity of the physiological metal cofactor for human methionine aminopeptidase-2 (MetAP2) has not been established. To examine this question, we first investigated the effect of eight divalent metal ions, including Ca(2+), Co(2+), Cu(2+), Fe(2+), Mg(2+), Mn(2+), Ni(2+), and Zn(2+), on recombinant human methionine aminopeptidase apoenzymes in releasing N-terminal methionine from three peptide substrates: MAS, MGAQFSKT, and (3)H-MASK(biotin)G. The activity of MetAP2 on either MAS or MGAQFSKT was enhanced 15-25-fold by Co(2+) or Mn(2+) metal ions in a broad concentration range (1-1000 microM). In the presence of reduced glutathione to mimic the cellular environment, Co(2+) and Mn(2+) were also the best stimulators (approximately 30-fold) for MetAP2 enzyme activity. To determine which metal ion is physiologically relevant, we then tested inhibition of intracellular MetAP2 with synthetic inhibitors selective for MetAP2 with different metal cofactors. A-310840 below 10 microM did not inhibit the activity of MetAP2-Mn(2+) but was very potent against MetAP2 with other metal ions including Co(2+), Fe(2+), Ni(2+), and Zn(2+) in the in vitro enzyme assays. In contrast, A-311263 inhibited MetAP2 with Mn(2+), as well as Co(2+), Fe(2+), Ni(2+), and Zn(2+). In cell culture assays, A-310840 did not inhibit intracellular MetAP2 enzyme activity and did not inhibit cell proliferation despite its ability to permeate and accumulate in cytosol, while A-311263 inhibited both intracellular MetAP2 and proliferation in a similar concentration range, indicating cellular MetAP2 is functioning as a manganese enzyme but not as a cobalt, zinc, iron, or nickel enzyme. We conclude that MetAP2 is a manganese enzyme and that therapeutic MetAP2 inhibitors should inhibit MetAP2-Mn(2+).  相似文献   

20.
Protein myristoylation is a co-translational process, catalyzed by N-myristoyltransferase (NMT) that occurs after the initiating methionine is removed by methionine aminopeptidase (MetAP). The enzymes NMT and MetAP play a major role in the process of myristoylation of oncoproteins including the c-src family. In this study, we examined the levels of expression of MetAP2, NMT, and NMT inhibitor protein 71 (NIP71) in human colon cancer cell lines (HCCLs). We examined the influence of cell density on the expression of the above proteins in HT29 cells. Western blot analysis of MetAP2 and NMT demonstrated higher levels of protein expression in low density of HT29 while low expression in high density was observed. In addition, we observed that NIP71 and pp60(c-src) expressions were dependent on the cell density of HT29. This is the first study demonstrating the expression of MetAP2, NMT, pp60(c-src), and NIP71 in HCCLs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号