首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both adenosine and interleukin-6 (IL-6) have been implicated in the pathophysiology of, e.g., epileptic seizures, traumatic brain injury, and affective disorders. Stimulation of adenosine A2B receptors on astrocytes in vitro leads to the increased synthesis and secretion of IL-6. We investigated whether or not activation of adenosine receptors evokes an increase of IL-6 release also in vivo . 5'- N -ethylcarboxamidoadenosine, a non-specific adenosine-agonist or vehicle was administered into the striatum of freely moving mice by reverse microdialysis. A statistical significant increase of the IL-6 concentration in the perfusate was detected already 60 min after 5'- N -ethylcarboxamidoadenosine administration. IL-6 increased progressively and reached a maximum after 240 min. This effect appears to be mediated through adenosine A2B receptors since it was counteracted by the specific A2B receptor antagonist MRS1706 but not by the specific A1 receptor antagonist DPCPX. We conclude that adenosine via activation of A2B receptors evokes IL-6 release also in vivo .  相似文献   

2.
We studied the immunoreactivity of 12 different region-specific antibodies to the chromogranin A (CgA) molecule in the various neuroendocrine cell types of the human gastrointestinal (GI) tract by using double immunofluorescence techniques. These staining results were compared with others obtained with a commercial monoclonal CgA antibody (LK2H10). G (gastrin)-cells showed immunoreactivity to virtually all region-specific antibodies, but with varying frequency. Most intestinal EC (enterochromaffin)- and L (enteroglucagon)-cells were immunoreactive to the antibodies to the N-terminal and mid-portion of the CgA molecule, whereas the EC-cells in the stomach reacted with fewer region-specific antibodies. D (somatostatin)-cells reacted to the CgA 411-424 antibody and only occasionally showed immunoreactivity to the other CgA antibodies. A larger cytoplasmic area was stained with the antibodies to CgA 17-38 and 176-195 than with the other antibodies tested. These differences in staining pattern may reflect different cleavage of the CgA molecule in different cell types and at different regions of the GI tract.  相似文献   

3.
The present study was undertaken to examine the relationships among the levels of nitric oxide (NO), monoamines, and blood glucose in the diabetic hippocampus. The levels of NO and monoamines (serotonin, 5-hydroxytryptamine [5-HT] and dopamine [DA]) were simultaneously measured in several experiments, using in vivo microdialysis techniques. We used both experimentally and spontaneously diabetic rats as the diabetic animal model, and compared the findings with those obtained from non-diabetic rats. The effects of the changed level of blood glucose due to insulin administration on the levels of NO, 5-HT, and DA were assessed. Total NO metabolite levels (NOx) were calculated as the sum of nitrite (NO2-) and nitrate (NO3-) levels. The results in the present study showed that: (1) the plasma levels of NOx in both diabetic rats were low compared to those in control rats, (2) the hippocampal NOx levels in both diabetic rats were almost the same as those in control rats, while the levels of 5-HT and DA were low in the diabetics, and (3) a sudden decrease in the plasma glucose level due to insulin administration reduced the NOx level as well as enhanced the 5-HT level in the diabetic hippocampus, a finding consistent with the results of 7 days administration of insulin. Taken together, these findings suggest that changes in the plasma glucose level cause, at least in part, the changes in the levels of NOx and monoamines in the diabetic brain.  相似文献   

4.
The modulation of striatal cholinergic neurons by somatostatin (SOM) was studied by measuring the release of acetylcholine (ACh) in the striatum of freely moving rats. The samples were collected via a transversal microdialysis probe. ACh level in the dialysate was measured by the high performance liquid chromatography method with an electrochemical detector. Local administration of SOM (0.1, 0.5 and 1 microM) produced a long-lasting and concentration-dependent increase in the basal striatal ACh output. The stimulant effect of SOM was antagonized by the SOM receptor antagonist cyclo(7-aminopentanoyl-Phe-D-Trp-Lys-Thr[BZL]) (1 microM). In a series of experiments, we studied the effect of 6,7-dinitroquinoxaline-2, 3-dione (DNQX), a selective non-NMDA (N-methyl-D-aspartate) glutamatergic antagonist, on the basal and SOM-induced ACh release from the striatum. DNQX, 2 microM, perfused through the striatum had no effect on the basal ACh output but inhibited the SOM (1 microM)-induced ACh release. The non-NMDA glutamatergic receptor antagonist 1-(4-aminophenyl)-4-methyl-7,8-methylendioxy-5H-2,3- benzodiazepine (GYKI-52466), 10 microM, antagonized the SOM (1 microM)-induced release of ACh in the striatum. Local administration of the NMDA glutamatergic receptor antagonist, 2-amino-5-phosphonopentanoic acid (APV), 100 microM, blocked SOM (1 microM)-evoked ACh release. Local infusion of tetrodotoxin (1 microM) decreased the basal release of ACh and abolished the 1 microM SOM-induced increase in ACh output suggesting that the stimulated release of ACh depends on neuronal firing. The present results are the first to demonstrate a neuromodulatory role of SOM in the regulation of cholinergic neuronal activity of the striatum of freely moving rats. The potentiating effect of SOM on ACh release in the striatum is mediated (i) by SOM receptor located on glutamatergic nerve terminals, and (ii) by NMDA and non-NMDA glutamatergic receptors located on dendrites of cholinergic interneurones of the striatum.  相似文献   

5.
6.
A wide variety of neuroactive substances have been suggested to be involved in the respiratory depression observed in response to severe hypoxia. By use of the technique of microdialysis, the release of dopamine (DA) was measured in the nucleus tractus solitarii during severe hypoxic provocations (6% O2 in N2) in the adult pentobarbital-anesthetized rabbit. DA release was analyzed by high-performance liquid chromatography with electrochemical detection. Such hypoxic provocations caused pronounced phase of depression in the phrenic nerve activity and enhanced release of DA. After bilateral carotid sinus nerve denervation, acute severe hypoxia did not give rise to enhanced release of DA or to phrenic nerve depression. Mild hypoxic (9% or 12% O2 in N2) or hypercapnic (6% CO2) stimuli resulted in an increased phrenic nerve activity without any concomitant changes in DA release. Decerebration at the midcollicular level in rabbits prevented an enhanced release of DA in the nucleus tractus solitarii during severe hypoxia. The results suggest that 1) DA is involved in the central ventilatory response to severe hypoxia, 2) not only the initial excitatory but also the second depressive phase in response to severe hypoxia is mediated partially by the peripheral chemoreceptors, and 3) the depressive phase is dependent on intact connections from suprapontine structures.  相似文献   

7.
Summary By the use of a glyoxylic acid induced fluorescence method an intensive green fluorescence characteristic to catecholamines was observed on nerve fibres with varicosities, nerve bundles and perykaryons on wholemount stretch preparates of snail's gut. Considering the distribution of the fluorescent nerve elements and also the fluorescence intensity a decreasing gradient was revealed from the fore-gut through the stomach to the hind-gut.  相似文献   

8.
Polyamines (PAs) are ubiquitous polycationic metabolites in the eukaryotic and prokaryotic cells and are believed to be intimately involved in the regulation of DNA, RNA, and protein biosynthesis. However, the subcellular localization of PAs has not yet been fully elucidated in a variety of cell types. In the present study, a pre-embedding indirect immunoperoxidase approach was used to define the fine structural localization of PAs in the gastrointestinal tract of rat, which was fixed with glutaraldehyde and the monoclonal antibody ASPM-29 specific for spermine (Spm) and spermidine (Spd). Examination by a transmission electron microscopy showed that the peroxidase end products were commonly and predominantly localized in the free and attached ribosomes of the rough endoplasmic reticulum (rER) in the active protein- or peptide-secreting cells, and in rapidly proliferating cells including the gastric chief cells, mucous neck cells, and intestinal crypt cells. The nuclei, mitochondria, and secretory vesicles were devoid of PAs. Of note is the new finding that PAs are also located even on the small number of ribosomes in the cytoplasm of the parietal cells and of the villus-tip cells, because these were the cell types that were found to be almost PA-negative at the light microscopic level. These results seem to be completely consistent with those recently obtained for rat neurons. Thus, the present study generalized the subcellular localization of PAs on the ribosomes, and demonstrated that PAs are one of the components of biologically active ribosomes, possibly in any type of cell, that are closely involved in the translation processes of protein biosynthesis.  相似文献   

9.
10.
Both ghrelin and obestatin are derived from preproghrelin by post-translational processing. We have morphologically characterized the cells that produce obestatin and ghrelin in new-born and adult Sprague-Dawley rats that were freely fed, fasted, or subjected to gastric bypass surgery or reserpine treatment. Tissue samples collected from the gastrointestinal tract and pancreas were examined by double-immunofluorescence staining, immunoelectron microscopy, and conventional electron microscopy. Obestatin was present in the stomach, duodenum, jejunum, colon, and pancreas. In the stomach, differences were noted in the development of obestatin- and preproghrelin-immunreactive (IR) cells on the one hand and ghrelin-IR cells on the other, particularly 2 weeks after birth. Preproghrelin- and obestatin-IR cells were more numerous than ghrelin-IR cells in the stomach, suggesting the lack of ghrelin in some A-like cells. Most obestatin-producing cells in the stomach were distributed in the basal part of the oxyntic mucosa; these cells co-localized with chromogranin A (pancreastatin) and vesicle monoamine transporters type 1 and 2, but not with serotonin or histidine decarboxylase. Immunoelectron microscopy revealed the obestatin- and ghrelin-producing cells to be A-like cells, characterized by numerous highly electron-dense granules containing ghrelin and obestatin. Some granules exhibited an even electron density with thin electron-lucent halos, suggestive of monoamines. Feeding status, gastric bypass surgery, and reserpine treatment had no obvious effect on the A-like cells. In the pancreas, obestatin was present in the peripheral part of the islets, with a distribution distinct from that of glucagon-producing A cells, insulin-producing beta cells, and cells producing pancreatic polypeptide Y. Thus, obestatin and ghrelin co-localize with an anticipated monoamine in A-like cells in the stomach, and obestatin is found in pancreatic islets. This study was supported by a grant from the Cancer Foundation of St. Olav’s Hospital, Trondheim, Norway.  相似文献   

11.
12.
There are similarities between sensation in the gastrointestinal tract (GI tract) and somatic sensation. This review concentrates on parasympathetic (vagal) components of GI sensation rather than the sympathetic (splanchnic) elements. A wide range of enteroceptors have been described over the whole length of the gut which subserve several different sensory modalities. Fibres from these enteroceptors project to the medulla, primarily to the nucleus of the solitary tract. In the medulla there is considerable integration of afferent information from different parts of the GI tract. Regulatory peptides are present both in the brain and in the GI tract. It is likely that these peptides may play a role in the modulation of sensory information in the medulla. Parallels may be drawn at a receptor level between somatic sensation and sensation in the GI tract. More centrally, sensory mechanisms relating to the gut seem less highly organized than in somatic sensation. This reduced influence of the central nervous system in GI tract sensation may be explained by the presence in the gut of a highly sophisticated intrinsic nervous system, the enteric nervous system, which pre-programmes many of the functions of the GI tract.  相似文献   

13.
Several prostaglandins have been shown to exert five major gastrointestinal actions. Inhibition of gastric acid secretion, orally and parenterally. Antiulcer activity (they prevent gastric and duodenal ulcers produced experimentally in animals, and they accelerate the rate of healing of duodenal ulcers in humans). Cytoprotection for the stomach, the small and the large intestine. Cytoprotection is defined as the property of many prostaglandins to protect the mucosa of the stomach and intestine from becoming inflamed and necrotic when this mucosa is exposed to noxious agents. Cytoprotection is separate from, and unrelated to, inhibition of gastric secretion. In humans, certain prostaglandins of the E type given at very low doses prevent gastric bleeding produced by aspirin and indomethacin. Stimulation of intestinal secretion, through increase of cyclic AMP formation. Stimulation of smooth muscle contraction. Certain prostaglandins are likely to be beneficial in the treatment of gastric ulcers, stress ulcers, duodenal ulcers, and perhaps gastritis and certain forms of inflammatory bowel disease.  相似文献   

14.
Luminal acidity is a physiological challenge in the foregut, and acidosis can occur throughout the gastrointestinal tract as a result of inflammation or ischemia. These conditions are surveyed by an elaborate network of acid-governed mechanisms to maintain homeostasis. Deviations from physiological values of extracellular pH are monitored by multiple acid sensors expressed by epithelial cells and sensory neurons. Acid-sensing ion channels are activated by moderate acidification, whereas transient receptor potential ion channels of the vanilloid subtype are gated by severe acidosis. Some ionotropic purinoceptor ion channels and two-pore domain background K(+) channels are also sensitive to alterations of extracellular pH.  相似文献   

15.
16.
In order to study biosynthetic processing of the precursor for vasoactive intestinal peptide (preproVIP) in the human gut we have developed antisera against the five functional domains of the precursor molecule: preproVIP 22-79, peptide histidine methionine (PHM), preproVIP 111-122, VIP and preproVIP 156-170. The antisera were used to quantify and characterize VIP-precursor peptides by radioimmunoassay (RIA) together with high-pressure liquid Uchromatography (HPLC) and to examine their cellular localization and colocalization by immunocytochemistry. All five peptides were expressed but not in equimolar amounts as expected from the amino acid sequence of the precursor. However, the ratios between them were fairly constant throughout the gastrointestinal tract. The only exceptions were the lower concentrations of PHM and preproVIP 111-122 in the gastric antrum which could be explained by the presence of PHV (the C-terminally extended form of PHM which includes preproVIP 111-122) in large concentrations in this region. It was also found that the C-terminal lysine residue of preproVIP is not removed during processing. Immunocytochemically all preproVIP-derived peptides were shown in neuronal elements. They had a similar distribution throughout the gut suggesting coexistence, a finding which was supported by doublestaining. The findings indicate that differences in the posttranslational processing of preproVIP exist in subpopulations of neurons in the human gut.  相似文献   

17.
Abalo R  Vera G  Rivera AJ  Martín MI 《Life sciences》2007,80(26):2436-2445
It is known that there is an age-related increase in gastrointestinal diseases. However, there is a lack of studies dealing with the correlation between age-related changes in function and intrinsic innervation in the gastrointestinal tract. The purpose of this work was to study this subject in the guinea pig ileum, whose functional and structural features are well known in the young age. Ileal longitudinal muscle — myenteric plexus (LMMP) preparations were obtained from 3-to 24-month-old guinea pigs. Both functional and immunohistochemical techniques were applied. The force of the contraction elicited by excitatory stimuli (electrical stimulation, acetylcholine, substance P, and opioid withdrawal) increased in parallel with an age-dependent reduction in the density of excitatory motor neurones to the longitudinal muscle, whereas other subpopulations of neurones, including inhibitory motor neurones, decreased much more slowly. Although the increase in responsiveness could be related to the age/weight-related increment in muscle bulk, some compensatory modifications to the lowered density of excitatory neurones could also be involved. On the other hand, the acute inhibitory response to morphine remained unaltered in old animals, whilst in vitro tolerance was lower. These results suggest that although age-dependent neuronal loss does not cause dramatic changes in intestinal motility, it is a factor that could contribute to disturbing normal responsiveness and, perhaps, underlie the higher frequency of gastrointestinal diseases encountered in the elderly.  相似文献   

18.
19.
20.
This review focusses on the roles that membrane receptors and their transducers play in the physiology and pathology of the gastrointestinal tract. The multifactorial: factorial regulation of mucosal growth and function is discussed in relation to the heterogeneity of exocrine and endocrine populations that originate from progenitor cells in stomach and intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号