首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macrophage foam cells, a major component of the atherosclerotic lesion, have vital roles in the development of atherosclerosis. Lipoautophagy, a type of autophagy characterized by selective delivery of lipid droplet for lysosomal degradation, may impact atherosclerosis by regulating macrophage foam cell formation. Previously, we reported that programmed cell death 4 (PDCD4), a tumor suppressor, negatively regulated autophagy in tumor cells. However, its roles in macrophage lipoautophagy, foam cell formation and atherosclerosis remain to be established. Here we found that Pdcd4 deficiency clearly improved oxidized low-density lipoproteins-impaired autophagy efflux, promoted autophagy-mediated lipid breakdown in murine macrophages and thus prevented macrophage conversion into foam cells. Importantly, Pdcd4 deficiency in mice significantly upregulated macrophage autophagy in local plaques along with attenuated lipid accumulation and atherosclerotic lesions in high-fat-fed Apolipoprotein E knockout mice. Bone marrow transplantation experiment demonstrated that PDCD4-mediated autophagy in hematopoietic cells contributed to the development of atherosclerosis. These results indicate that endogenous PDCD4 promotes for macrophage foam cell formation and atherosclerosis development via inhibiting autophagy and provides new insights into atherogenesis, suggesting that promoting macrophage autophagy through downregulating PDCD4 expression may be beneficial for treating atherosclerosis.Atherosclerosis is a lipid dysfunction-derived chronic inflammatory process in large and medium arterial wall.1 Macrophage foam cell, as a major component in the lesion of atherosclerosis, has vital role in the development of atherosclerosis. In the initial step of atherosclerotic development, circulating monocytes migrate into arterial wall via dysfunctional endothelial cells and differentiate into macrophages.2, 3, 4 The infiltrated macrophages ingest and digest oxidized low-density lipoprotein (ox-LDL), and then transport lipid out of vascular wall.5 However, macrophage with overloaded lipids stored in the form of lipid droplets (LDs) will transform into foam cells. Macrophage foam cell formation could promote the development of atherosclerosis.6 Thus, decreasing the formation of macrophage foam cell would be an attractive strategy to reverse plaque lipid buildup.7The macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved and well-controlled cellular catabolic process. During the process, cytoplasmic components are sequestered in double-membrane vesicles (which is called autophagosome) and degraded by fusion with lysosomal compartments (autophagolysosome) for recycling application.8 The process of autophagy is regulated by several autophagy-related genes (ATGs) encoded proteins, such as ATG5, ATG6 (also known as BECN1), ATG8 (also known as microtubule-associated protein 1 light chain 3, LC3) and ATG12. ATG5 is involved in the early stage of autophagosome formation. ATG5 is conjugated with ATG12 and ATG16L to form ATG12–ATG5–ATG16L complex, which contributes to the elongation and closure of the autophagosomes in the generation of lipidated forms of LC3 family proteins.9 Lipoautophagy, a type of autophagy that selectively delivers LDs for lysosomal degradation,10 regulates lipid metabolism and is involved in the process of atherosclerosis.11, 12, 13, 14 In advanced atherosclerosis, macrophage autophagy becomes dysfunctional. However, the basic autophagy deficiency in macrophage by specific Atg5 knockout accelerates atherosclerotic plaques in high-fat-fed ldlr−/− mice via promoting oxidative stress, plaque necrosis12 or inflammasome hyperactivation.13 More interestingly, autophagy can enhance brokendown of lipid in LD, cholesterol efflux from macrophage foam cells and further inhibit atherogenisis.14 Stent-based delivery of everolimus (mTOR inhibitor) in atherosclerotic plaques of cholesterol-fed rabbits leads to a marked reduction of macrophages via autophagic cell death.15 Therefore, regulating the level of macrophage autophagy and macrophage conversion into foam cells would be a potential target for preventing the atherosclerotic plaques formation.16Programmed cell death 4 (PDCD4), an inhibitor of protein translation, inhibits translation initiation via binding to the translation initiation factor eIF4A or translation elongation by direct or indirectly binding to the coding region of specific RNAs.17, 18 Accumulated evidence has demonstrated PDCD4 as a tumor suppressor.19 PDCD4 can inhibit promotion and progression of tumors, such as lung cancer,20 hepatocellular carcinoma cells,21 colon cancer,22 ovarian cancer23 and glioma.24 In addition, it has been reported that PDCD4 is also involved in the development of inflammatory diseases.25, 26, 27, 28, 29, 30 For example, Pdcd4-deficient mice are resistant to experimental allergic encephalitis,25 LPS-induced endotoxin shock26 and type-1 diabetes.27 In addition, Pdcd4-deficient mice are sensitive to LPS/D-galactosamine-induced acute liver injury.28 Recently, we reported that Pdcd4 deficiency attenuated adipocyte foam cells, diet-induced obesity, obesity-associated inflammation and insulin resistance,29 and increased IL-10 expression by macrophages that partly involved in atherosclerosis in hyperlipidemic mice,30 suggesting that PDCD4 may be involved in the metabolism-related diseases. Furthermore, we found that PDCD4 negatively regulated autophagy by inhibiting ATG5 expression in tumor cells.31 However, its role in macrophage lipoautophagy and foam formation, and association with atherosclerosis remain to be investigated.In the present study, we found that Pdcd4 deficiency improved ox-LDL-impaired autophagy efflux in murine macrophage and subsequently attenuated macrophage conversion into foam cells in an autophagy-dependent manner and further attenuated the formation of atherosclerotic lesions in hyperlipidemia mice. These results indicate that PDCD4 is critical for macrophage foam cell formation in atherosclerosis development and provides new insights into atherogenesis, and potential therapeutic avenues to treat atherosclerosis-associated diseases.  相似文献   

2.
Macrophages are essential in atherosclerosis progression, but regulation of the M1 versus M2 phenotype and their role in cholesterol deposition are unclear. We demonstrate that endoplasmic reticulum (ER) stress is a key regulator of macrophage differentiation and cholesterol deposition. Macrophages from diabetic patients were classically or alternatively stimulated and then exposed to oxidized LDL. Alternative stimulation into M2 macrophages lead to increased foam cell formation by inducing scavenger receptor CD36 and SR-A1 expression. ER stress induced by alternative stimulation was necessary to generate the M2 phenotype through JNK activation and increased PPARγ expression. The absence of CD36 or SR-A1 signaling independently of modified cholesterol uptake decreased ER stress and prevented the M2 differentiation typically induced by alternative stimulation. Moreover, suppression of ER stress shifted differentiated M2 macrophages toward an M1 phenotype and subsequently suppressed foam cell formation by increasing HDL- and apoA-1-induced cholesterol efflux indicating suppression of macrophage ER stress as a potential therapy for atherosclerosis.  相似文献   

3.
Liposomes are the most widely used nanocarrier platform for the delivery of therapeutic and diagnostic agents, and a number of liposomes have been approved for use in clinical practice. After systemic administration, most liposomes are cleared by macrophages in the mononuclear phagocyte system, such as the liver and bone marrow (BM). However, the majority of studies have focused on investigating the therapeutic results of liposomal drugs, and too few studies have evaluated the potential side effects of empty nanocarriers on the functions of macrophages in the mononuclear phagocyte system. Here, we evaluate the potential effects of empty liposomes on the functions of BM niche macrophages. Following liposome administration, we observed lipid droplet (LD) accumulation in cultured primary macrophages and BM niche macrophages. We found that these LD-accumulating macrophages, similar to foam cells, exhibited increased expression of inflammatory cytokines, such as IL-1β and IL-6. We further provided evidence that liposome deposition and degradation induced LD biogenesis on the endoplasmic reticulum membrane and subsequently disturbed endoplasmic reticulum homeostasis and activated the inositol-requiring transmembrane kinase/endoribonuclease 1α/NF-κB signaling pathway, which is responsible for the inflammatory activation of macrophages after liposome engulfment. Finally, we also showed the side effects of dysfunctional BM niche macrophages on hematopoiesis in mice, such as the promotion of myeloid-biased output and impairment of erythropoiesis. This study not only draws attention to the safety of liposomal drugs in clinical practice but also provides new directions for the design of lipid-based drug carriers in preclinical studies.  相似文献   

4.
ABSTRACT

Macrophage foam cell formation and inflammation are a pathological hallmark of atherosclerosis. ClC-2 has been implicated in various pathological processes, including inflammation and lipid metabolic disorder. However, the functional role of ClC-2 in macrophage foam cell formation and inflammation is unclear. Here, we found that ClC-2 was dominantly expressed in macrophages of atherosclerotic plaque and increased in atherogenesis. Knockdown of ClC-2 inhibited ox-LDL -induced lipid uptake and deposition in macrophages. The increase in CD36 expression and the decrease in ABCA1 expression induced by ox-LDL were alleviated by ClC-2 downregulation. Further, ClC-2 lacking limited the ox-LDL-induced secretion of inflammatory cytokines and chemokine, and suppressed Nlrp3 inflammasome activation. Restoration of Nlrp3 expression reversed the effect of ClC-2 downregulation on macrophage lipid accumulation and inflammation. Collectively, our study demonstrates that ClC-2 knockdown ameliorates ox-LDL-induced macrophage foam cell formation and inflammation by inhibiting Nlrp3 inflammasome activation.  相似文献   

5.
The key event in the atherosclerosis development is the lipids uptake by macrophage and the formation of foam cell in subendothelial arterial space. Besides the uptake of modified low-density lipoprotein (LDL) by scavenger receptor-mediated endocytosis, macrophages possess constitutive macropinocytosis, which is capable of taking up a large quantity of solute. Macrophage foam cell formation could be induced in RAW264.7 cells by increasing the serum concentration in the culture medium. Foam cell formation induced by serum could be blocked by phosphoinositide 3-kinase inhibitor, LY294002 or wortmannin, which inhibited macropinocytosis but not receptor-mediated endocytosis. Further analysis indicated that macropinocytosis took place at the gangliosides-enriched membrane area. Cholesterol depletion by β-methylcyclodextrin-blocked macropinocytosis without affecting scavenger receptormediated endocytosis of modified LDLs. These results suggested that macropinocytosis might be one of the important mechanisms for lipid uptake in macrophage. And it made significant contribution to the lipid accumulation and foam cell formation.  相似文献   

6.
TNF has been implicated in the pathogenesis of type 1 diabetes. When administered early in life, TNF accelerates and increases diabetes in NOD mice. However, when administered late, TNF decreases diabetes incidence and delays onset. TNFR1-deficient NOD mice were fully protected from diabetes and only showed mild peri-insulitis. To further dissect how TNFR1 deficiency affects type 1 diabetes, these mice were crossed to β cell-specific, highly diabetogenic TCR transgenic I-A(g7)-restricted NOD4.1 mice and Kd-restricted NOD8.3 mice. TNFR1-deficient NOD4.1 and NOD8.3 mice were protected from diabetes and had significantly less insulitis compared with wild type NOD4.1 and NOD8.3 controls. Diabetic NOD4.1 mice rejected TNFR1-deficient islet grafts as efficiently as control islets, confirming that TNFR1 signaling is not directly required for β cell destruction. Flow cytometric analysis showed a significant increase in the number of CD4(+)CD25(+)Foxp3(+) T regulatory cells in TNFR1-deficient mice. TNFR1-deficient T regulatory cells were functionally better at suppressing effector cells than were wild type T regulatory cells both in vitro and in vivo. This study suggests that blocking TNF signaling may be beneficial in increasing the function of T regulatory cells and suppression of type 1 diabetes.  相似文献   

7.
Paraoxonases PON1 and PON3, which are both associated in serum with HDL, protect the serum lipids from oxidation, probably as a result of their ability to hydrolyze specific oxidized lipids. The activity of HDL-associated PON1 seems to involve an activity (phospholipase A2-like activity, peroxidase-like activity, lactonase activity) which produces LPC. To study the possible role of PON1 in macrophage foam cell formation and atherogenesis we used macrophages from control mice, from PON1 knockout mice, and from PON1 transgenic mice. Furthermore, we analyzed PON1-treated macrophages and PON1-transfected cells to demonstrate the contribution of PON1 to the attenuation of macrophage cholesterol and oxidized lipid accumulation and foam cell formation. PON1 was shown to inhibit cholesterol influx [by reducing the formation of oxidized LDL (Ox-LDL), increasing the breakdown of specific oxidized lipids in Ox-LDL, and decreasing macrophage uptake of Ox-LDL]. PON1 also inhibits cholesterol biosynthesis and stimulates HDL-mediated cholesterol efflux from macrophages. PON2 and PON3 protect against oxidative stress, with PON2 acting mainly at the cellular level. Whereas serum PON1 and PON3 were inactivated under oxidative stress, macrophage PON2 expression and activity were increased under oxidative stress, probably as a compensatory mechanism against oxidative stress. Intervention to increase the paraoxonases (cellular and humoral) by dietary or pharmacological means can reduce macrophage foam cell formation and attenuate atherosclerosis development.  相似文献   

8.
ABCG1 promotes cholesterol efflux from cells, but ABCG1(-/-) bone marrow transplant into ApoE(-/-) and LDLr(-/-) mice reduces atherosclerosis. To further investigate the role of ABCG1 in atherosclerosis, ABCG1 transgenic mice were crossed with LDLr-KO mice and placed on a high-fat western diet. Increased expression of ABCG1 mRNA was detected in liver (1.8-fold) and macrophages (2.7-fold), and cholesterol efflux from macrophages to HDL was also increased (1.4-fold) in ABCG1xLDLr-KO vs. LDLr-KO mice. No major differences were observed in total plasma lipids. However, cholesterol in the IDL-LDL size range was increased by approximately 50% in ABCG1xLDLr-KO mice compared to LDLr-KO mice. Atherosclerosis increased by 39% (10.1+/-0.8 vs 6.1+/-0.9% lesion area, p=0.02), as measured by en face analysis, and by 53% (221+/-98 vs 104+/-58x10(3)microm(2), p =0.01), as measured by cross-sectional analysis in ABCG1xLDLr-KO mice. Plasma levels for MCP-1 (1.5-fold) and TNF-alpha (1.2-fold) were also increased in ABCG1xLDLr-KO mice. In summary, these findings suggest that enhanced expression of ABCG1 increases atherosclerosis in LDLr-KO mice, despite its role in promoting cholesterol efflux from cells.  相似文献   

9.
10.
Accumulation of macrophage foam cells in atherosclerotic blood vessel intima is a critical component of atherogenesis mediated by scavenger receptor-dependent internalization of oxidized LDL. We demonstrated by coimmunoprecipitation and pull-down assays that the macrophage scavenger receptor CD36 associates with a signaling complex containing Lyn and MEKK2. The MAP kinases JNK1 and JNK2 were specifically phosphorylated in macrophages exposed to oxLDL. Using cells isolated from SRA, TLR2, or CD36 null mice, and phospholipid ligands specific for either SRA or CD36, we showed that JNK activation was mediated by CD36. Both foam cell formation and activation of JNK2 in hyperlipidemic mice were diminished in the absence of CD36. Furthermore, inhibition of Src or JNK blocked oxLDL uptake and inhibited foam cell formation in vitro and in vivo. These findings show that a specific CD36-dependent signaling pathway initiated by oxLDL is necessary for foam cell formation and identify potential targets for antiatherosclerosis therapy.  相似文献   

11.
In order to elucidate the antiatherogenic effects of pioglitazone (a peroxisome proliferator-activated receptor [PPAR]gamma agonist with PPARalpha agonistic activity) and rosiglitazone (a more selective PPARgamma agonist), we examined gene expression and cholesteryl ester accumulation in THP-1-derived macrophages. Pioglitazone enhanced the mRNA expression of the proatherogenic factors CD36 and adipophilin, but was approximately 10 times less potent than rosiglitazone. The potencies of the two agents appeared to correspond to their PPARgamma agonistic activities in this respect. However, both agents were similarly potent in enhancing the mRNA expression of the antiatherogenic factors liver X receptor alpha and ATP-binding cassette-transporter A1. Furthermore, both agents enhanced cholesteryl ester hydrolase mRNA expression and inhibited acyl-CoA cholesterol acyltransferase-1 mRNA expression and cholesteryl ester accumulation in macrophages. In this respect, their potencies appeared to correspond to their PPARalpha agonistic activities. These results suggest that pioglitazone has an equally beneficial effect on antiatherogenic events to rosiglitazone, despite being almost 10 times less potent than a PPARgamma agonist.  相似文献   

12.
We describe the quantitative measurement of antigen-specific clusters formed by antigen-pulsed macrophages and immunized T cells in mice. We have found the peripheral blood T cells show very little non-specific adhesion to macrophages in mice. By using this population of lymphocytes in the peripheral blood as the source of immunized T cells, we could quantitate antigen-specific cluster formation. On OVA-pulsed monolayers of peritoneal exudate macrophages from normal BALB/c mice, syngeneic peripheral blood T cells from donors immunized with the same antigen develop 20-40 clusters per 1,000 macrophages, whereas the same T cells on non-pulsed monolayers develop only 0-5 cluster-like accumulations of cells. On antigen-pulsed monolayers of macrophages from allogeneic (C57BL/6 or A/J) mice, clusters are developed only in the negative range (0-5/1,000 macrophages). Considering the observation by Braendstrup et al, these data seem to suggest that histocompatibility between macrophages and T cells is required to develop antigen-specific T cell clusters on antigen-pulsed macrophage monolayers, and that the genetic restriction of immune responsiveness may be directly expressed in this initial form of cellular interaction between antigen-bearing macrophages and specific T cells.  相似文献   

13.
14.
Stanniocalcin (STC) is a calcium- and phosphate-regulating hormone secreted by the corpuscles of Stannius, an endocrine gland of bony fish. Its human homologues, STC1 and STC2 showing 34% amino acid identity each other, are expressed in a variety of human tissues. To clarify their roles in atherosclerosis, we investigated the effects of their full-length proteins, STC1(18–247) and STC2(25–302), and STC2-derived fragment peptides, STC2(80–100) and STC2(85–99), on inflammatory responses in human umbilical vein endothelial cells (HUVECs), human macrophage foam cell formation, the migration and proliferation of human aortic smooth muscle cells (HASMCs) and the extracellular matrix expression. All these polypeptides suppressed lipopolysaccharide-induced expressions of interleukin-6, monocyte chemotactic protein-1, and intercellular adhesion molecule-1 in HUVECs. Oxidized low-density lipoprotein-induced foam cell formation was significantly decreased by STC1(18–247) and increased by STC2(80–100) and STC2(85–99), but not STC2(25–302), in human macrophages. Expression of acyl-CoA:cholesterol acyltransferase-1 (ACAT1) was significantly suppressed by STC1(18–247) but stimulated by STC2(80–100) and STC2(85–99). Expression of ATP-binding cassette transporter A1 was significantly stimulated by STC1(18–247). Neither STC1(18–247) nor STC2-derived peptides significantly affected CD36 expression in human macrophages or HASMC proliferation. STC2(80–100) and STC2(85–99) significantly increased HASMC migration, whereas STC1(18–247) significantly suppressed the angiotensin II-induced HASMC migration. Expressions of collagen-1, fibronectin, matrix metalloproteinase-2, and elastin were mostly unchanged with the exception of fibronectin up-regulation by STC2(80–100). Our results demonstrated the contrasting effects of STC1 and STC2-derived peptides on human macrophage foam cell formation associated with ACAT1 expression and on HASMC migration. Thus, STC-related polypeptides could serve as a novel therapeutic target for atherosclerosis.  相似文献   

15.
Macrophage foam cells are a defining pathologic feature of atherosclerotic lesions. Recent studies have demonstrated that at high concentrations associated with hypercholesterolemia, native LDL induces macrophage lipid accumulation. LDL particles are taken up by macrophages as part of bulk fluid pinocytosis. However, the uptake and metabolism of cholesterol from native LDL during foam cell formation has not been clearly defined. Previous reports have suggested that selective cholesteryl ester (CE) uptake might contribute to cholesterol uptake from LDL independently of particle endocytosis. In this study we demonstrate that the majority of macrophage LDL-derived cholesterol is acquired by selective CE uptake in excess of LDL pinocytosis and degradation. Macrophage selective CE uptake does not saturate at high LDL concentrations and is not down-regulated during cholesterol accumulation. In contrast to CE uptake, macrophages exhibit little selective uptake of free cholesterol (FC) from LDL. Following selective uptake from LDL, CE is rapidly hydrolyzed by a novel chloroquine-sensitive pathway. FC released from LDL-derived CE hydrolysis is largely effluxed from cells but also is subject to ACAT-mediated reesterification. These results indicate that selective CE uptake plays a major role in macrophage metabolism of LDL.  相似文献   

16.
17.
Akt, a serine-threonine protein kinase, exists as three isoforms. The Akt signaling pathway controls multiple cellular functions in the cardiovascular system, and the atheroprotective endothelial cell-dependent role of Akt1 has been recently demonstrated. The role of Akt3 isoform in cardiovascular pathophysiology is not known. We explored the role of Akt3 in atherosclerosis using mice with a genetic ablation of the Akt3 gene. Using hyperlipidemic ApoE(-/-) mice, we demonstrated a macrophage-dependent, atheroprotective role for Akt3. In vitro experiments demonstrated differential subcellular localization of Akt1 and Akt3 in macrophages and showed that Akt3 specifically inhibits macrophage cholesteryl ester accumulation and foam cell formation, a critical early event in atherogenesis. Mechanistically, Akt3 suppresses foam cell formation by reducing lipoprotein uptake and promoting ACAT-1 degradation via the ubiquitin-proteasome pathway. These studies demonstrate the nonredundant atheroprotective role for Akt3 exerted via the previously unknown link between the Akt signaling pathway and cholesterol metabolism.  相似文献   

18.
Scavenger receptor-mediated uptake of oxidized LDL (oxLDL) is thought to be the major mechanism of foam cell generation in atherosclerotic lesions. Recent data has indicated that native LDL is also capable of contributing to foam cell formation via low-affinity receptor-independent LDL particle pinocytosis and selective cholesteryl ester (CE) uptake. In the current investigation, Cu2+-induced LDL oxidation was found to inhibit macrophage selective CE uptake. Impairment of selective CE uptake was significant with LDL oxidized for as little as 30 min and correlated with oxidative fragmentation of apoB. In contrast, LDL aggregation, LDL CE oxidation, and the enhancement of scavenger receptor-mediated LDL particle uptake required at least 3 h of oxidation. Selective CE uptake did not require expression of the LDL receptor (LDL-R) and was inhibited similarly by LDL oxidation in LDL-R−/− versus WT macrophages. Inhibition of selective uptake was also observed when cells were pretreated or cotreated with minimally oxidized LDL, indicating a direct inhibitory effect of this oxLDL on macrophages. Consistent with the effect on LDL CE uptake, minimal LDL oxidation almost completely prevented LDL-induced foam cell formation. These data demonstrate a novel inhibitory effect of mildly oxidized LDL that may reduce foam cell formation in atherosclerosis.  相似文献   

19.
Lipid-laden macrophages or "foam cells" are the primary components of the fatty streak, the earliest atherosclerotic lesion. Although Vav family guanine nucleotide exchange factors impact processes highly relevant to atherogenesis and are involved in pathways common to scavenger receptor CD36 signaling, their role in CD36-dependent macrophage foam cell formation remains unknown. The goal of the present study was to determine the contribution of Vav proteins to CD36-dependent foam cell formation and to identify the mechanisms by which Vavs participate in the process. We found that CD36 contributes to activation of Vav-1, -2, and -3 in aortae from hyperlipidemic mice and that oxidatively modified LDL (oxLDL) induces activation of macrophage Vav in vitro in a CD36 and Src family kinase-dependent manner. CD36-dependent uptake of oxLDL in vitro and foam cell formation in vitro and in vivo was significantly reduced in Vav null macrophages. These studies for the first time link CD36 and Vavs in a signaling pathway required for macrophage foam cell formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号