首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biotechnology and microbiology of coal degradation   总被引:15,自引:0,他引:15  
For several years it has been known that fungi and bacteria can attack and even liquefy low rank coals. This review covers the progress in coal biotechnology and microbiology, mainly during the last decade, from describing the first effects to elucidating the mechanisms used by the microorganisms. More than one mechanism is responsible for microbial coal degradation/liquefaction: oxidative enzymes (peroxidases, laccases), hydrolytic enzymes (esterases), alkaline metabolites and natural chelators. Due to the heterogeneous structure of coal, which is described in one section, and for economic reasons the review focuses on the enzymatic depolymerization of brown coal. Approaches which seem not so promising are discussed (anaerobic, reductive pathways, chemical pretreatment). Finally the possible applications and products in this field are summarized, as lignite with a worldwide production of about 940 million tons a year will continue to play an important economic role in the future. Received: 19 October 1998 / Received revision: 16 December 1998 / Accepted: 21 December 1998  相似文献   

2.
The toxicity of chlorinated aliphatic hydrocarbons on acetoclastic methanogens in anaerobic granular sludge was determined using a standardized anaerobic bioassay method. Most of the chloroaliphatics tested were strong inhibitors of methanogenesis. Tri- and tetrachloride derivatives of methane and ethane were the most highly toxic compounds tested, with concentrations of less than 18 mg/l resulting in 50% inhibition (IC50) of the methanogenic activity. Dichlorinated compounds were less toxic, with IC50 values ranging from 40 mg/l to 100 mg/l. On the other hand, perchlorinated derivatives of ethane and ethene were scarcely inhibitory at concentrations near their maximum water solubility. The toxicity caused by chlorinated aliphatic hydrocarbons was reversible. The comparison of structurally related compounds indicated that unsaturated chloroaliphatics were less toxic than their saturated counterparts. A reverse correlation between the electric dipole moment of these compounds and their methanogenic toxicity is discussed. Received: 9 July 1996 / Received revision: 11 October 1996 / Accepted: 18 October 1996  相似文献   

3.
A methanogenic mixed population in a packed-bed reactor completely transformed 1,1,1-trichloroethane (10 μM) to chloroethane by a cometabolic process. Chloroethane was not further transformed. Acetate and methanol served as electron donors. Complete transformation of 1,1,1-trichloroethane to chloroethane only occurred when sufficient electron donor was fed into the reactor. Otherwise, besides chloroethane, 1,1-dichloroethane was also found as a product. The products of 1,1,1-trichloroethane transformation also depended on the type of electron donor present. With acetate, the degree of dechlorination was higher, i.e. more 1,1,1-trichloroethane was transformed to chloroethane than with methanol. In an enrichment culture obtained from the reactor contents, 1,1,1-trichloroethane was only transformed to 1,1-dichloroethane and was not further metabolized. Methanol, acetate, formate, ethanol, 2-propanol, trimethylamine and H2, but not dimethylamine and methylamine, served as electron donors for 1,1,1-trichloroethane transformation by this enrichment culture. Both nitrate and nitrite inhibited 1,1,1-trichloroethane transformation; while nitrate completely inhibited 1,1,1-trichloroethane dechlorination, some conversion did occur in the presence of nitrite. The product(s) of this conversion remain unknown, since no chlorinated hydrocarbons were detected. Received: 19 June 1998 / Received revision: 14 September 1998 / Accepted: 17 September 1998  相似文献   

4.
A chemiluminescence detector was used to measure the production of nitric oxide, NO, from the denitrifying bacteria Pseudomonas stutzeri. NO is an intermediate when P. stutzeri converts nitrate into nitrogen gas. The reaction between NO and ozone is selective and sensitive in generating chemiluminescence. Calibrations were made down to 1 nM, with a signal-to-noise ratio of 3. Bacteria were immobilised in alginate beads. Denitrification experiments were made in an anaerobic non-growth medium by adding nitrate to a certain concentration in the reactor. The bacteria were exposed to nitrate in the concentration range 1 pM–5 mM. The lowest concentration to give a measurable NO response was 100 nM. Received: 16 October 1997 / Received revision: 20 January 1998 / Accepted: 24 January 1998  相似文献   

5.
Alkylphenols and fuel oxygenates are important environmental pollutants produced by the petrochemical industry. A batch biodegradability test was conducted with selected ortho-substituted alkylphenols (2-cresol, 2,6-dimethylphenol and 2-ethylphenol), fuel oxygenates (methyl tert-butyl ether, ethyl tert-butyl ether and tert-amylmethyl ether) and tert-butyl alcohol (TBA) as model compounds. The ortho-substituted alkylphenols were not biodegraded after 100 days of incubation under methanogenic, sulfate-, or nitrate-reducing conditions. However, biodegradation of 2-cresol and 2-ethylphenol (150 mg l−1) was observed in the presence of Mn (IV) as electron acceptor. The biodegradation of these two compounds took place in less than 15 days and more than 90% removal was observed for both compounds. Mineralization was indicated since no UV-absorbing metabolites accumulated after 23 days of incubation. These alkylphenols were also slowly chemically oxidized by Mn (IV). No biodegradation of fuel oxygenates or TBA (1 g l−1) was observed after 80 or more days of incubation under methanogenic, Fe (III)-, or Mn (IV)-reducing conditions, suggesting that these compounds are recalcitrant under anaerobic conditions. The fuel oxygenates caused no toxicity towards acetoclastic methanogens activity in anaerobic granular sludge. Received: 8 February 2000 / Received revision: 15 May 2000 / Accepted: 19 May 2000  相似文献   

6.
Biodegradation of methyl violet by Pseudomonas mendocina MCM B-402   总被引:3,自引:0,他引:3  
Pseudomonas mendocina MCM B-402 was found to utilize a triphenylmethane dye, methyl violet as the sole source of carbon when incorporated in synthetic medium. Almost complete decolorization of methyl violet by P. mendocina was observed within 48 h of incubation at ambient temperature (28 ± 2 °C) under aerated culture conditions, when the bacteria were inoculated into Davis Mingioli's synthetic medium at a concentration of 100 mg/l medium. Methyl violet was mineralized to CO2 through three unknown intermediate metabolites and phenol. The decolorization of the dye involved demethylation. Received: 27 November 1998 / Received revision: 2 March 1999 / Accepted: 5 March 1999  相似文献   

7.
The dechlorinating activity of a methanogenic granular sludge from a methanol-fed upflow anaerobic sludge blanket reactor was investigated with chlorinated ethanes. This unadapted methanogenic consortium degraded all chloroethanes tested. The product formation rates decreased with the number of chlorine substituents. The more highly chlorinated ethanes were also converted, although at a lower rate, in the presence of autoclaved (dead) sludge, indicating the involvement of reduced heat-stable cofactors like vitamin B12 and F430. Direct chemical dechlorination of hexa-, penta- and tetrachloroethanes was also observed in medium without sludge, although at a much lower rate. The results show the importance of cometabolic and abiotic (chemical) conversions for the transformation of chlorinated ethanes by the methanogenic consortium. The types of reaction and the products formed were correlated with the Gibbs free-energy change (ΔG 0′). Reductive hydrogenolysis and dichloroelimination were important dechlorinating mechanisms. Generally, these reactions have a higher ΔG 0′ value than dehydrochlorination reactions, which occurred less frequently during the transformation of chloroethanes by the methanogenic granular sludge. Received: 8 June 1998 / Received revision: 7 September 1998 / Accepted: 13 September 1998  相似文献   

8.
A prerequisite for the mineralization (complete biodegradation) of many azo dyes is a combination of reductive and oxidative steps. In this study, the biodegradation of two azo dyes, 4-phenylazophenol (4-PAP) and Mordant Yellow 10 (4-sulfophenylazo-salicylic acid; MY10), was evaluated in batch experiments where anaerobic and aerobic conditions were integrated by exposing anaerobic granular sludge to oxygen. Under these conditions, the azo dyes were reduced, resulting in a temporal accumulation of aromatic amines. 4-Aminophenol (4-AP) and aniline were detected from the reduction of 4-PAP. 5-Aminosalicylic acid (5-ASA) and sulfanilic acid (SA) were detected from the reduction of MY10. Subsequently, aniline was degraded further in the presence of oxygen by the facultative aerobic bacteria present in the anaerobic granular sludge. 5-ASA and SA were also degraded, if inocula from aerobic enrichment cultures were added to the batch experiments. Due to rapid autoxidation of 4-AP, no enrichment culture could be established for this compound. The results of this study indicate that aerobic enrichment cultures developed on aromatic amines combined with oxygen-tolerant anaerobic granular sludge can potentially be used to completely biodegrade azo dyes under integrated anaerobic/aerobic conditions. Received: 16 September 1998 / Received revision: 14 December 1998 / Accepted: 21 December 1998  相似文献   

9.
The white-rot basidiomycete Phanerochaete chrysosporium BKM-F-1767 was tested for its capacity to degrade dehydroabietic acid (DHA). In anaerobic treatment, this molecule is the most recalcitrant member of the resin acid group, which is known to cause operational problems to anaerobic reactors treating pulp and paper industry wastewaters. In this study the effect of DHA on different parameters, such as growth, ligninolytic enzyme activity, extracellular protein production as well as both glycerol and ammonium consumption by the fungus, was determined. Although the above parameters were affected by the addition of DHA, the results show that the fungus could still produce significant titres of ligninolytic enzymes. The fungus removed 47% of the DHA initially present in the static culture, after 10 days of incubation. Anaerobic toxicity assays showed that the treatment of DHA with P. chrysosporium reduced the methanogenesis and acetogenesis inhibition caused by DHA and allowed improved methane production by the anaerobic bacteria. Received: 10 June 1997 / Received revision: 6 January 1998 / Accepted: 24 January 1998  相似文献   

10.
Bioremoval of organic and inorganic sulphur from coal samples   总被引:1,自引:0,他引:1  
The microbial ecology of different Spanish coal samples has been studied. Several bacteria have been isolated from enrichment cultures and characterised and their biodesulphurization abilities evaluated. Using morphological and physiological properties, different isolates have been related to species of the Xanthomonas, Pseudomonas, Chryseomonas and Moraxella genera. Some of the isolates, B(30)15 and T(30)10, gave important levels of organic desulphurization, close to 70%. Other isolates, B(30)7 and B(30)8, were able to remove inorganic sulphur with high efficiencies, over 67%. One of the isolates, B(30)10, metabolically related to Xanthomonas maltophila, was able to remove both organic and inorganic sulphur at neutral pH, with efficiencies of 69% and 68% respectively. The results obtained underline the potential use of some of these strains for industrial coal desulphurization processes. Received: 26 June 1998 / Received revised: 1 October 1998 / Accepted: 2 October 1998  相似文献   

11.
During cassava starch production, large amounts of cyanoglycosides were released and hydrolysed by plant-borne enzymes, leading to cyanide concentrations in the wastewater as high as 200 mg/l. For anaerobic degradation of the cyanide during pre-acidification or single-step methane fermentation, anaerobic cultures were enriched from soil residues of cassava roots and sewage sludge. In a pre-acidification reactor this culture was able to remove up to 4 g potassium cyanide/l of wastewater at a hydraulic retention time (t HR) of 4 days, equivalent to a maximal cyanide space loading of 400 mg CN l−1 day−1. The residual cyanide concentration was 0.2–0.5 mg/l. Concentrated cell suspensions of the mixed culture formed ammonia and formate in almost equimolar amounts from cyanide. Little formamide was generated by chemical decay. A concentration of up to 100 mmol ammonia/l had no inhibitory effect on cyanide degradation. The optimal pH for cyanide degradation was 6–7.5, the optimal temperature 25–37 °C. At a pH of 5 or lower, cyanide accumulated in the reactor and pre-acidification failed. The minimal t HR for continuous cyanide removal was 1.5 days. The enriched mixed culture was also able to degrade cyanide in purely mineralic wastewater from metal deburring, either in a pre-acidification reactor with a two-step process or in a one-step methanogenic reactor. It was necessary to supplement the wastewater with a carbon source (e.g. starch) to keep the population active enough to cope with any possible inhibiting effect of cyanide. Received: 29 April 1998 / Received revision: 8 June 1998 / Accepted: 14 June 1998  相似文献   

12.
The present work describes investigations on the bacterial degradation of the alicyclic molecule cyclododecane. It represents a structure where the initial degradative steps have to be similar to a “subterminal” attack as there is no “terminal” part of the molecule. We were able to show that the gram-positive bacterium Rhodococcus ruber CD4 DSM 44394 oxidizes cyclododecane to the corresponding alcohol and ketone, the latter being subject to ring fission by a Baeyer-Villiger oxygenase. This key enzyme is an NADPH- and O2-dependent flavoprotein with a substrate specificity for bigger rings. The further metabolism of the resulting lactone gives rise to an ω-hydroxyalkanoic acid that is susceptible to common β-oxidation. Due to its alicyclic character and its ring size, cyclododecane is comparable to aliphatic bridge components that are an important element in the coal texture. They contribute to the three-dimensional coal structure and thus could serve as a valuable target for the oxidative abilities of R. ruber CD4 to reduce the molecular mass of coal. Received: 2 July 1998 / Received revision: 27 October 1998 / Accepted: 30 October 1998  相似文献   

13.
In order to develop a production process for carboxypeptidase Y (CPY, yeast vacuolar protease) secreted by Saccharomyces cerevisiae KS58-2D, medium composition, culture conditions, and expression systems were investigated. We found that the addition of histidine to thiamine-free medium, in which CPY production was almost negligible, raised the intracellular thiamine level, resulting in the increase of CPY production. On the basis of the choice of an expression system that uses an inducible GAL10 promoter, reassessment of histidine concentration in the medium, and optimization of the pH level during cultivation (pH 6.5), active CPY was secreted in a quantity of over 400 mg/l, which was more than tenfold that higher than that previously reported. The process developed could be easily scaled-up to industrial-scale fermentation. Received: 16 January 1998 / Received revision: 16 February 1998 / Accepted: 27 February 1998  相似文献   

14.
Although many studies have examined the influence of culture conditions on the production and composition of polysaccharides, little is known about the factors influencing the quality of exopolysaccharides (EPS). In this work we studied the effect of yeast extract on the production, composition and molecular weight of the EPS zooglan produced by Zoogloea ramigera 115SLR. This bacterium was grown on a new completely defined synthetic medium and on a medium containing yeast extract. Growth and polysaccharide production performances were comparable on the two media with a glucose to exopolysaccharide conversion yield of 35% (g/g). The polysaccharides produced on these two media have an identical composition but a different molecular weight and molecular weight distribution. The yeast extract medium leads to a more homogeneous polysaccharide solution. Received: 12 June 1998 / Received revision: 19 September 1998 / Accepted: 11 October 1998  相似文献   

15.
The fate of thiocyanate (SCN) and cyanate (OCN) under methanogenic conditions was investigated at 35 °C. Thiocyanate and cyanate were added to mixed methanogenic cultures along with an organic mixture. Thiocyanate was stable under these conditions, and had no adverse effect on methanogenesis at a concentration as high as 2.5 mM. In contrast, cyanate at a concentration as low as 0.3 mM initially inhibited methanogenesis but, after the complete removal of cyanate, methanogenesis gradually recovered. The inhibitory effect of cyanate on methanogenesis became more profound with repeated additions of cyanate. The transformation of cyanate followed the hydrolytic route to ammonia and bicarbonate under anaerobic conditions and its hydrolysis rate was enhanced by microbial activity. Cyanide was not detected as a cyanate transformation product under the methanogenic conditions of this study. Received: 13 June 1997 / Received revision: 29 August 1997 / Accepted: 15 September 1997  相似文献   

16.
The influence of low temperature (5–29 °C) on the methanogenic activity of non-adapted digested sewage sludge and on temperature/leachate-adapted biomass was assayed by using municipal landfill leachate, intermediates of anaerobic degradation (propionate) and methane precursors (acetate, H2/CO2) as substrates. The temperature dependence of methanogenic activity could be described by Arrhenius-derived models. However, both substrate and adaptation affected the temperature dependence. The adaptation of biomass in a leachate-fed upflow anaerobic sludge-blanket reactor at approximately 20 °C for 4 months resulted in a sevenfold and fivefold increase of methanogenic activity at 11 °C and 22 °C respectively. Both acetate and H2/CO2 were methanized even at 5 °C. At 22 °C, methanogenic activities (acetate 4.8–84 mM) were 1.6–5.2 times higher than those at 11 °C. The half-velocity constant (K s) of acetate utilization at 11 °C was one-third of that at 22 °C while a similar K i was obtained at both temperatures. With propionate (1.1–5.5 mM) as substrate, meth‐anogenic activities at 11 °C were half those at 22 °C. Furthermore, the residual concentration of the substrates was not dependent on temperature. The results suggest that the adaptation of biomass enables the achievement of a high treatment capacity in the anaerobic process even under psychrophilic conditions. Received: 23 December 1996 / Received last revision: 18 June 1997 / Accepted: 23 June 1997  相似文献   

17.
Ligninolytic basidiomycetes (wood and leaf-litter-decaying fungi) have the ability to degrade low-rank coal (lignite). Extracellular manganese peroxidase is the crucial enzyme in the depolymerization process of both coal-derived humic substances and native coal. The depolymerization of coal by Mn peroxidase is catalysed via chelated Mn(III) acting as a diffusible mediator with a high redox potential and can be enhanced in the presence of additional mediating agents (e.g. glutathione). The depolymerization process results in the formation of a complex mixture of lower-molecular-mass fulvic-acid-like compounds. Experiments using a synthetic 14C-labeled humic acid demonstrated that the Mn peroxidase-catalyzed depolymerization of humic substances was accompanied by a substantial release of carbon dioxide (17%–50% of the initially added radioactivity was released as 14CO2). Mn peroxidase was found to be a highly stable enzyme that remained active for several weeks under reaction conditions in a liquid reaction mixture and even persisted in sterile and native soil from an opencast mining area for some days. Received: 31 July 1998 / Received revision: 29 September 1998 / Accepted: 2 October 1998  相似文献   

18.
Extraction of medium after incubation of the fungus, Cunninghamella elegans, with 0.03% (w/v) 1-methylnaphthalene produced mainly 1-hydroxymethylnaphthalene together with some 1-naphthoic acid and hydroxynaphthoic acid. Higher concentrations of substrate were inhibitory to biotransformation. Similar incubations with 1-naphtoic acid as substrate resulted in reduction of the carboxyl group to give 1-hydroxymethylnaphthalene. When 6-methylquinoline was used, the main product was 6-hydroxymethylquinoline but also some quinoline-6-carboxylic acid and some 6-methylquinoline-N-oxide were identified. In a 2-l fermenter 2.5 g substrate was transformed in 324 h. The 6-hydroxymethylquinoline was also produced by reduction of quinoline-6-carboxylic acid by the organism. Received: 9 March 1998 / Received revision: 15 June 1998 / Accepted: 19 June 1998  相似文献   

19.
Anaerobic degradation of fluorinated aromatic compounds   总被引:1,自引:0,他引:1  
Anaerobic enrichment cultures with sediment from an intertidal strait as inoculum were established under denitrifying, sulfate-reducing, iron-reducing and methanogenic conditions to examine the biodegradation of mono-fluorophenol and mono-fluorobenzoate isomers. Both phenol and benzoate were utilized within 2–6 weeks under all electron-accepting conditions. However, no degradation of the fluorophenols was observed within 1 year under any of the anaerobic conditions tested. Under denitrifying conditions, 2-fluorobenzoate and 4-fluorobenzoate were depleted within 84 days and 28 days, respectively. No loss of 3-fluorobenzoate was observed. All three fluorobenzoate isomers were recalcitrant under sulfate-reducing, iron-reducing, and methanogenic conditions. The degradation of the fluorobenzoate isomers under denitrifying conditions was examined in more detail using soils and sediments from different geographic regions around the world. Stable enrichment cultures were obtained on 2-fluorobenzoate or 4-fluorobenzoate with inoculum from most sites. Fluoride was released stoichiometrically, and nitrate reduction corresponded to the values predicted for oxidation of fluorobenzoate to CO2 coupled to denitrification. The 2-fluorobenzoate-utilizing and 4-fluorobenzoate-utilizing cultures were specific for fluorobenzoates and did not utilize other halogenated (chloro-, bromo-, iodo-) benzoic acids. Two denitrifying strains were isolated that utilized 2-fluorobenzoate and 4-fluorobenzoate as growth substrates. Preliminary characterization indicated that the strains were closely related to Pseudomonas stutzeri. Received: 1 September 1999 / Accepted in revised form: 30 September 1999  相似文献   

20.
In order to produce sophorolipids from whey, thereby lowering the lactose content and biological oxygen demand, a two-step batch cultivation process was developed including medium sterilization by filtration. In the first step, whey was sterilized by a combination of crossflow and sterile filtration. Because the sophorolipid-producing yeast Candida bombicola ATCC 22214 was not able to use lactose as a carbon source directly, the oleaginous yeast Cryptococcus curvatus ATCC 20509 was grown on deproteinized whey concentrates (DWC). With 1: 1 diluted DWC-20, lactose was consumed as the carbon source and biomass (24 g/l dry weight content) as well as single-cell oil (SCO, 10 g/l) were produced. The cultivation broth was disrupted with a glass bead mill and it served as medium for growth (29 g cell dry mass/l) and sophorolipid production (12 g/l) of the yeast C. bombicola. Received: 29 July 1998 / Received revision: 5 October 1998 / Accepted: 11 October 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号