首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Holocarboxylase synthetase (HLCS) is a chromatin protein that facilitates the creation of histone H3 lysine 9-methylation (H3K9me) gene repression marks through physical interactions with the histone methyltransferase EHMT-1. HLCS knockdown causes a depletion of H3K9me marks in mammalian cell cultures and severe phenotypes such as short lifespan and low stress resistance in Drosophila melanogaster. HLCS displays a punctuate distribution pattern in chromatin despite lacking a strong DNA-binding domain. Previous studies suggest that the binding of HLCS to chromatin depends on DNA methylation. We tested the hypothesis that HLCS interacts physically with the DNA methyltransferase DNMT1 and the methyl CpG binding protein MeCP2 to facilitate the binding of HLCS to chromatin, and that these interactions contribute toward the repression of long-terminal repeats (LTRs) by H3K9me marks. Co-immunoprecipitation and limited proteolysis assays provided evidence suggesting that HLCS interacts physically with both DNMT1 and MeCP2. The abundance of H3K9me marks was 207% greater in the LTR15 locus in HLCS overexpression human embryonic kidney HEK293 cells compared with controls. This gain in H3K9me was inversely linked with a 87% decrease in mRNA coding for LTRs. Effects of HLCS abundance on LTR expression were abolished when DNA methylation marks were erased by treating cells with 5-azacytidine. We conclude that interactions between DNA methylation and HLCS are crucial for mediating gene repression by H3K9me, thereby providing evidence for epigenetic synergies between the protein biotin ligase HLCS and dietary methyl donors.  相似文献   

2.
3.
Mass spectrometry-based hydrogen/deuterium exchange (H/DX) has been used to define the polypeptide backbone dynamics of full-length methyl CpG binding protein 2 (MeCP2) when free in solution and when bound to unmethylated and methylated DNA. Essentially the entire MeCP2 polypeptide chain underwent H/DX at rates faster than could be measured (i.e. complete exchange in ≤10 s), with the exception of the methyl DNA binding domain (MBD). Even the H/DX of the MBD was rapid compared with that of a typical globular protein. Thus, there is no single tertiary structure of MeCP2. Rather, the full-length protein rapidly samples many different conformations when free in solution. When MeCP2 binds to unmethylated DNA, H/DX is slowed several orders of magnitude throughout the MBD. Binding of MeCP2 to methylated DNA led to additional minor H/DX protection, and only locally within the N-terminal portion of the MBD. H/DX also was used to examine the structural dynamics of the isolated MBD carrying three frequent mutations associated with Rett syndrome. The effects of the mutations ranged from very little (R106W) to a substantial increase in conformational sampling (F155S). Our H/DX results have yielded fine resolution mapping of the structure of full-length MeCP2 in the absence and presence of DNA, provided a biochemical basis for understanding MeCP2 function in normal cells, and predicted potential approaches for the treatment of a subset of RTT cases caused by point mutations that destabilize the MBD.  相似文献   

4.
The ROX1 gene of Saccharomyces cerevisiae encodes a protein required for the repression of genes expressed under anaerobic conditions. ROX1 belongs to a family of DNA binding proteins which contain the high mobility group motif (HMG domain). To ascertain whether the HMG domain of ROX1 is required for specific DNA binding we synthesized a series of ROX1 protein derivatives, either in vitro or in Escherichia coli as fusions to glutathione S-transferase (GST) protein, and tested them for their ability to bind to DNA. Both ROX1 proteins that were synthesized in vitro and GST-ROX1 fusion proteins containing the intact HMG domain were able to bind to specific target DNA sequences. In contrast, ROX1 proteins which contained deletions within the HMG domain were no longer capable of binding to DNA. The oligomerization of ROX1 in vitro was demonstrated using affinity-purified GST-ROXI protein and ROX1 labelled with [35S]methionine. Using various ROX1 protein derivatives we were able to demonstrate that the domain required for ROX1-ROX1 interaction resides within the N-terminal 100 amino acids which constitute the HMG domain. Therefore, the HMG domain is required for both DNA binding activity and oligomerization of ROX1.  相似文献   

5.
6.
Onodera Y  Haag JR  Ream T  Costa Nunes P  Pontes O  Pikaard CS 《Cell》2005,120(5):613-622
All eukaryotes have three nuclear DNA-dependent RNA polymerases, namely, Pol I, II, and III. Interestingly, plants have catalytic subunits for a fourth nuclear polymerase, Pol IV. Genetic and biochemical evidence indicates that Pol IV does not functionally overlap with Pol I, II, or III and is nonessential for viability. However, disruption of the Pol IV catalytic subunit genes NRPD1 or NRPD2 inhibits heterochromatin association into chromocenters, coincident with losses in cytosine methylation at pericentromeric 5S gene clusters and AtSN1 retroelements. Loss of CG, CNG, and CNN methylation in Pol IV mutants implicates a partnership between Pol IV and the methyltransferase responsible for RNA-directed de novo methylation. Consistent with this hypothesis, 5S gene and AtSN1 siRNAs are essentially eliminated in Pol IV mutants. The data suggest that Pol IV helps produce siRNAs that target de novo cytosine methylation events required for facultative heterochromatin formation and higher-order heterochromatin associations.  相似文献   

7.
8.
9.
The function of the ATR (ataxia-telangiectasia mutated and Rad3-related)-ATRIP (ATR-interacting protein) protein kinase complex is central to the cellular response to replication stress and DNA damage. In order to better understand the function of this complex, we have studied its interaction with DNA. We find that both ATR and ATRIP associate with chromatin in vivo, and they exist as a large molecular weight complex that can bind single-stranded (ss)DNA cellulose in vitro. Although replication protein A (RPA) is sufficient for the recruitment of ATRIP to ssDNA, we show that a distinct ATR-ATRIP complex is able to bind to DNA with lower affinity in the absence of RPA. In this latter complex, we show that neither ATR nor ATRIP are able to bind DNA individually, nor do they bind DNA in a cooperative manner. However, the addition of HeLa nuclear extract is able to reconstitute the DNA binding of both ATR and ATRIP, suggesting the requirement for an additional protein activity. We also show that ATR is necessary for ATRIP to bind DNA in this low affinity mode and to form a large DNA binding complex. These observations suggest that there are at least two in vitro ATR-ATRIP DNA binding complexes, one which binds DNA with high affinity in an RPA-dependent manner and a second, which binds DNA with lower affinity in an RPA-independent manner but which requires an as of yet unidentified protein.  相似文献   

10.
Ataxia telangiectasia mutated (ATM) is a PI3-kinase-like kinase (PIKK) associated with DNA double-strand break (DSB) repair and cell cycle control. We have previously reported comparable efficiencies of DSB repair in nuclear extracts from both ATM deficient (A-T) and control (ATM+) cells; however, the repair products from the A-T nuclear extracts contained deletions encompassing longer stretches of DNA compared to controls. These deletions appeared to result from end-joining at sites of microhomology. These data suggest that ATM hinders error-prone repair pathways that depend on degradation of DNA ends at a break. Such degradation may account for the longer deletions we formerly observed in A-T cell extracts. To address this possibility we assessed the degradation of DNA duplex substrates in A-T and control nuclear extracts under DSB repair conditions. We observed a marked shift in signal intensity from full-length products to shorter products in A-T nuclear extracts, and addition of purified ATM to A-T nuclear extracts restored full-length product detection. This repression of degradation by ATM was both ATP-dependent and inhibited by the PIKK inhibitors wortmannin and caffeine. Addition of pre-phosphorylated ATM to an A-T nuclear extract in the presence of PIKK inhibitors was insufficient in repressing degradation, indicating that kinase activities are required. These results demonstrate a role for ATM in preventing the degradation of DNA ends possibly through repressing nucleases implicated in microhomology-mediated end-joining.  相似文献   

11.
12.
Exon repression by polypyrimidine tract binding protein   总被引:6,自引:0,他引:6       下载免费PDF全文
Polypyrimidine tract binding protein (PTB) is known to silence the splicing of many alternative exons. However, exons repressed by PTB are affected by other RNA regulatory elements and proteins. This makes it difficult to dissect the structure of the pre-mRNP complexes that silence splicing, and to understand the role of PTB in this process. We determined the minimal requirements for PTB-mediated splicing repression. We find that the minimal sequence for high affinity binding by PTB is relatively large, containing multiple polypyrimidine elements. Analytical ultracentrifugation and proteolysis mapping of RNA cross-links on the PTB protein indicate that most PTB exists as a monomer, and that a polypyrimidine element extends across multiple PTB domains. The high affinity site is bound initially by a PTB monomer and at higher concentrations by additional PTB molecules. Significantly, this site is not sufficient for splicing repression when placed in the 3' splice site of a strong test exon. Efficient repression requires a second binding site within the exon itself or downstream from it. This second site enhances formation of a multimeric PTB complex, even if it does not bind well to PTB on its own. These experiments show that PTB can be sufficient to repress splicing of an otherwise constitutive exon, without binding sites for additional regulatory proteins and without competing with U2AF binding. The minimal complex mediating splicing repression by PTB requires two binding sites bound by an oligomeric PTB complex.  相似文献   

13.
14.
15.
16.
MeCP2, whose methylated DNA-binding domain (MBD) binds preferentially to DNA containing 5Me-CpG relative to linear unmethylated DNA, also binds preferentially, and with similar affinity, to unmethylated four-way DNA junctions through the MBD. The Arg133Cys (R133C) mutation in the MBD, a Rett syndrome mutation that abolishes binding to methylated DNA, leads to only a slight reduction in the affinity of the MBD for four-way junctions, suggesting distinct but partially overlapping modes of binding to junction and methylated DNA. Binding to unmethylated DNA junctions is likely to involve a subset of the interactions that occur with methylated DNA. High-affinity, methylation-independent binding to four-way junctions is consistent with additional roles for MeCP2 in chromatin, beyond recognition of 5Me-CpG.  相似文献   

17.
18.
19.
DNA binding of a nonstructural reovirus protein   总被引:2,自引:0,他引:2  
The specific early inhibition of DNA synthesis in reovirus-infected cells suggests that the cell nucleus is a target for virus-induced damage. We have now examined the affinity of reovirus proteins for DNA, postulating that such affinity could provide a mechanism for the inhibition. Cytoplasmic and nuclear extracts of cells labeled with [35S] methionine from 6 to 8.5 h after infection at high multiplicity was subjected to chromatography on denatured DNA - cellulose columns. Fractions from both cytoplasm and nucleus eluted with 0.6 N NaCl contained a protein with the same electrophoretic mobility of polyacrylamide slab gels as the nonstructural (NS) reovirus protein of the sigma size class. The protein also exhibited affinity for native DNA - cellulose and denatured DNA - agarose. Electrophoretic analysis is tube gels of cell extracts labeled for 48 h before infection with [14C] leucine and from 6 to 8.5 h after infection with [3H] leucine showed increased 3H label in this protein indicating it is reovirus specific. Small amounts of mu proteins also had DNA affinity. Purified virus did not bind strongly to DNA, suggesting that the binding protein is not a structural protein of the sigma size class on the outer surface of the virus. Our results provide evidence that the sigma NS protein binds to DNA. This affinity could interfere with chromosome function in the infected cell.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号