首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphorodiamidate morpholino oligomers (PMO) are uncharged antisense molecules that bind complementary sequences of RNA, inhibiting gene expression by preventing translation or by interfering with pre-mRNA splicing. The techniques used to deliver PMO into cultured cells have been mostly mechanical methods. These delivery methods, although useful, have limitations. We investigated the ability of the HIV Tat peptide (pTat) and other cationic peptides to deliver PMO into cultured cells. Fluorescence was seen in 100% of HeLa cells treated with pTat-PMO-fluorescein conjugate. pTat-PMO conjugate targeted to c-myc mRNA downregulated c-myc reporter gene expression with an IC50 of 25 microM and achieved nearly 100% inhibition. pTat-PMO conjugate targeted to a mutant splice site of beta-globin pre-mRNA dose-dependently corrected splicing and upregulated expression of the functional reporter gene. Neither unconjugated PMO nor unconjugated pTat caused antisense activities. However, compared with mechanically mediated delivery, pTat-mediated PMO delivery required higher concentrations of PMO (>10 microM) to cause antisense activity and caused some toxicity. Most pTat-PMO conjugate was associated with cell membranes, and internalized conjugate was localized in vesicles, cytosol, and nucleus. The other three cationic peptides are much less effective than pTat. pTat significantly enhances delivery of PMO in 100% of cells assayed. pTat-mediated delivery is a much simpler procedure to perform than other delivery methods.  相似文献   

2.
Noncharged antisense compounds, such as phosphorodiamidate morpholino oligomers (PMOs), do not readily enter mammalian cells in culture. A simple and effective means for cellular delivery of PMOs is through their conjugation to arginine-rich peptides. Understanding the effect of peptide conjugation on the efficacy, toxicity, and specificity of PMOs is important to the successful application of this antisense delivery method. We investigated the effects of conjugation of arginine-rich peptides to PMO on the thermal stability, efficacy and specificity for targeted RNA of the resulting compound. In vitro translation assays showed that (1) R9F2-PMO generated antisense activity 3-25-fold higher than corresponding nonconjugated PMO, (2) the level of antisense activity enhancement by R9F2-PMO over a corresponding nonconjugated PMO is related to the GC content of the PMO sequence, (3) R9F2 conjugation reduced the minimum length of a PMO required to inactivate a target RNA from 20 bases to 14 bases, and (4) nonspecific effects of R9F2-PMO occur at lower concentrations than corresponding PMO alone. Thermal stability of heteroduplexes of PMO and complementary RNA were increased by conjugation of PMO to R9F2 peptide, likely accounting for the increased specific antisense activity of conjugated over nonconjugated PMO. A cell-culture based assay demonstrated that while conjugation to unnatural peptides increased PMO efficacy without causing nonspecificity at concentrations < or = 10 microM, only L-peptide conjugation retained high specificity at higher concentrations. This study demonstrates that conjugation of PMO to an arginine-rich peptide generally increases the binding affinity of the PMO to complementary RNA and increases its antisense potency. Additionally, it is shown that the enzymatic stability of an L- or unnatural peptide used for PMO conjugation affects the antisense properties of the resulting compound.  相似文献   

3.
Five dengue (DEN) virus-specific R5F2R4 peptide-conjugated phosphorodiamidate morpholino oligomers (P4-PMOs) were evaluated for their ability to inhibit replication of DEN virus serotype 2 (DEN-2 virus) in mammalian cell culture. Initial growth curves of DEN-2 virus 16681 were obtained in Vero cells incubated with 20 microM P4-PMO compounds. At 6 days after infection, a P4-PMO targeting the 3'-terminal nucleotides of the DEN-2 virus genome and a random-sequence P4-PMO showed relatively little suppression of DEN-2 virus titer (0.1 and 0.9 log10, respectively). P4-PMOs targeting the AUG translation start site region of the single open reading frame and the 5' cyclization sequence region had moderate activity, generating 1.6- and 1.8-log10 reductions. Two P4-PMO compounds, 5'SL and 3'CS (targeting the 5'-terminal nucleotides and the 3' cyclization sequence region, respectively), were highly efficacious, each reducing the viral titer by greater than 5.7 log10 compared to controls at 6 days after infection with DEN-2 virus. Further experiments showed that 5'SL and 3'CS inhibited DEN-2 virus replication in a dose-dependent and sequence-specific manner. Treatment with 10 microM 3'CS reduced the titers of all four DEN virus serotypes, i.e., DEN-1 (strain 16007), DEN-2 (16681), DEN-3 (16562), and DEN-4 (1036) viruses by over 4 log10, in most cases to below detectable limits. The extent of 3'CS efficacy was affected by the timing of compound application in relation to viral infection of the cells. The 5'SL and 3'CS P4-PMOs did not suppress the replication of West Nile virus NY99 in Vero cells. These data indicate that further evaluation of the 5'SL and 3'CS compounds as potential DEN virus therapeutics is warranted.  相似文献   

4.
Conjugation of a peptide related to the human immunodeficiency virus type 1 Tat represents a novel method for delivery of antisense morpholino-oligomers. Conjugated and unconjugated oligomers were tested to determine sequence-specific antiviral efficacy against a member of the Coronaviridae, Mouse hepatitis virus (MHV). Specific antisense activity designed to block translation of the viral replicase polyprotein was first confirmed by reduction of luciferase expression from a target sequence-containing reporter construct in both cell-free and transfected cell culture assays. Peptide-conjugated morpholino-oligomers exhibited low toxicity in DBT astrocytoma cells used for culturing MHV. Oligomer administered at micromolar concentrations was delivered to >80% of cells and inhibited virus titers 10- to 100-fold in a sequence-specific and dose-responsive manner. In addition, targeted viral protein synthesis, plaque diameter, and cytopathic effect were significantly reduced. Inhibition of virus infectivity by peptide-conjugated morpholino was comparable to the antiviral activity of the aminoglycoside hygromycin B used at a concentration fivefold higher than the oligomer. These results suggest that this composition of antisense compound has therapeutic potential for control of coronavirus infection.  相似文献   

5.
RNA elements within flavivirus genomes are potential targets for antiviral therapy. A panel of phosphorodiamidate morpholino oligomers (PMOs), whose sequences are complementary to RNA elements located in the 5'- and 3'-termini of the West Nile (WN) virus genome, were designed to anneal to important cis-acting elements and potentially to inhibit WN infection. A novel Arg-rich peptide was conjugated to each PMO for efficient cellular delivery. These PMOs exhibited various degrees of antiviral activity upon incubation with a WN virus luciferase-replicon-containing cell line. Among them, PMOs targeting the 5'-terminal 20 nucleotides (5'End) or targeting the 3'-terminal element involved in a potential genome cyclizing interaction (3'CSI) exhibited the greatest potency. When cells infected with an epidemic strain of WN virus were treated with the 5'End or 3'CSI PMO, virus titers were reduced by approximately 5 to 6 logs at a 5 muM concentration without apparent cytotoxicity. The 3'CSI PMO also inhibited mosquito-borne flaviviruses other than WN virus, and the antiviral potency correlated with the conservation of the targeted 3'CSI sequences of specific viruses. Mode-of-action analyses showed that the 5'End and 3'CSI PMOs suppressed viral infection through two distinct mechanisms. The 5'End PMO inhibited viral translation, whereas the 3'CSI PMO did not significantly affect viral translation but suppressed RNA replication. The results suggest that antisense PMO-mediated blocking of cis-acting elements of flavivirus genomes can potentially be developed into an anti-flavivirus therapy. In addition, we report that although a full-length WN virus containing a luciferase reporter (engineered at the 3' untranslated region of the genome) is not stable, an early passage of this reporting virus can be used to screen for inhibitors against any step of the virus life cycle.  相似文献   

6.
7.
Although the sequence specificity, biostability, and low toxicity of PMO (phosphorodiamidate morpholino oligomers) make them good antisense agents to study gene function, their limited ability to cross cell membranes limits their use in cell culture. In this paper we show that conjugation to arginine-rich peptides significantly enhanced the cellular uptake of PMO. The factors that affect the conjugate's cellular uptake and its antisense activity toward a targeted mRNA were investigated. Factors studied include the number of arginines in the peptide, the choice of cross-linker, the peptide conjugation position, the length of the PMO, and the cell culture conditions. Delivery of PMO to the cell nucleus and cytosol required conjugation rather than complexation of peptides to PMO. R(9)F(2)C was best suited to deliver a PMO to its target RNA resulting in the strongest antisense effect. By simply adding the R(9)F(2)C-PMO conjugate into the cell culture medium at low microM concentration, missplicing of pre-mRNA was corrected. This particular peptide-conjugated PMO was more effective than the PMO conjugated to the transmembrane transport peptides of HIV-1 Tat protein, Drosophila antennapedia protein, or to peptides with fewer arginines. Length of PMO did not affect a peptide's delivery efficacy, but all other factors were important. R(9)F(2)C peptide provided a simple and efficient delivery of PMO to a RNA target. Conjugation of peptide to PMO enhances the opportunities to evaluate gene functions in cell cultures.  相似文献   

8.
ABSTRACT: BACKGROUND: Transmissible gastroenteritis (TGE) is a highly contagious viral disease of swine, characterized by severe vomiting, diarrhea, and high mortality. Currently, the vaccines for it are only partially effective and no specific drug is available for treatment of TGE virus (TGEV) infection. RNA interference has been confirmed as a new approach for controlling viral infections. In this study, the inhibitory effect of short hairpin RNAs (shRNAs) targeting the ORF 7 gene of TGEV on virus replication was examined. RESULTS: Four theoretically effective sequences of TGEV ORF 7 gene were designed and selected for construction of shRNA expression plasmids. In the reporter assays, three of four shRNA expression plasmids were able to inhibit significantly the expression of ORF 7 gene and replication of TGEV, as shown by real-time quantitative RT-PCR analysis of viral ORF 7 and N genes and detection of virus titers (TCID50/ml). Stable swine testicular (ST) cells expressing the shRNAs were established. Observation of the cytopathic effect and apoptosis, as well as a cell proliferation assay demonstrated that the three shRNAs were capable of protecting ST cells against TGEV destruction, with high specificity and efficiency. CONCLUSIONS: Our results indicated that plasmid-transcribed shRNAs targeting the ORF 7 gene in the TGEV genome effectively inhibited expression of the viral target gene and viral replication in vitro. These findings provide evidence that the shRNAs have potential therapeutic application for treatment of TGE.  相似文献   

9.
We describe inhibition of HIV replication by a partially double-stranded 54mer oligodeoxynucleotide, ODN, which consists of an antisense strand targeting the highly conserved polypurine tract, PPT, of HIV, and a second strand, compatible with triple-helix formation. Upon treatment of HIV-infected cells with ODN early after infection no viral nucleic acids, syncytia or p24 viral antigen expression was observed. The ODN-mediated effect was highly sequence-specific. The ODN against HIV-IIIB was effective preferentially against its homologous PPT and less against the PPT of HIV-BaL differing in two of 24 nucleotides and vice versa. It may be interesting mechanistically as an antiviral drug.  相似文献   

10.
Abstract

ENATM antisense oligonucleotides for vascular endothelial growth factor (VEGF) mRNA were synthesized and evaluated in A549 lung cancer cells. It was found that the VEGF ENA-antisense inhibited not only the expression of VEGF, but also the expression of three genes, which were found in Genbank by BLAST and Clustal W search and considered likely to bind to the VEGF ENA-antisense. These results indicate that ENA-antisense oligonucleotides act in a sequence-specific manner, and could be used as effective antisense drugs.  相似文献   

11.
12.
13.
Coxsackievirus B3 (CVB3) is a primary cause of viral myocarditis, yet no effective therapeutic against CVB3 is available. Nucleic acid-based interventional strategies against various viruses, including CVB3, have shown promise experimentally, but limited stability and inefficient delivery in vivo remain as obstacles to their potential as therapeutics. We employed phosphorodiamidate morpholino oligomers (PMO) conjugated to a cell-penetrating arginine-rich peptide, P007 (to form PPMO), to address these issues. Eight CVB3-specific PPMO were evaluated with HeLa cells and HL-1 cardiomyocytes in culture and in a murine infection model. One of the PPMO (PPMO-6), designed to target a sequence in the 3' portion of the CVB3 internal ribosomal entry site, was found to be especially potent against CVB3. Treatment of cells with PPMO-6 prior to CVB3 infection produced an approximately 3-log(10) decrease in viral titer and largely protected cells from a virus-induced cytopathic effect. A similar antiviral effect was observed when PPMO-6 treatment began shortly after the virus infection period. A/J mice receiving intravenous administration of PPMO-6 once prior to and once after CVB3 infection showed an approximately 2-log(10)-decreased viral titer in the myocardium at 7 days postinfection and a significantly decreased level of cardiac tissue damage, compared to the controls. Thus, PPMO-6 provided potent inhibition of CVB3 amplification both in cell cultures and in vivo and appears worthy of further evaluation as a candidate for clinical development.  相似文献   

14.
ENA antisense oligonucleotides for vascular endothelial growth factor (VEGF) mRNA were synthesized and evaluated in A549 lung cancer cells. It was found that the VEGF ENA-antisense inhibited not only the expression of VEGF, but also the expression of three genes, which were found in Genbank by BLAST and Clustal W search and considered likely to bind to the VEGF ENA-antisense. These results indicate that ENA-antisense oligonucleotides act in a sequence-specific manner, and could be used as effective antisense drugs.  相似文献   

15.
ABSTRACT Exon sequences upstream of splice sites play a critical role in mRNA processing, which is dependent on spliceosome interactions with these sites. Using antisense oligodeoxynucleotides (ODN), we targeted these and other sequences of the proinflammatory tumor necrosis factor-alpha (TNF-alpha) gene because it is multiply spliced and has been difficult to regulate with ODN in the past. ODN targeting exon sequences upstream of the donor splice sites of internal exons 2 (ORF4) and 3 (ORF6) significantly reduced TNF-alpha levels in stimulated U937 cells by 62%+/-7% and 51%+/-9%, respectively, in a dose-dependent manner but did not affect interleukin-6 (IL-6) levels. In contrast, ODN targeting the exon sequences downstream of the acceptor splice sites of exons 1, 2, and 3 failed to reduce TNF-alpha levels significantly under the same conditions. End-phosphorothioated ORF4 (ORF4-PE) significantly reduced TNF-alpha mRNA levels by greater than 80% (p < 0.001) and protein levels by 60% (p < 0.001) in U937 cells. ORF4-PE reduced newly synthesized TNF-alpha protein levels by >80% in lipopolysaccharide (LPS)-stimulated human macrophages, by greater than 60% in phorbol myristate acetate/phyto-hemagglutinin (PMA/PHA)-stimulated human peripheral blood mononuclear cells (PBMC), and by approximately 50% in LPS-stimulated murine monocytes. These results suggest that exon sequences flanking donor splice sites are highly susceptible target domains for antisense inhibition of TNF-alpha gene expression.  相似文献   

16.
17.

Background

The current vaccines failed to provide substantial protection against porcine reproductive and respiratory syndrome (PRRS) and the new vaccine development faces great challenges. Sialoadhesin (Sn) and CD163 are the two key receptors for PRRS virus (PRRSV) infection of porcine alveolar macrophages (PAMs), but the artificial microRNA (amiRNA) strategy targeting two viral receptors has not been described.

Methods

The candidate miRNAs targeting Sn or CD163 receptor were predicted using a web-based miRNA design tool and validated by transfection of cells with each amiRNA expression vector plus the reporter vector. The amiRNA-expressing recombinant adenoviruses (rAds) were generated using AdEasy Adenoviral Vector System. The rAd transduction efficiencies for pig cells were measured by flow cytometry and fluorescent microscopy. The expression and exosome-mediated secretion of amiRNAs were detected by RT-PCR. The knock-down of Sn or CD163 receptor by rAd- and/or exosome-delivered amiRNA was detected by quantitative RT-PCR and flow cytometry. The additive anti-PRRSV effect between the two amiRNAs was detected by quantitative RT-PCR and viral titration.

Results

All 18 amiRNAs validated were effective against Sn or CD163 receptor mRNA expression. Two rAds expressing Sn- or CD163-targeted amiRNA were generated for further study. The maximal rAd transduction efficiency was 62% for PAMs at MOI 800 or 100% for PK-15 cells at MOI 100. The sequence-specific amiRNAs were expressed efficiently in and secreted from the rAd-transduced cells via exosomes. The expression of Sn and CD163 receptors was inhibited significantly by rAd transduction and/or amiRNA-containing exosome treatment at mRNA and protein levels. Both PRRSV ORF7 copy number and viral titer were reduced significantly by transduction of PAMs with the two rAds and/or by treatment with the two amiRNA-containing exosomes. The additive anti-PRRSV effect between the two amiRNAs was relatively long-lasting (96 h) and effective against three different viral strains.

Conclusion

These results suggested that Sn- and CD163-targeted amiRNAs had an additive anti-PRRSV effect against different viral strains. Our findings provide new evidence supporting the hypothesis that exosomes can also serve as an efficient small RNA transfer vehicle for pig cells.
  相似文献   

18.
19.
Enterovirus 71 (EV71) is the most important etiological agent of hand, foot, and mouth disease (HFMD) in young children, which is associated with severe neurological complications and has caused significant mortalities in recent HFMD outbreaks in Asia. However, there is no effective antiviral therapy against EV71. In this study, RNA interference (RNAi) was used as an antiviral strategy to inhibit EV71 replication. Three small interfering RNAs (siRNAs) targeting the 2Apro region of the EV71 genome were designed and synthesized. All the siRNAs were transfected individually into rhabdomyosarcoma (RD) cells, which were then infected with strain EV71-2006-52-9. The cytopathic effects (CPEs) in the infected RD cells, cell viability, viral titer, and viral RNA and protein expression were examined to evaluate the specific viral inhibition by the siRNAs. The results of cytopathogenicity and MTT tests indicated that the RD cells transfected with the three siRNAs showed slight CPEs and significantly high viability. The 50% tissue culture infective dose (TCID50) values demonstrated that the viral titer of the groups treated with three siRNAs were lower than those of the control groups. qRT–PCR and western blotting revealed that the levels of viral RNA and protein in the RD cells treated with the three siRNAs were lower than those in the controls. When RD cells transfected with siRNAs were also infected with strain EV71-2008-43-16, the expression of the VP1 protein was significantly inhibited. The levels of interferon α (IFN-α) and IFN-β did not differ significantly in any group. These results suggest that siRNAs targeting the 2Apro region of the EV71 genome exerted antiviral effects in vitro.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号