首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The conformational transition of the human prion protein from an alpha-helical to a beta-sheet-rich structure is believed to be the critical event in prion pathogenesis. The molecular mechanism of misfolding and the role of intermediate states during this transition remain poorly understood. To overcome the obstacle of insolubility of amyloid fibrils, we have studied a beta-sheet-rich misfolded isoform of the prion protein, the beta-oligomer, which shares some structural properties with amyloid, including partial proteinase resistance. We demonstrate here that the beta-oligomer can be studied by solution-state NMR spectroscopy and obtain insights into the misfolding mechanism via its transient monomeric precursor. It is often assumed that misfolding into beta-sheet-rich isoforms proceeds via a compatible precursor with a beta-sheet subunit structure. We show here, on the contrary, evidence for an almost natively alpha-helix-rich monomeric precursor state with molten globule characteristics, converting in vitro into the beta-oligomer. We propose a possible mechanism for the formation of the beta-oligomer, triggered by intermolecular contacts between constantly rearranging structures. It is concluded that the beta-oligomer is not preceded by precursors with beta-sheet structure but by a partially unfolded clearly distinguishable alpha-helical state.  相似文献   

2.
Transmissible spongiform encephalopathies are associated with conformational conversion of the cellular prion protein, PrP(C), into a proteinase K-resistant, amyloid-like aggregate, PrP(Sc). Although the structure of PrP(Sc) remains enigmatic, recent studies have afforded increasingly detailed characterization of recombinant PrP amyloid. However, all previous studies were performed using amyloid fibrils formed in the presence of denaturing agents that significantly alter the folding state(s) of the precursor monomer. Here we report that PrP amyloid can also be generated under physiologically relevant conditions, where the monomeric protein is natively folded. Remarkably, site-directed spin labeling studies reveal that these fibrils possess a beta-core structure nearly indistinguishable from that of amyloid grown under denaturing conditions, where the C-terminal alpha-helical domain of the PrP monomer undergoes major refolding to a parallel and in-register beta-structure upon conversion. The structural similarity of fibrils formed under drastically different conditions strongly suggests that the common beta-sheet architecture within the approximately 160-220 core region represents a distinct global minimum in the PrP conversion free energy landscape. We also show that the N-terminal region of fibrillar PrP displays conformational plasticity, undergoing a reversible structural transition with an apparent pK(a) of approximately 5.3. The C-terminal region, on the other hand, retains its beta-structure over the pH range 1-11, whereas more alkaline buffer conditions denature the fibrils into constituent PrP monomers. This profile of pH-dependent stability is reminiscent of the behavior of brain-derived PrP(Sc), suggesting a substantial degree of structural similarity within the beta-core region of these PrP aggregates.  相似文献   

3.
The KIX domain of CREB binding protein (CBP) forms a small three-helix bundle which folds autonomously. Previous equilibrium unfolding experiments led to the suggestion that folding may not be strictly two-state. To investigate the folding mechanism in more detail, the folding kinetics of KIX have been studied by urea jump fluorescence-detected stopped-flow experiments. Clear evidence for an intermediate is obtained from the plot of the natural log of the observed rate constant versus denaturant concentration, the chevron plot, and from analysis of the initial fluorescence amplitudes of the stopped-flow experiments. The chevron plot exhibits a change in shape, rollover, at low denaturant concentrations, characteristic of the formation of an intermediate. The kinetic data can be fit to a three-state model involving a compact intermediate. An on-pathway model predicts that the position of the intermediate lies close to the native state. The folding rate in the absence of denaturant is 260 s(-)(1) at pH 7.5 and 25 degrees C. This is significantly slower than the rates of other helical proteins similar in size. The slow folding may be due to the necessity of forming a buried polar interaction in the native state. The potential functional significance of the folding intermediate is discussed.  相似文献   

4.
Amyloid formation via supramolecular peptide assemblies   总被引:2,自引:0,他引:2  
Moore RA  Hayes SF  Fischer ER  Priola SA 《Biochemistry》2007,46(24):7079-7087
Amyloid fibrils have been classically defined as linear, nonbranched polymeric proteins with a cross beta-sheet structure and the ability to alter the optical properties of the amyloid-specific dye Congo Red. Mounting evidence suggests that soluble oligomeric peptide assemblies approximately 2-20 nm in diameter are critical intermediates in amyloid formation. Using a pathogenic prion protein peptide comprised of residues 23-144, we demonstrate that, under quiescent but not agitated conditions, much larger globular assemblies up to 1 mum in diameter are made. These globules precede fibril formation and directly interact with growing fibril bundles. Fibrils made via these large spherical peptide assemblies displayed a remarkable diversity of ultrastructural features. Fibrillization of the Abeta1-40 peptide under similar conditions yielded similar results, suggesting a mechanism of general amyloid formation that can proceed through intermediates much larger than those previously described. Our data suggest that simply changing the physical microenvironment can profoundly influence the mechanism of amyloid formation and yield fibrils with novel ultrastructural properties.  相似文献   

5.
The recovery of enzymatic activity during the folding of muscle acylphosphatase and two single residue mutants (proline 54 to alanine and proline 71 to alanine) from 7 M urea has been monitored and compared with the development of intrinsic fluorescence emission. Fluorescence measurements reveal the presence in the wild-type protein of a major rapid refolding phase followed by a second low amplitude slow phase. The slow phase is absent in the fluorescence trace acquired with the proline 54 to alanine mutant, suggesting the involvement of this proline residue in the fluorescence-detected slow phase of the wild-type protein. The major kinetic phase is associated with a considerable recovery of enzymatic activity, indicating that a large fraction of molecules refolds with effective two-state behavior. The use of time-resolved enzymatic activity as a probe to follow the folding process reveals, however, the presence of another exponential slow phase arising from proline 71. This slow phase is not observable by utilizing optical probes, indicating that, unlike proline 54, the cis to trans isomerization of proline 71 can take place in an intermediate possessing a native-like fold. We suggest that, although spectroscopically silent and structurally insignificant, the cis-trans interconversion of proline residues in native-like intermediates may be crucial for the generation of enzymatic activity of functional enzymes.  相似文献   

6.
X-ray crystallographic studies of human alpha-thrombin with a novel synthetic inhibitor, an acyl (alpha-aminoalkyl)phosphonate, reveal the existence of a pentacovalent phosphorus intermediate state. Crystal structures of the complex of alpha-thrombin with the phosphonate compound were determined independently using crystals of different ages. The first structure, solved from a crystal less than seven days old, showed a pentacoordinated phosphorus moiety. The second structure, determined from a crystal that was 12 weeks old, showed a tetracoordinated phosphorus moiety. In the first structure, a water molecule, made nucleophilic by coordination to His57 of alpha-thrombin, is bonded to the pentacoordinated phosphorus atom. Its position is approximately equivalent to that occupied by the water molecule responsible for hydrolytic deacylation during normal hydrolysis. The pentacoordinated phosphorus adduct collapses to give the expected pseudo tetrahedral complex, where the phosphorus atom is covalently bonded to Ser195 O(gamma). The crystallographic data presented here therefore suggest that the covalent bond formed between the inhibitor's phosphorus atom and O(gamma) of Ser195 proceeds via an addition-elimination mechanism, which involves the formation of a pentacoordinate intermediate.  相似文献   

7.
Folding mechanisms of functional RNAs under idealized in vitro conditions of dilute solution and high ionic strength have been well studied. Comparatively little is known, however, about mechanisms for folding of RNA in vivo where Mg2+ ion concentrations are low, K+ concentrations are modest, and concentrations of macromolecular crowders and low-molecular-weight cosolutes are high. Herein, we apply a combination of biophysical and structure mapping techniques to tRNA to elucidate thermodynamic and functional principles that govern RNA folding under in vivo–like conditions. We show by thermal denaturation and SHAPE studies that tRNA folding cooperativity increases in physiologically low concentrations of Mg2+ (0.5–2 mM) and K+ (140 mM) if the solution is supplemented with physiological amounts (∼20%) of a water-soluble neutral macromolecular crowding agent such as PEG or dextran. Low-molecular-weight cosolutes show varying effects on tRNA folding cooperativity, increasing or decreasing it based on the identity of the cosolute. For those additives that increase folding cooperativity, the gain is manifested in sharpened two-state-like folding transitions for full-length tRNA over its secondary structural elements. Temperature-dependent SHAPE experiments in the absence and presence of crowders and cosolutes reveal extent of cooperative folding of tRNA on a nucleotide basis and are consistent with the melting studies. Mechanistically, crowding agents appear to promote cooperativity by stabilizing tertiary structure, while those low molecular cosolutes that promote cooperativity stabilize tertiary structure and/or destabilize secondary structure. Cooperative folding of functional RNA under physiological-like conditions parallels the behavior of many proteins and has implications for cellular RNA folding kinetics and evolution.  相似文献   

8.
Chorion, the major component of silkmoth eggshell, consists of the A and B classes of low-molecular weight structural proteins. Chorion protects the oocyte and the developing embryo from environmental hazards and this is due to the extraordinary physical and chemical properties of its constituent proteins. We have shown previously [FEBS Lett. 479 (2000) 141; 499 (2001) 268] that peptide-analogues of the A and B classes of chorion proteins form amyloid fibrils under a variety of conditions, which led us to propose that silkmoth chorion is a natural, protective amyloid. In this work, we present data showing conclusively that, the first main step of amyloid-like fibrillogenesis of chorion peptides is the formation of nuclei of liquid crystalline nature, which is reminiscent of spider-silk formation. We show that these liquid-crystalline nuclei (spherulites) 'collapse'/deteriorate to form amyloid fibrils in a spectacular manner, important, it seems, for chorion morphogenesis and amyloid fibrillogenesis in general. The molecular 'switch' causing this spectacular transformation is, most probably, a conformational transition to the structure of chorion peptides, from a left-handed parallel beta-helix to an antiparallel beta-pleated sheet. Apparently, these peptides were suitably designed to play this role, after millions of years of molecular evolution.  相似文献   

9.
Vu ND  Feng H  Bai Y 《Biochemistry》2004,43(12):3346-3356
The nature of the rate-limiting transition state at zero denaturant (TS(1)) and whether there are hidden intermediates are the two major unsolved problems in defining the folding pathway of barnase. In earlier studies, it was shown that TS(1) has small phi values throughout the structure of the protein, suggesting that the transition state has either a defined partially folded secondary structure with all side chains significantly exposed or numerous different partially unfolded structures with similar stability. To distinguish the two possibilities, we studied the effect of Gly mutations on the folding rate of barnase to investigate the secondary structure formation in the transition state. Two mutations in the same region of a beta-strand decreased the folding rate by 20- and 50-fold, respectively, suggesting that the secondary structures in this region are dominantly formed in the rate-limiting transition state. We also performed native-state hydrogen exchange experiments on barnase at pD 5.0 and 25 degrees C and identified a partially unfolded state. The structure of the intermediate was investigated using protein engineering and NMR. The results suggest that the intermediate has an omega loop unfolded. This intermediate is more folded than the rate-limiting transition state previously characterized at high denaturant concentrations (TS(2)). Therefore, it exists after TS(2) in folding. Consistent with this conclusion, the intermediate folds with the same rate and denaturant dependence as the wild-type protein, but unfolds faster with less dependence on the denaturant concentration. These and other results in the literature suggest that barnase folds through partially unfolded intermediates that exist after the rate-limiting step. Such folding behavior is similar to those of cytochrome c and Rd-apocyt b(562). Together, we suggest that other small apparently two-state proteins may also fold through hidden intermediates.  相似文献   

10.
Undenatured bovine epidermal alpha-keratin has been solubilized in a low-ionic-strength buffer at physiological pH (5 mM Tris-HCl/25 mM 2-mercaptoethanol (pH 7.5). The particles in this buffer were multimeric, retaining their characteristic polypeptide chain composition and alpha-helical coiled-coil structure. They were shown by sucrose density gradient centrifugation to be in true solution and to have a narrow size distribution. Upon the addition to this solution of monovalent or divalent cations up to physiological concentrations, the alpha-keratin rapidly assembled into intermediate filaments which showed a high tendency to aggregate laterally and disassembled if returned to low-ionic-strength conditions. This behaviour closely resembles that of other intermediate filament proteins, but it is the first time that alpha-keratins have been shown to be neutral-buffer-soluble and to assemble from such solutions into intermediate filaments under physiological conditions in vitro. This is in direct contrast to the reported properties of alpha-keratins after urea denaturation and the system appears to be appropriate for studying aspects of alpha-keratin intermediate filament formation.  相似文献   

11.
12.
Phosphate anions accelerate the oxidative folding of reduced bovine pancreatic ribonuclease A with dithiothreitol at several temperatures and ionic strengths. The addition of 400 mM phosphate at pH 8.1 increased the regeneration rate of native protein 2.5-fold at 15 degrees C, 3.5-fold at 25 degrees C, and 20-fold at 37 degrees C, compared to the rate in the absence of phosphate. In addition, the effects of other ions on the oxidative folding of RNase A were examined. Fluoride was found to accelerate the formation of native protein under the same oxidizing conditions. In contrast, cations of high charge density or ions with low charge density appear to have an opposite effect on the folding of RNase A. The catalysis of oxidative folding results largely from an anion-dependent stabilization and formation of tertiary structure in productive disulfide intermediates (des-species). Phosphate and fluoride also accelerate the initial equilibration of unstructured disulfide ensembles, presumably due to non-specific electrostatic and hydrogen bonding effects on the protein and solvent.  相似文献   

13.
The acyl-coenzyme A-binding proteins (ACBPs) contain 26 highly conserved sequence positions. The majority of these have been mutated in the bovine protein, and their influence on the rate of two-state folding and unfolding has been measured. The results identify eight sequence positions, out of 24 probed, that are critical for fast productive folding. The residues are all hydrophobic and located in the interface between the N- and C-terminal helices. The results suggest that one specific site dominated by conserved hydrophobic residues forms the structure of the productive rate-determining folding step and that a sequential framework model can describe the protein folding reaction.  相似文献   

14.
Aggregation of the N-terminal domain of the Escherichia coli HypF (HypF-N) was investigated in mild denaturing conditions, generated by addition of 6-12% (v/v) trifluoroethanol (TFE). Atomic force microscopy indicates that under these conditions HypF-N converts into the same type of protofibrillar aggregates previously shown to be highly toxic to cultured cells. These convert subsequently, after some weeks, into well-defined fibrillar structures. The rate of protofibril formation, monitored by thioflavin T (ThT) fluorescence, depends strongly on the concentration of TFE. Prior to aggregation the protein has far-UV circular dichroism (CD) and intrinsic fluorescence spectra identical with those observed for the native protein in the absence of co-solvent; the quenching of the intrinsic tryptophan fluorescence by acrylamide and the ANS binding properties are also identical in the two cases. These findings indicate that HypF-N is capable of forming amyloid protofibrils and fibrils under conditions in which the protein is initially in a predominantly native-like conformation. The rate constants for folding and unfolding of HypF-N, determined in 10% TFE using the stopped-flow technique, indicate that a partially folded state is in rapid equilibrium with the native state and populated to ca 1%. A kinetic analysis reveals that aggregation results from molecules accessing such a partially folded state. The approach described here shows that it is possible to probe the mechanism of aggregation of a specific protein under conditions in which the protein is initially native and hence relevant to a physiological environment. In addition, the results indicate that toxic protofibrils can be formed from globular proteins under conditions that are only marginally destabilising and in which the large majority of molecules have the native fold. This conclusion emphasises the importance for cells to constantly combat the propensity for even the most stable of these proteins to aggregate.  相似文献   

15.
Thorn DC  Ecroyd H  Sunde M  Poon S  Carver JA 《Biochemistry》2008,47(12):3926-3936
The calcified proteinaceous deposits, or corpora amylacea, of bovine mammary tissue often comprise a network of amyloid fibrils, the origins of which have not been fully elucidated. Here, we demonstrate by transmission electron microscopy, dye binding assays, and X-ray fiber diffraction that bovine milk alpha s2-casein, a protein synthesized and secreted by mammary epithelial cells, readily forms fibrils in vitro. As a component of whole alpha s-casein, alpha s2-casein was separated from alpha s1-casein under nonreducing conditions via cation-exchange chromatography. Upon incubation at neutral pH and 37 degrees C, the spherical particles typical of alpha s2-casein rapidly converted to twisted, ribbon-like fibrils approximately 12 nm in diameter, which occasionally formed loop structures. Despite their irregular morphology, these fibrils possessed a beta-sheet core structure and the ability to bind amyloidophilic dyes such as thioflavin T. Fibril formation was optimal at pH 6.5-6.7 and was promoted by higher incubation temperatures. Interestingly, the protein appeared to be less prone to fibril formation upon disulfide bond reduction with dithiothreitol. Thus, alpha s2-casein is particularly susceptible to fibril formation under physiological conditions. However, our findings indicate that alpha s2-casein fibril formation is potently inhibited by its natural counterpart, alpha s1-casein, while is only partially inhibited by beta-casein. These findings highlight the inherent propensity of casein proteins to form amyloid fibrils and the importance of casein-casein interactions in preventing such fibril formation in vivo.  相似文献   

16.
The minute virus of mice initiator protein, NS1, excises new copies of the left viral telomere in a single sequence orientation, dubbed flip, during resolution of the junction between monomer genomes in palindromic dimer intermediate duplexes. We examined this reaction in vitro using both (32)P-end-labeled linear substrates and similar unlabeled templates labeled by incorporation of [alpha-(32)P]TTP during the synthesis. The observed products suggest a resolution model that explains conservation of the hairpin sequence and in which a novel heterocruciform intermediate plays a crucial role. In vitro, NS1 initiates two replication pathways from OriL(TC), the single active origin embedded in one arm of the dimer junction. NS1-mediated nicking liberates a base-paired 3' nucleotide to prime DNA synthesis and, in a reaction we call "read-through synthesis," forks established while the substrate is a linear duplex synthesize DNA in the flop orientation, leading to DNA amplification but not to junction resolution. Nicking leaves NS1 covalently attached to the 5' end of the DNA, where it can serve as a 3'-to-5' helicase, unwinding the NS1-associated strand. In the second pathway, resolution substrates are created when such unwinding induces the palindrome to reconfigure into a cruciform prior to fork assembly. New forks can then synthesize DNA in the flip orientation, copying one cruciform arm and creating a heterocruciform intermediate. Resolution proceeds via hairpin transfer in the extended arm of the heterocruciform, which releases one covalently closed duplex telomere and a partially single-stranded junction intermediate. We suggest that the latter intermediate is finally resolved via an NS1-induced single-strand nick at the otherwise inactive origin, OriL(GAA).  相似文献   

17.
Mitochondria, composed of two membranes, play a key role in energy production in eukaryotic cells. The main function of the inner membrane is oxidative phosphorylation, while the mitochondrial outer membrane (MOM) seems to control the energy flux and exchange of various charged metabolites between mitochondria and the cytosol. Metabolites cross MOM via the various isoforms of voltage-dependent anion channel (VDAC). In turn, VDACs interact with some enzymes, other proteins and molecules, including drugs. This work aimed to analyze various literature experimental data related to targeting mitochondrial VDACs and VDAC-kinase complexes on the basis of the hypothesis of generation of the outer membrane potential (OMP) and OMP-dependent reprogramming of cell energy metabolism. Our previous model of the VDAC-hexokinase-linked generation of OMP was further complemented in this study with an additional regulation of the MOM permeability by the OMP-dependent docking of cytosolic proteins like tubulin to VDACs. Computational analysis of the model suggests that OMP changes might be involved in the mechanisms of apoptosis promotion through the so-called transient hyperpolarization of mitochondria. The high concordance of the performed computational estimations with many published experimental data allows concluding that OMP generation under physiological conditions is highly probable and VDAC might function as an OMP-dependent gatekeeper of mitochondria, controlling cell life and death. The proposed model of OMP generation allows understanding in more detail the mechanisms of cancer death resistance and anticancer action of various drugs and treatments influencing VDAC voltage-gating properties, VDAC content, mitochondrial hexokinase activity and VDAC-kinase interactions in MOM.  相似文献   

18.
Unfolded apocytochrome c acquires an alpha-helical conformation upon interaction with lipid. Folding kinetic results below and above the lipid's CMC, together with energy transfer measurements of lipid bound states, and salt-induced compact states in solution, show that the folding transition of apocytochrome c from the unfolded state in solution to a lipid-inserted helical conformation proceeds via a collapsed intermediate state (I(C)). This initial compact state is driven by a hydrophobic collapse of the polypeptide chain in the absence of the heme group and may represent a heme-free analogue of an early compact intermediate detected on the folding pathway of cytochrome c in solution. Insertion into the lipid phase occurs via an unfolding step of I(C) through a more extended state associated with the membrane surface (I(S)). While I(C) appears to be as compact as salt-induced compact states in solution with substantial alpha-helix content, the final lipid-inserted state (Hmic) is as compact as the unfolded state in solution at pH 5 and has an alpha-helix content which resembles that of native cytochrome c.  相似文献   

19.
Gap junctions coordinate processes ranging from muscle contraction to ovarian follicle development. Here we show that the gap junction protein Zero population growth (Zpg) is required for germ cell differentiation in the Drosophila ovary. In the absence of Zpg the stem cell daughter destined to differentiate dies. The zpg phenotype is novel, and we used this phenotype to genetically dissect the process of stem cell maintenance and differentiation. Our findings suggest that germ line stem cells differentiate upon losing contact with their niche, that gap junction mediated cell-cell interactions are required for germ cell differentiation, and that in Drosophila germ line stem cell differentiation to a cystoblast is gradual.  相似文献   

20.
Pure methemoglobin was prepared from fresh red cells and was used as substrate for methemoglobin reduction reaction. Two sources of methemoglobin reductase were used: (a) red cell hemolysate which was prepared by freezing and thawing of unwashed red cells; (b) purified methemoglobin reductase from bank blood. Methemoglobin reduction rate was measured in a mixture of pure methemoglobin (substrate) and hemolysate (enzyme). In other experiments the rate of methemoglobin reduction was measured in the above mixture with the addition of various other compounds such as NADH, cytochrome b5, and pure methemoglobin reductase. Only the addition of pure enzyme accelerated the rate of methemoglobin reduction. In other experiments, the rate of methemoglobin reduction was measured when the reduction reaction was carried out in the presence of various amounts of deoxyhemoglobin, globin, or albumin. It was shown that all proteins tested here decreased the reduction rate. It is concluded that (a) in the red cell, under normal conditions, only the activity of the methemoglobin reductase controls the speed of methemoglobin reduction, and (b) the inhibition of methemoglobin reduction by reduced hemoglobin is mostly nonspecific suggesting a noncompetitive reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号