首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Weiser S  Miu J  Ball HJ  Hunt NH 《Cytokine》2007,37(1):84-91
Changes to the cerebral microvasculature are evident during cerebral malaria (CM). Activation of the endothelium is likely to be due to the actions of cytokines, circulating levels of which are elevated during CM. Endothelial cells are known to up-regulate the expression of cellular adhesion molecules, which can lead to cellular sequestration and obstruction of vessels. However, it is unknown whether cytokines synergise in the up-regulation of the adhesion molecules involved in CM. In this study, the mRNA and/or protein expression of the adhesion molecules vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), P-selectin and E-Selectin were examined in a mouse brain endothelial cell line. Endothelial cells were stimulated with interferon-gamma (IFN-gamma), tumour necrosis factor (TNF) and lymphotoxin-alpha (LT-alpha), alone or in combination. The expression of ICAM-1, VCAM-1, P-selectin and E-Selectin mRNA in mouse brain endothelial cells by TNF and/or LT-alpha was found to be significantly enhanced in the presence of IFN-gamma. The same synergistic effect was found when analyzing ICAM-1 protein expression in cytokine stimulated mouse brain endothelial cells. The findings show that cytokines can synergise to influence gene expression and protein expression in a mouse brain endothelial cell line.  相似文献   

2.
Endothelial cells participate in inflammatory events leading to atherogenesis by regulating endothelial cell permeability via the expression of VE-Cadherin and β-catenin and leukocyte recruitment via the expression of E-Selectins and other adhesion molecules. The protein p66Shc acts as a sensor/inducer of oxidative stress and may promote vascular dysfunction. The objective of this study was to investigate the role of p66Shc in tumor necrosis factor TNFα-induced E-Selectin expression and function in human umbilical vein endothelial cells (HUVEC). Exposure of HUVEC to 50 ng/ml TNFα resulted in increased leukocyte transmigration through the endothelial monolayer and E-Selectin expression, in association with augmented phosphorylation of both p66Shc on Ser36 and the stress kinase c-Jun NH2-terminal protein kinase (JNK)-1/2, and higher intracellular reactive oxygen species (ROS) levels. Overexpression of p66Shc in HUVEC resulted in enhanced p66Shc phosphorylation on Ser36, increased ROS and E-Selectin levels, and amplified endothelial cell permeability and leukocyte transmigration through the HUVEC monolayer. Conversely, overexpression of a phosphorylation-defective p66Shc protein, in which Ser36 was replaced by Ala, did not augment ROS and E-Selectin levels, nor modify cell permeability or leukocyte transmigration beyond those found in wild-type cells. Moreover, siRNA-mediated silencing of p66Shc resulted in marked reduction of E-Selectin expression and leukocyte transmigration. In conclusion, p66Shc acts as a novel intermediate in the TNFα pathway mediating endothelial dysfunction, and its action requires JNK-dependent phosphorylation of p66Shc on Ser36.  相似文献   

3.
Recent reports have indicated that norepinephrine (NE) enhances HIV replication in infected monocytes and promotes increased expression of select matrix metalloproteinases associated with dilated cardiomyopathy (DCM) in vitro in co-cultures of HIV-infected leukocytes and human cardiac microvascular endothelial cells (HMVEC-C). The influence of NE on HIV infection and leukocyte-endothelial interactions suggests a pathogenic role in AIDS-related cardiovascular disease. This study examined the effects of norepinephrine (NE) and HIV-1 infection on leukocyte adhesion to HMVEC-C. Both flow and static conditions were examined and the expression of selected adhesion molecules and cytokines were monitored in parallel. NE pretreatment resulted in a detectable, dose-dependent increase of leukocyte-endothelial adhesion (LEA) with both HIV-1-infected and -uninfected peripheral blood mononuclear cells (PBMCs) relative to media controls after 48 hr in co-culture with HMVEC-C in vitro. However, the combination of NE plus HIV infection resulted in a significant (P < 0.0001) 18-fold increase in LEA over uninfected media controls. Increased levels in both cell-associated and -soluble ICAM-1 and E-Selectin but not VCAM-1 correlated with increased LEA and with HIV-1 infection or NE pretreatment. Blocking antibodies specific for ICAM-1 or E-Selectin inhibited HIV-NE-induced LEA. These data suggest a model in which NE primes HIV-1-infected leukocytes for enhanced adhesion and localization in HMVEC-C where they can initiate and participate in vascular injury associated with AIDS-related cardiomyopathy.  相似文献   

4.
Cell migration is an important process in such phenomena as growth, development, and wound healing. The control of cell migration is orchestrated in part by cell surface adhesion molecules. These molecules fall into two major categories: those that bind to extracellular matrix and those that bind to adjacent cells. Here, we report on the role of a cell-cell adhesion molecule, platelet-endothelial cell adhesion molecule-1, (PECAM-1), a member of the lg superfamily, in the modulation of cell migration and cell-cell adhesion. PECAM-1 is a 120-130 kDa integral membrane protein that resides on endothelial cells and localizes at sites of cell-cell contact. Since endothelial cells express PECAM-1 constitutively, we studied the effects of PECAM-1 on cell-cell adhesion and migration in a null-cell population. Specifically, we transfected NIH/3T3 cells with the full length PECAM-1 molecule (two independent clones). Transfected cells containing only the neomycin resistance gene, cells expressing a construct coding for the extracellular domain of the molecule, and cells expressing the neu oncogene were used as controls. The PECAM-1 transfectants appeared smaller and more polygonal and tended to grow in clusters. Indirect immunofluorescence of PECAM-1 transfectants showed peripheral staining at sites of cell-cell contact, while the extracellular domain transfectants and the control cells did not. In two quantitative migration assays, the full-length PECAM-1 transfectants migrated more slowly than control cells. Thus, PECAM-1 transfected into a null cell appears to localize to sites of cell-cell contact, promote cell-cell adhesion, and diminish the rate of migration. These findings suggest a role for this cell-cell adhesion molecule in the process of endothelial cell migration.  相似文献   

5.
Compounds which inhibit endothelial cell inflammatory responses are believed to be of therapeutic value. The cell adhesion molecules E-selectin, ICAM-1, and VCAM-1 play important roles in inflammatory reactions by mediating leukocyte-endothelial interactions. To identify compounds which inhibit the expression of these adhesion molecules following cytokine stimulation we developed an assay which measures E-selectin, ICAM-1, and VCAM-1 in the same experiment. For this, we have taken advantage of the technology of time-resolved fluorimetry, which allows detection of several parameters in parallel, employing anti-E-selectin antibody labeled with europium, and anti-ICAM-1 and anti-VCAM-1 labeled with samarium and terbium, respectively. These antibodies were used to detect the respective antigens in human endothelial cells stimulated with TNFalpha or IL-1beta. In cross-competition assays these antibodies were found to bind specifically to TNF- or IL-1-stimulated cells. This assay, in which three parameters are measured in the same experiment, proved to be robust with signal to noise ratios of 25-35 for E-Selectin, 4-8 for ICAM-1, and 3-9 for VCAM-1. The assay proved to be reproducible in high-throughput screening. The experience with this assay demonstrates that multiple parameters can be measured in an enzyme-linked immunosorbent assay-type assay on cells by using time-resolved fluorimetry. The possibility of obtaining several parameters from one experiment is feasible under high-throughput screening conditions and is of interest for other experimental setups in which the simultaneous measurement of several parameters is desired.  相似文献   

6.
Patients with metastatic cancer commonly have increased serum galectin-3 concentrations, but it is not known whether this has any functional implications for cancer progression. We report that MUC1, a large transmembrane mucin protein that is overexpressed and aberrantly glycosylated in epithelial cancer, is a natural ligand for galectin-3. Recombinant galectin-3 at concentrations (0.2-1.0 microg/ml) similar to those found in the sera of patients with metastatic cancer increased adhesion of MUC1-expressing human breast (ZR-75-1) and colon (HT29-5F7) cancer cells to human umbilical vein endothelial cells (HUVEC) by 111% (111 +/- 21%, mean +/- S.D.) and 93% (93 +/- 17%), respectively. Recombinant galectin-3 also increased adhesion to HUVEC of MUC1 transfected HCA1.7+ human breast epithelial cells that express MUC1 bearing the oncofetal Thomsen-Friedenreich antigen (Galbeta1,3 GalNAc-alpha (TF)) but did not affect adhesion of MUC1-negative HCA1.7-cells. MUC1-transfected, Ras-transformed, canine kidney epithelial-like (MDE9.2+) cells, bearing MUC1 that predominantly carries sialyl-TF, only demonstrated an adhesive response to galectin-3 after sialidase pretreatment. Furthermore, galectin-3-mediated adhesion of HCA1.7+ to HUVEC was reduced by O-glycanase pretreatment of the cells to remove TF. Recombinant galectin-3 caused focal disappearance of cell surface MUC1 in HCA1.7+ cells, suggesting clustering of MUC1. Co-incubation with antibodies against E-Selectin or CD44H, but not integrin-beta1, ICAM-1 or VCAM-1, largely abolished the epithelial cell adhesion to HUVEC induced by galectin-3. Thus, galectin-3, by interacting with cancer-associated MUC1 via TF, promotes cancer cell adhesion to endothelium by revealing epithelial adhesion molecules that are otherwise concealed by MUC1. This suggests a critical role for circulating galectin-3 in cancer metastasis and highlights the functional importance of altered cell surface glycosylation in cancer progression.  相似文献   

7.
This article describes various adhesion molecules and reviews evidence to support a mechanistic role for adhesion molecules in the process of cancer metastasis. A variety of evidence supports the involvement of specific adhesion molecules in metastasis.
  1. For example, some cancer cells metastasize to specific organs, irrespective of the first organ encountered by the circulating cancer cells. This ability to colonize a specific organ has been correlated with the preferential adhesion of the cancer cells to endothelial cells derived from the target organ. This suggests that cancer cell/endothelial cell adhesion is involved in cancer cell metastasis and that adhesion molecules are expressed on the endothelium in an organ-specific manner.
  2. Further, inclusion of peptides that inhibit cell adhesion, such as the YIGSR- or RGD-containing peptides, is capable of inhibiting experimental metastasis.
  3. Metastasis can be enhanced by acute or chronic inflammation of target vessels, or by treatment of animals with inflammatory cytokines, such as interleukin-1. In vitro, cancer cell/endothelial cell adhesion can be enhanced by pretreating the endothelial cell monolayer with cytokines, such as interleukin-1 or tumor necrosis factor-α. This suggests that, in addition to organ-specific adhesion molecules, a population of inducible endothelial adhesion molecules is involved and is relevant to metastasis.
  4. Further support for this model is found in the comparison to leukocyte/endothelial adhesion during leukocyte trafficking. Convincing evidence exists, both in vivo and in vitro, to demonstrate an absolute requirement for leukocyte/endothelial adhesion before leukocyte extravasation can occur. The relevance of this comparison to metastasis is reinforced by the observation that some of the adhesion molecules involved in leukocyte/endothelial adhesion are also implicated in cancer cell/endothelial adhesion. The involvement of adhesion molecules suggests a potential therapy for metastasis based on interrupting adhesive interactions that would augment other treatments for primary tumors.
  相似文献   

8.
Liraglutide is a glucagon-like peptide-1 (GLP-1) mimetic used for the treatment of Type 2 diabetes. Similar to the actions of endogenous GLP-1, liraglutide potentiates the post-prandial release of insulin, inhibits glucagon release and increases satiety. Recent epidemiological studies and clinical trials have suggested that treatment with GLP-1 mimetics may also diminish the risk of cardiovascular disease in diabetic patients. The mechanism responsible for this effect has yet to be determined; however, one possibility is that they might do so by a direct effect on vascular endothelium. Since low grade inflammation of the endothelium is an early event in the pathogenesis of atherosclerotic cardiovascular disease (ASCVD), we determined the effects of liraglutide on inflammation in cultured human aortic endothelial cells (HAECs). Liraglutide reduced the inflammatory responses to TNFα and LPS stimulation, as evidenced by both reduced protein expression of the adhesion molecules VCAM-1 and E-Selectin, and THP-1 monocyte adhesion. This was found to result from increased cell Ca2+ and several molecules sensitive to Ca2+ with known anti inflammatory actions in endothelial cells, including CaMKKβ, CaMKI, AMPK, eNOS and CREB. Treatment of the cells with STO-609, a CaMKK inhibitor, diminished both the activation of AMPK, CaMKI and the inhibition of TNFα and LPS-induced monocyte adhesion by liraglutide. Likewise, expression of an shRNA against AMPK nullified the anti-inflammatory effects of liraglutide. The results indicate that liraglutide exerts a strong anti-inflammatory effect on HAECs. They also demonstrate that this is due to its ability to increase intracellular Ca2+ and activate CAMKKβ, which in turn activates AMPK.  相似文献   

9.
10.
11.
Histamine is an important agent of innate immunity, transiently increasing the flux of immune-competent molecules from the vascular space to the tissues and then allowing rapid restoration of the integrity of the endothelial barrier. In previous work we found that histamine alters the endothelial barrier by disrupting cell-cell adhesion and identified VE-cadherin as an essential participant in this process. The previous work did not determine whether histamine directly interrupted VE-cadherin adhesion, whether the effects of histamine were selective for cadherin adhesion, or whether capacitive calcium flux across the cell membrane was necessary for the effects of histamine on cell-cell adhesion. In the current work we found that histamine directly interrupts adhesion of L cells expressing the type 1 histamine (H1) receptor and VE-cadherin to a VE-cadherin-Fc fusion protein. In contrast, integrin-mediated adhesion to fibronectin of the same L cells expressing the H1 receptor was not affected by histamine, demonstrating that the effects of histamine are selective for cadherin adhesion. Some of the effects of many edemagenic agonists on endothelium are dependent on the capacitive flux of calcium across the endothelial cell membrane. Blocking capacitive calcium flux with LaCl3 did not prevent histamine from interrupting VE-cadherin adhesion of transfected L cells, nor did it prevent histamine from interrupting cell-cell adhesion of human umbilical vein endothelial cells. These data support the contentions that histamine directly and selectively interrupts cadherin adhesion and this effect on cadherin adhesion is independent of capacitive calcium flux.  相似文献   

12.
异种移植排斥反应的主要特征为内皮细胞发生Ⅱ型激活.引起黏附分子、细胞因子和前促凝分子等基因高表达.造成血管收缩、白细胞黏附、激活、聚集和血栓形成.最终导致内皮细胞凋亡。保护基因HO-1通过抑制前炎症反应及免疫调抑作用以保护异种移植器官。因此。通过构建含剪切的野生型大鼠HO-1 cDNA的表达型质粒.用DOTAP包裹转入HUVEC中表达。测定表达量及表达产物活性;采用TNF-α诱导细胞凋亡。以及Heme和SnPP分别刺激细胞。诱导和抑制细胞内HO-1表达量.流式细胞仪测定细胞凋亡率,明确HO一1的抗细胞凋亡作用。结果显示HO-1在HUVEC中高度表达。活力为对照组5倍;TNF-α诱导细胞凋亡。但Heme处理后细胞凋亡率下降至20%以下。而SnPP处理后细胞凋亡率显著上升,最高达到95%以上。并且HO-1基因表达抑制时细胞凋亡率是诱导时的5—20倍。本实验表明Heme处理后HO-1表达上调。具有显著抗细胞凋亡作用。细胞凋亡率与HO-1表达量呈负相关,提示HO-1通过抑制细胞凋亡。对细胞有保护作用。  相似文献   

13.
动脉粥样硬化的非随机分布与当地的血流动力环境有关,为了研究复杂的流体动力学条件对血和皮细胞生理功能的影响,构建了平行板式平直流槽和突然扩张流槽,通过数值模拟分析了流型的特征,并探讨流型改变对人脐静脉血管内皮细胞表面粘附蛋白表达的影响,发现突然扩张流槽中流动的空间变化使得总体细胞表面粘附蛋白ICAM-1的表达显著高于平直流槽中的均匀定常剪切作用,表明局部流动空间变化的性质可以影响血管内皮细胞的功能。  相似文献   

14.
Summary The effect of tumor necrosis factor alpha on vascular endothelial cells was analyzed using a collagen-embedded, three-dimensional culture system, focusing on angiogenesis and expression of cell adhesion molecules. When the endothelial cells were cultured between two layers of type-I collagen gel, they reorganized into a network of branching and anastomosing tubular structures. Once the structure was formed, the cells did not undergo further division. Addition of tumor necrosis factor alpha at 10 to 500 U/ml to the overlaid culture medium inhibited this tube-forming process and enhanced their survival, whereas it suppressed cell growth in monolayer. To test its effect on the expression of cell adhesion molecules, the collagen was digested, and the dispersed cells were stained with anti-intercellular adhesion molecule-1 and endothelial-leukocyte adhesion molecule-1 monoclonal antibodies. Tumor necrosis factor alpha upregulated the expressions of both molecules for an extended period of time. Even in the absence of tumor necrosis factor alpha, the cells embedded in collagen matrices expressed small amounts of these adhesion molecules. These results indicate that endothelial cells display phenotypic changes in collagen matrices and modulatory response to tumor necrosis factor alpha.  相似文献   

15.
Gräbner R  Till U  Heller R 《Cytometry》2000,40(3):238-244
BACKGROUND: Endothelial cell adhesion molecules are involved in initiation and progression of vascular diseases. The purpose of this study was to determine conditions of fixation and dissociation of human umbilical vein endothelial cell (HUVEC) monolayers that permit a reliable flow cytometric determination of intracellular and surface content of E-selectin, vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1). METHODS: TNFalpha-treated HUVEC monolayers were fixed with 0.5% formaldehyde at the end of the experimental incubation. Subsequently, either the monolayer was trypsinized and thereafter the cells were subjected to indirect fluorescence labeling or the monolayer was first labeled and then dissociated by trypsinization. Cell integrity was assessed by vimentin staining. Total adhesion molecule content was detected in saponin-permeabilized cells. RESULTS: HUVEC integrity was maintained when the fixation time of the monolayer did not exceed 5 min and trypsin/EDTA was used for dissociation. Surface adhesion molecules were partially hydrolyzed by trypsin when trypsinization preceded labeling but antibody binding protected adhesion molecules from degradation. VCAM-1 and E-selectin exhibited substantial trypsin-sensitive surface fractions but surface ICAM-1 was mainly trypsin resistant. Permeabilization with 0.06% saponin allowed the detection of considerable intracellular pools of the investigated adhesion molecules. CONCLUSIONS: The described method permits the reliable determination of surface and intracellular fractions of adhesion molecules in formaldehyde-fixed HUVEC monolayers and may be used for studies on the regulation of adhesion molecule expression.  相似文献   

16.
The ICAM-1 adhesion molecule is expressed selectively at low levels on endothelial cells but is strongly upregulated in dysfunctional endothelial cells associated with inflammation, cancer, and atherogenesis. Using COS-7 cells transfected with murine ICAM-1 (mICAM-1) as a target receptor, a phage display library was screened. Clones were selected by elution with a mAb specific for a functional epitope of ICAM-1 and a novel peptide sequence binding to the extracellular domain of mICAM-1 was identified that can potentially be used as a targeting vector aimed at dysfunctional endothelium. We further showed that the targeting specificity of the peptide was retained following its incorporation at the N terminal end of a large chimeric protein. Moreover, this chimeric protein containing the mICAM-1-specific sequence was found to inhibit ICAM-1-mediated intercellular adhesion during antigen presentation. Taken together, these results demonstrate the potential for improving the cell-selectivity and properties of therapeutical agents toward targeting adhesion molecules involved in cell-cell interactions.  相似文献   

17.
A semi-quantitative procedure is described, which allows the evaluation of expression levels of endothelial adhesion molecules on cultured human umbilical vein endothelial cells (HUVEC) using energy dispersive X-ray microanalysis (EDX). As a model two adhesion molecules, E-selection (CD62E; ELAM-1/endothelial leukocyte adhesion molecule-1) and ICAM-1 (intercellular adhesion molecule-1; CD54), were localized by the use of the silver-enhancement colloidal gold method after stimulation of HUVEC with endotoxin lipopolysaccharide (LPS), tumour necrosis factor (TNF) or a phorbol ester (PMA). The analysis was performed in a scanning electron microscope (SEM) at an accelerating voltage of 15 kV with scanned areas of 200×400 m. The semi-quantitative data indicated that in LPS-treated groups both adhesion molecules were expressed at a significantly higher level than in all other groups (P<0.01). In addition, after a 4 h treatment the expression levels of E-selectin in all groups were higher compared to ICAM-1. The experimental data from X-ray microanalysis were compared with data obtained from an enzyme-linked immunosorbent assay (ELISA) and similar values were found for both types of preparation. This microanalytical method is relatively simple and seems to be suitable for immunogold labelling studies on different types of endothelial cells in vitro.  相似文献   

18.
In order to obtain more information on processes leading to Borrelia burgdorferi-induced inflammation in the host, we have developed an in vitro model to study the upregulation of cell surface expression of adhesion molecules on endothelial cells by spirochetes. A mouse endothelioma cell line, derived from brain capillaries, bEnd3, was used as indicator population. bEnd3 cells were incubated with preparations of viable, inactivated or sonicated spirochetes and the expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 was monitored by immunocytochemistry and quantified by cell surface ELISA. We show that all three spirochetal preparations are able to upregulate cell surface expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 on bEnd3 cells in a dose-dependent manner. The kinetics of cell surface expression of the individual adhesion molecules in the presence of Borrelia burgdorferi showed maxima at about 50 h of incubation or later; this was distinct from results obtained with sonicated-preparations of Escherichia coli bacteria or with enterobacterial LPS where peak expression was observed between 4 h and 16 h. The fact that Borrelia burgdorferi does not contain conventional LPS suggests that the mode of induction of adhesion molecules on endothelial cells is influenced by the phenotype of bacteria. At the peak of spirochete-induced cell surface expression of adhesion molecules (≈50 h), bEnd3 cells were found to bind cells of a VLA-4+ B lymphoma line (L1-2) much more efficiently than untreated control cells. The binding of L1-2 cells to presensitized bEnd3 cells was significantly inhibited (more than 75%) in the presence of monoclonal antibodies to both VLA-4 and its endothelial counterreceptor VCAM-1. These findings demonstrate that Borrelia burgdorferi organisms are able to induce functionally active adhesion molecules on endothelial cells in vitro and suggest that E-selectin, P-selectin, ICAM-1 and VCAM-1 play an important role in the pathogenesis of spirochetal infection.  相似文献   

19.
Classical junctional adhesion molecules JAM-A, JAM-B and JAM-C influence vascular permeability, cell polarity as well as leukocyte recruitment and immigration into inflamed tissue. As the vasculature becomes remodelled in chronically injured, fibrotic livers we aimed to determine distribution and role of junctional adhesion molecules during this pathological process. Therefore, livers of naïve or carbon tetrachloride-treated mice were analyzed by immunohistochemistry to localize all 3 classical junctional adhesion molecules. Hepatic stellate cells and endothelial cells were isolated and subjected to immunocytochemistry and flow cytometry to determine localization and functionality of JAM-B and JAM-C. Cells were further used to perform contractility and migration assays and to study endothelial tubulogenesis and pericytic coverage by hepatic stellate cells. We found that in healthy tissue, JAM-A was ubiquitously expressed whereas JAM-B and JAM-C were restricted to the vasculature. During fibrosis, JAM-B and JAM-C levels increased in endothelial cells and JAM-C was de novo generated in myofibroblastic hepatic stellate cells. Soluble JAM-C blocked contractility but increased motility in hepatic stellate cells. Furthermore, soluble JAM-C reduced endothelial tubulogenesis and endothelial cell/stellate cell interaction. Thus, during liver fibrogenesis, JAM-B and JAM-C expression increase on the vascular endothelium. More importantly, JAM-C appears on myofibroblastic hepatic stellate cells linking them as pericytes to JAM-B positive endothelial cells. This JAM-B/JAM-C mediated interaction between endothelial cells and stellate cells stabilizes vessel walls and may control the sinusoidal diameter. Increased hepatic stellate cell contraction mediated by JAM-C/JAM-C interaction may cause intrahepatic vasoconstriction, which is a major complication in liver cirrhosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号